1
|
Prasad SM, Khan MNA, Tariq U, Al-Nashash H. Impact of Electrical Stimulation on Mental Stress, Depression, and Anxiety: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:2133. [PMID: 40218646 PMCID: PMC11991385 DOI: 10.3390/s25072133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 04/14/2025]
Abstract
Individuals experiencing high levels of stress face significant impacts on their overall well-being and quality of life. Electrical stimulation techniques have emerged as promising interventions to address mental stress, depression, and anxiety. This systematic review investigates the impact of different electrical stimulation approaches on these types of disorders. The review synthesizes data from 30 studies, revealing promising findings and identifying several research gaps and challenges. The results indicate that electrical stimulation has the potential to alleviate symptoms of anxiety, depression, and tension, although the degree of efficacy varies among different patient populations and modalities. Nevertheless, the findings also underscore the necessity of standardized protocols and additional research to ascertain the most effective treatment parameters. There is also a need for integrated methodologies that combine hybrid EEG-fNIRS techniques with stress induction paradigms, the exploration of alternative stimulation modalities beyond tDCS, and the investigation of the combined effects of stimulation on stress. Despite these challenges, the growing body of evidence underscores the potential of electrical stimulation as a valuable tool to manage mental stress, depression, and anxiety, paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Sandra Mary Prasad
- Bioscience and Bioengineering Graduate Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - M. N. Afzal Khan
- Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.N.A.K.); (H.A.-N.)
| | - Usman Tariq
- Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.N.A.K.); (H.A.-N.)
| | - Hasan Al-Nashash
- Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.N.A.K.); (H.A.-N.)
| |
Collapse
|
2
|
Gaugain G, Al Harrach M, Yochum M, Wendling F, Bikson M, Modolo J, Nikolayev D. Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. J Neural Eng 2025; 22:016028. [PMID: 39569929 DOI: 10.1088/1741-2552/ad9526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for clinical and research applications. Yet, it remains unclear how the stimulation frequency differentially impacts various neuron types. Here, we aimed to quantify the frequency-dependent behavior of key neocortical cell types.Approach. We used both detailed (anatomical multicompartments) and simplified (three compartments) single-cell modeling approaches based on the Hodgkin-Huxley formalism to study neocortical excitatory and inhibitory cells under various tACS intensities and frequencies within the 5-50 Hz range at rest and during basal 10 Hz activity.Main results. L5 pyramidal cells (PCs) exhibited the highest polarizability at direct current, ranging from 0.21 to 0.25 mm and decaying exponentially with frequency. Inhibitory neurons displayed membrane resonance in the 5-15 Hz range with lower polarizability, although bipolar cells had higher polarizability. Layer 5 PC demonstrated the highest entrainment close to 10 Hz, which decayed with frequency. In contrast, inhibitory neurons entrainment increased with frequency, reaching levels akin to PC. Results from simplified models could replicate phase preferences, while amplitudes tended to follow opposite trends in PC.Significance. tACS-induced membrane polarization is frequency-dependent, revealing observable resonance behavior. Whilst optimal phase entrainment of sustained activity is achieved in PC when tACS frequency matches endogenous activity, inhibitory neurons tend to be entrained at higher frequencies. Consequently, our results highlight the potential for precise, cell-specific targeting for tACS.
Collapse
Affiliation(s)
- Gabriel Gaugain
- Institut d'électronique et des technologies du numérique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| | - Mariam Al Harrach
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Maxime Yochum
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Fabrice Wendling
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Marom Bikson
- The City College of New York, New York, NY 11238, United States of America
| | - Julien Modolo
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Denys Nikolayev
- Institut d'électronique et des technologies du numérique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| |
Collapse
|
3
|
Huang K, Fang J, Xiao S, Wang W, Zhang G, Sun W, Shuai L, Bi H. Transcranial alternating current stimulation inhibits ferroptosis and promotes functional recovery in spinal cord injury via the cGMP-PKG signalling pathway. Life Sci 2025; 362:123341. [PMID: 39740757 DOI: 10.1016/j.lfs.2024.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
AIMS This study explores the potential of neuromodulation, specifically transcranial alternating current stimulation (tACS), as a promising rehabilitative therapy in spinal cord injury (SCI). MAIN METHODS By meticulously optimizing treatment parameters and durations, our objective was to enhance nerve regeneration and facilitate functional recovery. To assess the efficacy of tACS, our experiments used the rat T10 SCI model. Motor function outcomes were measured using the Basso-Beattie-Bresnahan (BBB) scoring scale and footprint analysis. To thoroughly understand the impact of tACS, we conducted a series of histological evaluations two weeks post-injury. These included q-PCR, enzyme-linked immunosorbent assays (ELISA), transmission electron microscopy (TEM), immunofluorescence staining, and Western blotting. The mechanisms underlying the role of tACS will be elucidated through comprehensive analyses. KEY FINDINGS Simultaneously, tACS reduced the levels of reactive oxygen species (ROS), Fe, and malondialdehyde (MDH), and increased the levels of glutathione (GSH) after SCI. Additionally, tACS significantly enhanced motor function, reduced fibrotic scar tissue formation, and provided substantial neuroprotection. It also contributed to the restoration of the blood-spinal cord barrier and supported the regeneration of essential neural components, including axons, myelin, and synapses. The cGMP-PKG signalling pathway was identified as playing a crucial role in these processes. SIGNIFICANCE Our findings suggest that tACS inhibits ferroptosis and necrotic degeneration by modulating the cGMP-PKG signalling pathway. This highlights the importance of tACS in promoting neural repair and functional recovery in SCI patients. Overall, tACS emerges as a highly effective and cost-efficient rehabilitative approach for SCI, offering new hope for improving patient outcomes.
Collapse
Affiliation(s)
- Ke Huang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Fang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shining Xiao
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wansong Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Guodong Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Weiming Sun
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Lang Shuai
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Haidi Bi
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Gholamali Nezhad F, Martin J, Tassone VK, Swiderski A, Demchenko I, Khan S, Chaudhry HE, Palmisano A, Santarnecchi E, Bhat V. Transcranial alternating current stimulation for neuropsychiatric disorders: a systematic review of treatment parameters and outcomes. Front Psychiatry 2024; 15:1419243. [PMID: 39211537 PMCID: PMC11360874 DOI: 10.3389/fpsyt.2024.1419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) alters cortical excitability with low-intensity alternating current and thereby modulates aberrant brain oscillations. Despite the recent increase in studies investigating the feasibility and efficacy of tACS in treating neuropsychiatric disorders, its mechanisms, as well as optimal stimulation parameters, are not fully understood. Objectives This systematic review aimed to compile human research on tACS for neuropsychiatric disorders to delineate typical treatment parameters for these conditions and evaluate its outcomes. Methods A search for published studies and unpublished registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase), ClinicalTrials.gov, and the International Clinical Trials Registry Platform. Studies utilizing tACS to treat neuropsychiatric disorders in a clinical trial setting were included. Results In total, 783 published studies and 373 clinical trials were screened; 53 published studies and 70 clinical trials were included. Published studies demonstrated a low risk of bias, as assessed by the Joanna Briggs Institute Critical Appraisal Tools. Neurocognitive, psychotic, and depressive disorders were the most common disorders treated with tACS. Both published studies (58.5%) and registered clinical trials (52%) most commonly utilized gamma frequency bands and tACS was typically administered at an intensity of 2 mA peak-to-peak, once daily for 20 or fewer sessions. Although the targeted brain locations and tACS montages varied across studies based on the outcome measures and specific pathophysiology of the disorders, the dorsolateral prefrontal cortex (DLPFC) was the most common target in both published studies (30.2%) and registered clinical trials (25.6%). Across studies that published results on tACS outcome measures, tACS resulted in enhanced symptoms and/or improvements in overall psychopathology for neurocognitive (all 11 studies), psychotic (11 out of 14 studies), and depressive (7 out of 8 studies) disorders. Additionally, 17 studies reported alterations in the power spectrum of the electroencephalogram around the entrained frequency band at the targeted locations following tACS. Conclusion Behavioral and cognitive symptoms have been positively impacted by tACS. The most consistent changes were reported in cognitive symptoms following gamma-tACS over the DLPFC. However, the paucity of neuroimaging studies for each neuropsychiatric condition highlights the necessity for replication studies employing biomarker- and mechanism-centric approaches.
Collapse
Affiliation(s)
- Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Josh Martin
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K. Tassone
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alyssa Swiderski
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Somieya Khan
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Hamzah E. Chaudhry
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Annalisa Palmisano
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|