1
|
Chen J, Liu C, Li L, Tao W, Zhang X, Zhao S, Wang C, Huang L. Exogenous leptin alleviates glutamate-excitotoxic injury caused by cerebral ischemia-reperfusion in mice by affecting the expression of glutamate transporters. Brain Res 2024; 1845:149201. [PMID: 39197570 DOI: 10.1016/j.brainres.2024.149201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Ischemic stroke is characterized by high morbidity and mortality and a lack of effective therapeutic interventions. Leptin plays an important role in regulating oxidative stress, angiogenesis, hematopoiesis, etc. Although recent studies have found a neuroprotective effect of leptin, little is known about its role in cerebral ischemia. This study explores the possible roles and potential preventative mechanisms of leptin in cerebral ischemia-reperfusion injury (CIRI). An in vivo middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was used to replicate the CIRI model, low (0.5 mg/kg), medium (1 mg/kg) and high (2 mg/kg) concentrations of leptin were injected intraperitoneally immediately after inserting the embolic line. After 1.5 h of ischemia and 24 h of reperfusion, we examined the neural function of the mice, collected brain tissue for histological examination, and screened for the optimal concentrations of leptin intervention. On this basis, we observed the changes of cortical apoptosis injury, intracellular calcium fluorescence intensity and astrocyte glial fibrillary acidic protein (GFAP) expression and morphological changes. In addition, we also tested the expression of transporters and metabolism-related enzymes (VGLUT-1, VGLUT-2, GLAST, GLT-1, GS, ATP1α1), the expression of inflammatory factors and the content of glutamate (Glu). Compared with the I/R group, we found that leptin improved neurological deficits, reduced the area of infarcts, maintained the normal morphology of astrocytes (AST), downregulated the expression of VGLUT-1, and upregulates the expression of GLT-1 and GLAST, thereby reducing the content of Glu in the synaptic cleft. Our studies suggest that leptin may have a neuroprotective effect by decreasing the excitotoxicity of glutamate.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pathophysiology, Bengbu Medical University, Bengbu Anhui 233030, China; Basic and Clinical Key Laboratory of Cardiovascular and Cerebrovascular Diseases of Bengbu Medical University, Bengbu Anhui 233030, China
| | - Chenxu Liu
- Department of Pathophysiology, Bengbu Medical University, Bengbu Anhui 233030, China; Basic and Clinical Key Laboratory of Cardiovascular and Cerebrovascular Diseases of Bengbu Medical University, Bengbu Anhui 233030, China
| | - Li Li
- Department of Pathophysiology, Bengbu Medical University, Bengbu Anhui 233030, China; Basic and Clinical Key Laboratory of Cardiovascular and Cerebrovascular Diseases of Bengbu Medical University, Bengbu Anhui 233030, China
| | - WeiTing Tao
- Department of Pathophysiology, Bengbu Medical University, Bengbu Anhui 233030, China; Basic and Clinical Key Laboratory of Cardiovascular and Cerebrovascular Diseases of Bengbu Medical University, Bengbu Anhui 233030, China
| | - Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical University, Bengbu Anhui 233030, China; Basic and Clinical Key Laboratory of Cardiovascular and Cerebrovascular Diseases of Bengbu Medical University, Bengbu Anhui 233030, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical University, Bengbu Anhui 233030, China; Basic and Clinical Key Laboratory of Cardiovascular and Cerebrovascular Diseases of Bengbu Medical University, Bengbu Anhui 233030, China
| | - Chun Wang
- Department of General Medicine, Second Affiliated Hospital of Bengbu Medical University, Bengbu Anhui 233040, China.
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical University, Bengbu Anhui 233030, China; Basic and Clinical Key Laboratory of Cardiovascular and Cerebrovascular Diseases of Bengbu Medical University, Bengbu Anhui 233030, China.
| |
Collapse
|
2
|
Guo Y, Cui Y, Sun M, Zhu X, Zhang Y, Lu J, Li C, Lv J, Guo M, Liu X, Chen Z, Du X, Huo X. Establishment and Application of a Novel Genetic Detection Panel for SNPs in Mongolian Gerbils. Genes (Basel) 2024; 15:817. [PMID: 38927752 PMCID: PMC11202554 DOI: 10.3390/genes15060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The Mongolian gerbil is a distinctive experimental animal in China, as its genetic qualities possess significant value in the field of medical biology research. Here, we aimed to establish an economical and efficient panel for genetic quality detection in Mongolian gerbils using single-nucleotide polymorphism (SNP) markers. To search for SNPs, we conducted whole-genome sequencing (WGS) in 40 Mongolian gerbils from outbred populations. Reliable screening criteria were established to preliminarily select SNPs with a wide genome distribution and high levels of polymorphism. Subsequently, a multiple-target regional capture detection system based on second-generation sequencing was developed for SNP genotyping. Based on the results of WGS, 219 SNPs were preliminarily selected, and they were established and optimized in a multiple-amplification system that included 206 SNP loci by genotyping three outbred populations. PopGen.32 analysis revealed that the average effective allele number, Shannon index, observed heterozygosity, expected heterozygosity, average heterozygosity, polymorphism information content, and other population genetic parameters of the Capital Medical University (CMU) gerbils were the highest, followed by those of Zhejiang gerbils and Dalian gerbils. Through scientific screening and optimization, we successfully established a novel, robust, and cost-effective genetic detection system for Mongolian gerbils by utilizing SNP markers for the first time.
Collapse
Affiliation(s)
- Yafang Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Yutong Cui
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Minghe Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xiao Zhu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Yilang Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| |
Collapse
|
3
|
陈 洁, 刘 晨, 王 春, 李 丽, 陶 伟, 徐 婧, 唐 红, 黄 丽. [Exogenous leptin improves cerebral ischemia-reperfusion-induced glutamate excitotoxic injury in mice by up-regulating GLT-1 and GLAST expression in astrocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1079-1087. [PMID: 38977337 PMCID: PMC11237293 DOI: 10.12122/j.issn.1673-4254.2024.06.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To investigate the protective effect of exogenous leptin against focal cerebral ischemia-reperfusion (I/R) injury in mice and explore the underlying mechanism. METHODS A total of 100 C57BL/6 mice were randomly divided into 5 groups, including a sham-operated group, cerebral I/R model group, and 3 leptin treatment groups with intraperitoneal injections of 0.5, 1.0 or 2.0 leptin immediately after occlusion of the internal carotid artery. At 24 h after reperfusion, neurological function scores of the mice were assessed, and TTC staining was used to determine the area of cerebral infarction. The pathological changes in the cortical brain tissue of the mice were observed using HE staining, and degenerative damage of the cortical neurons were assessed with Fluoro-Jade C staining. The expression of glial fibrillary acidic protein in cortical brain tissues was detected using immunohistochemistry and Western blotting. In another 45 C57BL/6 mice with sham operation, I/R modeling, or leptin (1 mg/kg) treatment, glutamic acid in the cortical brain tissue was detected using glutamate assay, and cortical glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) protein expressions were detected using immunohistochemistry. RESULTS Compared with the I/R model mice, the leptin-treated mice had significantly lower neurological deficit scores, smaller cerebral infarct area, milder pathologies in the cortical brain tissue, and lessened cortical neuronal damage with normal morphology and less excessive proliferation of the astrocytes. Leptin treatment significantly up-regulated the expressions of GLT-1 and GLAST and lowered the content of glutamic acid in the brain tissue of the I/R mice. CONCLUSION Exogenous leptin has obvious neuroprotective effect against cerebral I/R injury in mice, mediated probably by controlling excessive astrocyte proliferation and up-regulating cortical GLT-1 and GLAST expressions to reduce glutamate-mediated excitotoxic injury of the astrocytes.
Collapse
|
4
|
Gržeta Krpan N, Harej Hrkać A, Janković T, Dolenec P, Bekyarova E, Parpura V, Pilipović K. Chemically Functionalized Single-Walled Carbon Nanotubes Prevent the Reduction in Plasmalemmal Glutamate Transporter EAAT1 Expression in, and Increase the Release of Selected Cytokines from, Stretch-Injured Astrocytes in Vitro. Cells 2024; 13:225. [PMID: 38334617 PMCID: PMC10854924 DOI: 10.3390/cells13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.
Collapse
Affiliation(s)
- Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| |
Collapse
|
5
|
Ferreira RS, Ribeiro PR, Silva JHCE, Hoppe JB, de Almeida MMA, de Lima Ferreira BC, Andrade GB, de Souza SB, Ferdandez LG, de Fátima Dias Costa M, Salbego CG, Rivera AD, Longoni A, de Assis AM, Pieropan F, Moreira JCF, Costa SL, Butt AM, da Silva VDA. Amburana cearensis seed extract stimulates astrocyte glutamate homeostatic mechanisms in hippocampal brain slices and protects oligodendrocytes against ischemia. BMC Complement Med Ther 2023; 23:154. [PMID: 37170258 PMCID: PMC10173544 DOI: 10.1186/s12906-023-03959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Stroke is a leading cause of death and disability worldwide. A major factor in brain damage following ischemia is excitotoxicity caused by elevated levels of the neurotransmitter glutamate. In the brain, glutamate homeostasis is a primary function of astrocytes. Amburana cearensis has long been used in folk medicine and seed extract obtained with dichloromethane (EDAC) have previously been shown to exhibit cytoprotective activity in vitro. The aim of the present study was to analyse the activity of EDAC in hippocampal brain slices. METHODS We prepared a dichloromethane extract (EDAC) from A. cearensis seeds and characterized the chemical constituents by 1H and 13C-NMR. Hippocampal slices from P6-8 or P90 Wistar rats were used for cell viability assay or glutamate uptake test. Hippocampal slices from P10-12 transgenic mice SOX10-EGFP and GFAP-EGFP and immunofluorescence for GS, GLAST and GLT1 were used to study oligodendrocytes and astrocytes. RESULTS Astrocytes play a critical role in glutamate homeostasis and we provide immunohistochemical evidence that in excitotoxicity EDAC increased expression of glutamate transporters and glutamine synthetase, which is essential for detoxifying glutamate. Next, we directly examined astrocytes using transgenic mice in which glial fibrillary acidic protein (GFAP) drives expression of enhanced green fluorescence protein (EGFP) and show that glutamate excitotoxicity caused a decrease in GFAP-EGFP and that EDAC protected against this loss. This was examined further in the oxygen-glucose deprivation (OGD) model of ischemia, where EDAC caused an increase in astrocytic process branching, resulting in an increase in GFAP-EGFP. Using SOX10-EGFP reporter mice, we show that the acute response of oligodendrocytes to OGD in hippocampal slices is a marked loss of their processes and EDAC protected oligodendrocytes against this damage. CONCLUSION This study provides evidence that EDAC is cytoprotective against ischemia and glutamate excitotoxicity by modulating astrocyte responses and stimulating their glutamate homeostatic mechanisms.
Collapse
Affiliation(s)
- Rafael Short Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Paulo Roberto Ribeiro
- Metabolomics Research Group, Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Juliana Helena Castro E Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Juliana Bender Hoppe
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Monique Marylin Alves de Almeida
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Beatriz Correia de Lima Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Gustavo Borges Andrade
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Suzana Braga de Souza
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Luzimar Gonzaga Ferdandez
- Biochemistry, Biotechnology and Bioproducts Laboratory, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Christianne Gazzana Salbego
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Andrea Domenico Rivera
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Aline Longoni
- Health Sciences Centre, Post-Graduate Program in Health and Behaviour, Catholic University of Pelotas, Pelotas, Brazil
| | - Adriano Martimbianco de Assis
- Health Sciences Centre, Post-Graduate Program in Health and Behaviour, Catholic University of Pelotas, Pelotas, Brazil
| | - Francesca Pieropan
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - José Cláudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil.
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil.
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
6
|
Xue S, Shen T, Li M, Leng B, Yao R, Gao Y, Sun H, Li Z, Zhang J. Neuronal glutamate transporters are associated with cognitive impairment in obstructive sleep apnea patients without dementia. Neurosci Lett 2023; 802:137168. [PMID: 36894020 DOI: 10.1016/j.neulet.2023.137168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Increasing evidence supports a link between obstructive sleep apnea (OSA) and cognition, and the mechanism is complex and still not well understood. We analyzed the relationship between the glutamate transporters and cognitive impairment in OSA. For this study 317 subjects without dementia, including 64 healthy controls (HCs), 140 OSA patients with mild cognitive impairment (MCI) and 113 OSA patients without cognitive impairment were assessed. All participants who completed polysomnography, cognition and white matter hyperintensity (WMH) volume were used. Plasma neuron-derived exosomes (NDEs) excitatory amino acid transporter 2 (EAAT2) and vesicular glutamate transporter 1 (VGLUT1) proteins were measured by ELISA kits. After 1 year of continuous positive airway pressure (CPAP) treatment, we analyzed plasma NDEs EAAT2 level and cognition changes. Plasma NDEs EAAT2 level was significantly higher in OSA patients than in HCs. Higher plasma NDEs EAAT2 level were significantly associated with cognitive impairment than normal cognition in OSA patients. Plasma NDEs EAAT2 level was inversely associated with the total Montreal Cognitive Assessment (MoCA) scores, visuo-executive function, naming, attention, language, abstraction, delayed recall and orientation. One year after CPAP treatment, plasma NDEs EAAT2 level (P = 0.019) was significantly lower, while MoCA scores (P = 0.013) were significantly increased compared with baseline. Upregulation of neuronal glutamate transporters at baseline may reflect a self-compensatory mechanism to prevent further neuronal damage, while plasma NDEs EAAT2 level was decreased after one year of CPAP therapy, which may be due to the loss of astrocytes and neurons.
Collapse
Affiliation(s)
- Song Xue
- Weifang Medical University, Weifang, Shandong, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Tengqun Shen
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| |
Collapse
|
7
|
Ding J, He L, Li T, Yin Y. Research progress on the function of the amino acid transporter gene <italic>SLC1A3</italic> and its regulation mechanism of action in the nervous system and mitochondria. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|