1
|
Kodakkat S, Mirihana KA, Penman R, Kariuki R, Valliant PHA, Christofferson AJ, Bryant G, Bryant SJ, Walia S, Elbourne A. Insight into black phosphorus interactions with supported lipid bilayers. J Colloid Interface Sci 2025; 694:137686. [PMID: 40318290 DOI: 10.1016/j.jcis.2025.137686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
HYPOTHESIS Nanomaterials have gained significant attention due to their unique properties and potential applications in various biomedical fields, including immediate or targeted drug delivery for wound treatment, cancers, and microbial infections, as well as advancements in diagnostic techniques and tissue engineering. They can also penetrate biological barriers, such as lipid bilayers, offering potential for enhanced drug delivery systems. However, understanding nanomaterial-biomembrane interactions is critical to optimize their design for efficient and safe therapeutic applications. We hypothesize that liquid exfoliated black phosphorus (BP) disrupts lipid bilayers, leading to altered membrane integrity and dynamics, which could influence its potential as an antimicrobial agent or drug delivery vehicle. EXPERIMENTS To test this hypothesis, we investigated the interaction between BP flakes and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayers using atomic force microscopy (AFM), force spectroscopy, and molecular dynamics (MD) simulations. AFM provided topographical and force measurements, while MD simulations offered atomistic insights into the interaction mechanisms. FINDINGS AFM imaging and force measurements revealed significant destabilization of the lipid bilayer, with a reduction in rupture force by more than half upon interaction with BP flakes. MD simulations corroborated these results, showing penetration and disruption of the lipid bilayer by BP. These findings enhance our understanding of nanomaterial-membrane interactions and demonstrate BP's potential for developing advanced nanomaterial-based drug delivery systems and antimicrobial therapies.
Collapse
Affiliation(s)
| | | | - Rowan Penman
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Rashad Kariuki
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | | | | | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Yotsomnuk P, Skolpap W, Thitapakorn V. Release dynamics and toxicological analysis of astilbin from lauric acid/BSA-coated superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 2025; 252:114620. [PMID: 40215640 DOI: 10.1016/j.colsurfb.2025.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/10/2025] [Accepted: 03/05/2025] [Indexed: 05/18/2025]
Abstract
The research was designed to analyze the in vitro drug release kinetics of astilbin (AST)-loaded lauric acid (LA)/bovine serum albumin (BSA)-coated superparamagnetic iron oxide nanoparticles (SPIONLA/BSA) as drug delivery vehicles for cholangiocarcinoma (CCA) therapy. Specifically, the study aimed to determine the diffusion coefficient of AST (D) and the dissolution rate (k'a) of the drug, as well as to assess the in vitro cytotoxicity against KKU-055 and KKU-213. The in vitro drug release profiles of AST-loaded SPIONLA/BSA demonstrated their potential for a targeted and pH-sensitive delivery mechanism. The AST release profile at different concentrations (10, 15, 20, and 25 ppm) was best fitted by the Korsmeyer-Peppas model. The release exponents (n ≤ 0.45) indicated that the drug release mechanism was controlled by quasi-Fickian diffusion. The control of drug release dynamics of AST predicted using a combination of the Noyes-Whitney and Fick's second law, was best described by a second-order release-rate diffusion control at a 10 ppm loading concentration. In contrast, a higher initial concentration (20 ppm) was best described by a first-order release-rate diffusion control model. In the cytotoxicity studies, SPIONLA/BSA demonstrated a greater decrease in cell viability compared to uncoated-SPION, in a dose-dependent manner (0-150 μg·cm-3). After 48 h of treatment, KKU-213 cells exhibited the highest cell growth inhibition, with a 54.73 % reduction in viability compared to the control group. These findings suggest that AST has potential as a potent anticancer agent for inhibiting CCA cell growth, while SPIONLA/BSA shows promise as an effective carrier for anticancer drug delivery.
Collapse
Affiliation(s)
- Panadda Yotsomnuk
- Department of Chemical Engineering, School of Engineering, Thammasat University, Pathumthani 12120, Thailand
| | - Wanwisa Skolpap
- Department of Chemical Engineering, School of Engineering, Thammasat University, Pathumthani 12120, Thailand; Center of Clinical Engineering, School of Engineering, Thammasat University, Pathumthani 12120, Thailand.
| | - Veerachai Thitapakorn
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
3
|
Răcuciu M, Barbu-Tudoran L, Oancea S. Evaluation of phytotoxicity and genotoxicity of TMA-stabilized iron-oxide nanoparticle in corn (Zea mays) young plants. Sci Rep 2025; 15:18951. [PMID: 40442473 PMCID: PMC12122793 DOI: 10.1038/s41598-025-03872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
Engineered iron oxide nanoparticles (IONPs) have potential applications in agriculture, but their effects vary depending on their composition, concentration, and plant species. In this study, we investigated the biological effects of iron oxide nanoparticles stabilized with tetramethylammonium hydroxide (TMA-IONPs) on Zea mays (corn). The nanoparticles were characterized by transmission and scanning electron microscopy (TEM, SEM), revealing an average diameter of 10.78 nm, and by ATR-FTIR spectroscopy, which confirmed TMA binding and colloidal stability in an aqueous medium. Corn seeds were germinated directly in aqueous solutions of TMA-IONPs at six concentrations ranging from 7.6 to 45.6 mg/L. Seedlings were grown under controlled environmental conditions, and all analyses were performed on day seven of seedling development. The following parameters were assessed: germination rate; seedling growth (shoot and root length); chlorophyll content; antioxidant enzyme activity (catalase and peroxidase); and mitotic index in root meristematic cells. Concentrations up to 45.6 mg/L significantly enhanced germination, biomass accumulation, chlorophyll biosynthesis, and enzymatic antioxidant activity. The highest mitotic index was observed at 38 mg/L with a low incidence of chromosomal aberrations. These findings suggest that low concentrations of TMA-IONPs promote corn seedling growth by stimulating cell division and modulating oxidative stress response. Further research is required to assess the broader agricultural potential and safety of these nanoparticle formulations.
Collapse
Affiliation(s)
- Mihaela Răcuciu
- Environmental Sciences and Physics Department, Faculty of Sciences, Lucian Blaga University of Sibiu, Dr. I. Ratiu Str., no. 5-7, 550012, Sibiu, Romania.
| | - Lucian Barbu-Tudoran
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, Donat Str., no. 67-103, 400293, Cluj-Napoca, Romania
- Electron Microscopy Laboratory "Prof. C. Craciun", Faculty of Biology and Geology, Babes-Bolyai University, Clinicilor Str., no. 5-7, 400006, Cluj-Napoca, Romania
| | - Simona Oancea
- Agricultural Sciences and Food Engineering Department, Lucian Blaga University of Sibiu, Dr. I. Ratiu Str., no. 7-9, 550012, Sibiu, Romania
| |
Collapse
|
4
|
Rauf A, Ahmad Z, Ajaj R, Zhang H, Ibrahim M, Muhammad N, Al-Awthan YS, Bahattab OS, Ullah I. Green synthesis an eco-friendly route for the synthesis of iron oxide nanoparticles using aqueous extract of Thevetia peruviana and their biological activities. Sci Rep 2025; 15:18316. [PMID: 40419567 DOI: 10.1038/s41598-025-02387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
This study reports the plant extract-assisted synthesis of iron oxide (Fe3O4) using the aqueous extract of Thevetia peruviana. The synthesized IONPs were confirmed via UV-Vis spectroscopy (295 nm) and characterized using FTIR and SEM. Density Functional Theory (DFT) calculations indicated a thermodynamically and mechanically stable system with semimetallic behavior and visible light absorption. The biological activities of the IONPs were evaluated, including enzyme inhibition assays for urease, α-glucosidase, carbonic anhydrase-II, and xanthine oxidase, as well as anticancer activity. The Fe₃O₄ NPs exhibited potent enzyme inhibition, including urease (94.78%, IC₅₀ = 24.98 µg/mL), α-glucosidase (86.09%), and carbonic anhydrase-II (82.98%, IC₅₀ = 24.78 µg/mL). Additionally, molecular docking was performed to evaluate the interaction of Fe₃O₄ NPs with target enzymes, supporting their inhibitory potential. The NPs also demonstrated notable anticancer activity, particularly against MDR 2780AD (IC₅₀ = 0.39 µg/mL). These results showed significant enzyme inhibition and anticancer properties, indicating the potential of these green-synthesized IONPs in biomedical applications.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Rahaf Ajaj
- Department of Environmental and Public Health, College of Health Sciences, Abu Dhabi University, Abu Dhabi, UAE.
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Muhammad Ibrahim
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Naveed Muhammad
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yahya S Al-Awthan
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Omar S Bahattab
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Imran Ullah
- Chair of Crystallography and Structural Physics, Institute of Condensed Matter Physics, Friedrich-Alexander University, Staudt Street 3, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Pawar P, Prabhu A. Smart SPIONs for Multimodal Cancer Theranostics: A Review. Mol Pharm 2025; 22:2372-2391. [PMID: 40223773 DOI: 10.1021/acs.molpharmaceut.5c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Despite significant advancements in anticancer research, the performance statistics of current therapeutic regimens yield unsatisfactory outcomes. Issues such as high metastasis rates, drug resistance, limited efficacy, and severe side effects underscore the urgent need for safer and more effective strategies for tumor mitigation. One promising approach lies in the use of superparamagnetic iron oxide nanoparticles (SPIONs) for hybridized cancer therapy, leveraging their unique properties and functional versatility to enhance treatment efficacy and safety. They can serve as platforms for various therapeutic as well as diagnostic applications, enhancing imaging techniques such as magnetic resonance imaging. This paper presents an in-depth compilation of the application of nanoparticulate SPIONs amalgamates for multimodal cancer therapeutics. Physical phenomena such as light, heat, sound, and magnetism can be coupled to nanoparticulate delivery systems for developing targeted, precision medicine against cancer. Integration of noninvasive and effective platforms technologies such as photodynamic therapy, photothermal therapy, magnetic hyperthermia, and sonodynamic therapy hold great promise in counteracting the daunting challenges within cancer therapeutics.
Collapse
Affiliation(s)
- Pradip Pawar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, India
| |
Collapse
|
6
|
Rafiei N, Aratboni HA, Lavandosque LL, Mastrangelo CB, Hirai WY, de Oliveira LFP, Gonçalves GLP, Lavres J, Rossi ML, Martinelli AP, de Lira SP, Kazemeini SA, Winck FV. Haematococcus pluvialis bionanoparticles boost maize seedling health, serving as a sustainable seed priming agent and biostimulant for agriculture. PHYSIOLOGIA PLANTARUM 2025; 177:e70245. [PMID: 40309930 PMCID: PMC12044640 DOI: 10.1111/ppl.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
The rising frequency of extreme climate events requires sustainable strategies to secure food production. Environmental stress impacts seed germination and seedling development, posing a significant agricultural challenge. To address this, we developed and applied iron-based nanoparticles (Bio-NPs) synthesized through green biosynthesis from Haematococcus pluvialis, a microalga rich in antioxidants like astaxanthin. These Bio-NPs, approximately 21 nm in diameter and characterized by a negative surface charge, were used as priming agents for maize seeds. Their effects on physiological traits were analyzed with multispectral imaging, showing enhanced normalized difference vegetation index (NDVI) and chlorophyll levels in maize seedlings, highlighting Bio-NPs as effective biostimulants. Among the tested concentrations, 6 mM Bio-NPs yielded the most substantial improvements in seedling health compared to unprimed and hydro-primed groups. Importantly, in vitro studies confirmed that Bio-NPs had no harmful effects on beneficial bacteria and fungi of agronomic importance, underscoring their safety. Although the exact biological pathways responsible for these enhancements are yet to be fully understood, further research into plant responses to Bio-NPs could yield new insights into plant biostimulation. Bio-NPs thus hold promises for strengthening seedling resilience under extreme environmental scenarios, currently observed due to global climate change, offering a safe, sustainable approach to agricultural enhancement. By leveraging microalgae-based biostimulants, this work advances seed priming technology, fostering crop resilience and supporting environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Nahid Rafiei
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Hossein Alishah Aratboni
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Leandro Luis Lavandosque
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Clíssia Barboza Mastrangelo
- Laboratory of Radiobiology and Environment, Center for Nuclear Energy in Agriculture (CENA)University of São Paulo (USP)São PauloBrazil
| | - Welinton Yoshio Hirai
- Department of Exact SciencesUniversity of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ)São PauloBrazil
| | | | - Gabriel Luiz Padoan Gonçalves
- Department of Exact SciencesUniversity of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ)São PauloBrazil
| | - José Lavres
- Laboratory of Stable Isotopes, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Mônica Lanzoni Rossi
- Laboratory of Plant Biotechnology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Adriana Pinheiro Martinelli
- Laboratory of Plant Biotechnology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Simone Possedente de Lira
- Department of Exact SciencesUniversity of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ)São PauloBrazil
| | | | - Flavia Vischi Winck
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| |
Collapse
|
7
|
Ghazi R, Ibrahim TK, Nasir JA, Gai S, Ali G, Boukhris I, Rehman Z. Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review. RSC Adv 2025; 15:11587-11616. [PMID: 40230636 PMCID: PMC11995399 DOI: 10.1039/d5ra00728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Iron-oxide nanoparticles (IONPs) have garnered substantial attention in both research and technological domains due to their exceptional chemical and physical properties. These nanoparticles have mitigated the adverse effects of conventional treatment procedures by facilitating advanced theranostic approaches in integration with biomedicine. These IONPs have been extensively utilized in MRI (as contrast agents in diagnosis), drug delivery (as drug carriers), and hyperthermia (treatment), demonstrating promising results with potential for further enhancement. This study elucidates the operational principles of these NPs during diagnosis, drug delivery, and treatment, and emphasizes their precision and efficacy in transporting therapeutic agents to targeted sites without drug loss. It also analyses various challenges associated with the application of these IONPs in this field, such as biocompatibility, agglomeration, and toxicity. Furthermore, diverse strategies have been delineated to address these challenges. Overall, this review provides a comprehensive overview of the applications of IONPs in the field of biomedicine and treatment, along with the associated challenges. It offers significant assistance to researchers, professionals, and clinicians in the field of biomedicine.
Collapse
Affiliation(s)
- Rizwana Ghazi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Talib K Ibrahim
- Department of Petroleum Engineering, College of Engineering, Knowledge University Erbil Iraq
- Department of Petroleum Engineering, Al-Kitab University Altun Kupri Iraq
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 P. R. China
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH Nilore Islamabad Pakistan
| | - Imed Boukhris
- Department of Physics, Faculty of Science, King Khalid University P. O. Box 9004 Abha Saudi Arabia
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
8
|
Varalli L, Berlet R, Abenojar EC, McDaid J, Gascoigne DA, Bailes J, Aksenov DP. Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors. Pharmaceutics 2025; 17:499. [PMID: 40284493 PMCID: PMC12030199 DOI: 10.3390/pharmaceutics17040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Cancers of the central nervous system are particularly difficult to treat due to a variety of factors. Surgical approaches are impeded by the skull-an issue which is compounded by the severity of possible harm that can result from damage to the parenchymal tissue. As a result, chemotherapeutic agents have been the standard of care for brain tumors. While some drugs can be effective on a case-by-case basis, there remains a critical need to improve the efficacy of chemotherapeutic agents for neurological cancers. Recently, advances in iron oxide nanoparticle research have highlighted how their unique properties could be leveraged to address the shortcomings of conventional therapeutics. Iron oxide nanoparticles combine the advantages of good biocompatibility, magnetic susceptibility, and functionalization via a range of coating techniques. Thus, iron oxide nanoparticles could be used in both the imaging of brain cancers with magnetic resonance imaging, as well as acting as trafficking vehicles across the blood-brain barrier for targeted drug delivery. Moreover, their ability to support minimally invasive therapies such as magnetic hyperthermia makes them particularly appealing for neuro-oncological applications, where precision and safety are paramount. In this review, we will outline the application of iron oxide nanoparticles in various clinical settings including imaging and drug delivery paradigms. Importantly, this review presents a novel approach of combining surface engineering and internal magnetic targeting for deep-seated brain tumors, proposing the surgical implantation of internal magnets as a next-generation strategy to overcome the limitations of external magnetic fields.
Collapse
Affiliation(s)
- London Varalli
- Department of Radiology, Endeavor Health, Evanston, IL 60201, USA
| | - Reed Berlet
- School of Medicine and Science, Rosalind Franklin University, North Chicago, IL 60064, USA
- Department of Neurosurgery, Endeavor Health, Evanston, IL 60201, USA (J.B.)
| | - EC Abenojar
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - John McDaid
- Department of Neurosurgery, Endeavor Health, Evanston, IL 60201, USA (J.B.)
| | - David A. Gascoigne
- Department of Radiology, Endeavor Health, Evanston, IL 60201, USA
- The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Julian Bailes
- Department of Neurosurgery, Endeavor Health, Evanston, IL 60201, USA (J.B.)
| | - Daniil P. Aksenov
- Department of Radiology, Endeavor Health, Evanston, IL 60201, USA
- The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesiology, Endeavor Health, Evanston, IL 60201, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Hjiri M, Soltani S, Jbeli A, Mustapha N, Ahmed Althumairi N, Benamara M, Valente MA. Tunable Electrical Properties of Cobalt-Doped Maghemite Nanoparticles for Advanced Resistive and Thermistor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:534. [PMID: 40214579 PMCID: PMC11990883 DOI: 10.3390/nano15070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Maghemite (γ-Fe2O3) nanoparticles have attracted considerable interest for electronic applications due to their tunable electrical properties. Doping strategies offer an effective way to optimize their resistive behavior for use in electronic devices. In this study, cobalt (Co) was incorporated into γ-Fe2O3 to enhance its resistive properties. X-ray diffraction (XRD) confirmed the retention of the cubic P4332 phase, with Co doping inducing subtle lattice distortions due to ionic substitution. Scanning and transmission electron microscopy (SEM/TEM) revealed morphological changes, where Co incorporation influenced particle shape and size distribution. Electrical conductivity analysis demonstrated a decrease in both AC and DC conductivity with the increase in Co content, indicating enhanced resistive behavior. The increase in activation energy suggests a reduction in charge carrier mobility, leading to higher resistivity. Impedance spectroscopy further confirmed increased real and imaginary impedance values, reinforcing the role of Co in suppressing charge transport. These results position cobalt-doped maghemite as a promising material for electronic resistive devices, such as tunable resistors and negative temperature coefficient (NTC) thermistors, where controlled conductivity and stable resistive behavior are essential.
Collapse
Affiliation(s)
- Mokhtar Hjiri
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.H.); (N.M.)
| | - Sonia Soltani
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Anouar Jbeli
- Department of Physics, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (A.J.); (N.A.A.)
| | - Nazir Mustapha
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.H.); (N.M.)
| | - Nouf Ahmed Althumairi
- Department of Physics, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (A.J.); (N.A.A.)
| | - Majdi Benamara
- i3N and Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Manuel Almeida Valente
- i3N and Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
10
|
Prajapati D, Jabborova D, Saharan BS, Singh N, Patani A, Singh S, Joshi C. Bionanotechnology: A Paradigm for Advancing Environmental Sustainability. Indian J Microbiol 2025; 65:306-332. [PMID: 40371027 PMCID: PMC12069183 DOI: 10.1007/s12088-024-01389-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/28/2024] [Indexed: 05/16/2025] Open
Abstract
The urgent need for innovative solutions to global environmental challenges has driven the convergence of biology and nanotechnology, resulting in the emergence of bionanotechnology as a transformative force. This comprehensive review paper explores the fundamental principles, applications, benefits, and potential risks associated with harnessing bionanotechnology to advance environmental sustainability. Beginning with an elucidation of the fundamental concepts underlying bionanotechnology, this paper establishes the synergy between biological systems and nanomaterials. The unique properties of nanomaterials, coupled with the adaptability of biological processes, form the foundation for a diverse array of real-world applications. Focusing on applications, the paper highlights how bionanotechnology addresses critical environmental issues. It showcases case studies that exemplify its impact on water purification, air quality improvement, waste management, renewable energy production, and more. These case studies underscore the tangible benefits and efficacy of bionanotechnology in tackling complex challenges. However, as the potential of bionanotechnology is harnessed, it is crucial to navigate potential ecological risks. The paper emphasizes the importance of ecotoxicological considerations, discussing how nanomaterials interact with ecosystems and organisms. Ethical and responsible development of bionanotechnology, informed by these considerations, ensures that its benefits are maximized while minimizing potential harm. In conclusion, this review paper underscores bionanotechnology's potential to revolutionize environmental sustainability. By fusing the power of nanomaterials and biology, bionanotechnology offers a holistic approach to address pressing global challenges. While celebrating its transformative promise, the paper emphasizes the need for a balanced approach that safeguards environmental health. As society looks towards a more sustainable future, bionanotechnology stands as a pivotal paradigm for shaping an environmentally conscious world.
Collapse
Affiliation(s)
- Dharmendra Prajapati
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, 111208 Kibray, Uzbekistan
| | | | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Anil Patani
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| | - Chinmayi Joshi
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| |
Collapse
|
11
|
Alkatheeri A, Salih S, Kamil N, Alnuaimi S, Abuzar M, Abdelrahman SS. Nano-Radiopharmaceuticals in Colon Cancer: Current Applications, Challenges, and Future Directions. Pharmaceuticals (Basel) 2025; 18:257. [PMID: 40006069 PMCID: PMC11859487 DOI: 10.3390/ph18020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Colon cancer remains a significant global health challenge; however, the treatment outcome for colon patients can be improved through early detection and effective treatment. Nano-radiopharmaceuticals, combining nanotechnology with radiopharmaceuticals, are emerging as a revolutionary approach in both colon cancer diagnostic imaging and therapy, playing a significant role in the management of colon cancer patients. This review examines the use of nano-radiopharmaceuticals in the diagnosis and treatment of colon cancer, highlighting current applications, challenges, and future directions. Nanocarriers of radionuclides have shown potential in improving cancer treatment, including liposomes, microparticles, nanoparticles, micelles, dendrimers, and hydrogels, which are approved by the FDA. These nanocarriers can deliver targeted drugs into malignant cells without affecting normal cells, reducing side effects. Antibody-guided systemic radionuclide-targeted therapy has shown potential for treating cancer. Novel cancer nanomedicines, like Hensify and 32P BioSilicon, are under clinical development for targeted radiation delivery in percutaneous intratumoral injections. Although using nano-radiopharmaceuticals is a superior technique for diagnosing and treating colon cancer, there are limitations and challenges, such as the unintentional accumulation of nanoparticles in healthy tissues, which leads to toxicity due to biodistribution issues, as well as high manufacturing costs that limit their availability for patients. However, the future direction is moving toward providing more precise radiopharmaceuticals, which is crucial for enhancing the diagnosis and treatment of colon cancer and reducing production costs.
Collapse
Affiliation(s)
- Ajnas Alkatheeri
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates;
| | - Suliman Salih
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates;
- National Cancer Institute, University of Gezira, Wad Madani 2667, Sudan
| | - Noon Kamil
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | - Sara Alnuaimi
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | - Memona Abuzar
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates; (N.K.); (S.A.); (M.A.)
| | | |
Collapse
|
12
|
Xu X, Mansor M, Li G, Chiu TH, Haderlein SB, Kappler A, Joshi P. Size-Dependent Reduction Kinetics of Iron Oxides in Single and Mixed Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2519-2530. [PMID: 39878302 PMCID: PMC11823449 DOI: 10.1021/acs.est.4c08032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite. We found that small particles were preferentially reduced relative to their large counterparts in single and mixed mineral systems regardless of microbial or electrochemical treatments, which is attributed to the combined effect of higher thermodynamic favorability and greater surface availability. In mixed mineral systems, small particles were reduced slightly faster, whereas large particles were reduced notably slower and less extensively than solely predicted from single mineral systems. Specifically, when reduced alone, small particles showed Fe(III) reduction rate constants that were 1.5- to 3.6-fold higher than large particles, while when reduced together, the reduction rate constants for small particles were 6- to 21-fold higher than the rate constants for large particles. These collective findings provide new insights into the pivotal role of nanoparticulate iron (oxyhydr)oxides in environmental redox reactions.
Collapse
Affiliation(s)
- Xiyang Xu
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Muammar Mansor
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Guoxiang Li
- Environmental
Chemistry and Mineralogy, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Tsz Ho Chiu
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Stefan B. Haderlein
- Environmental
Chemistry and Mineralogy, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence: EXC 2124: Controlling Microbes to Fight Infection, 72076 Tübingen, Germany
| | - Prachi Joshi
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Singh A, Maheshwari S, Yadav JP, Kumar R, Verma A, Singh S, Prajapati BG. Bioactive Compound-Fortified Nanocarriers in the Management of Neurodegenerative Disease: A Review. Chem Biodivers 2025:e202402018. [PMID: 39928755 DOI: 10.1002/cbdv.202402018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/12/2025]
Abstract
Individual around the globe faces enormous problems from illnesses of the neurological system and the cerebrum, including neurodegenerative conditions and brain tumors. There are still no demonstrated viable treatments for neurological conditions, despite advances in drug delivery technologies such as solid lipid nanoparticles, nanostructured lipid carriers, and nano-liposomes. To address this, there is growing interest in leveraging naturally occurring bioactive substances for their therapeutic potential. However, challenges such as limited bioavailability and metabolism hinder their efficacy, particularly in the brain. Although various pharmaceutical interventions exist for neurodegenerative diseases, they often come with significant side effects, and there is currently no specific treatment to cure or slow down disease progression. Challenges such as the blood-brain barrier and blood-cerebrospinal fluid barrier present significant obstacles to deliver drugs into the brain. Strategies to improve drug penetration across these barriers include targeting specific transport systems and developing innovative drug delivery approaches. Hence, the development of nanocarriers capable of targeting bioactive compounds to the brain represents a promising approach for neurodegenerative disease therapy. This review explores the potential of bioactive compound-fortified nano-delivery systems for treating neurodegenerative diseases, with various compounds offering unique avenues for investigating neurodegeneration pathways and strategies in overcoming associated challenges.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Jagat Pal Yadav
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Ravi Kumar
- Institute of pharmaceutical sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Amita Verma
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttrakhand, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
14
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2025; 38:55-88. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
15
|
Khan J, Shah N, Dawar F, Irfan I, Jan A, Khan MI, Khisroon M. Comet Assay and Micronucleus Test in Circulating Erythrocytes of Ctenopharyngodon idella Exposed to Nickel Oxide Nanoparticles. Biol Trace Elem Res 2025; 203:1064-1074. [PMID: 38714633 DOI: 10.1007/s12011-024-04208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/10/2024]
Abstract
The number of pollutants released into freshwater and marine environments has increased due to the widespread use of nanoparticles. Nickel oxide nanoparticles (NiO-NPs) were tested for genotoxicity in fish fingerlings of the species Ctenopharyngodon idella. For 7, 14, and 21 days, fingerlings were exposed to NiO-NPs with each increasing concentrations of 2.25 mg/L, 4.50 mg/L, and 6.75 mg/L, respectively. The micronuclei assay and comet assay were used to evaluate the DNA damage. The experiment revealed that with the increase in nanoparticle concentration and exposure duration, the level of DNA damage also increased. The experiment resulted to be time and dose dependent, and the damage was found as follows: 6.75 mg/L > 4.50 mg/L > 2.25 mg/L against each exposure period. In terms of comet assay, the results showed that after 7 days, the level of DNA damage in all the concentrations was highly significant (P < 0.001). Increased DNA damage was calculated at the higher administered dose of 6.75 mg/L for 21 days of exposition, followed by 14 and 7 days, respectively. The second high toxic effect was observed in the fish blood at the exposure concentration of 4.50 mg/L for 21 days, followed by 14 and 7 days, respectively. The micronuclei induction in the nanoparticle's administered blood could be detected only for a 7-day exposition period. Whereas for the exposed duration of 14 and 21 days, the entire red blood cells of the grass carp were completely destroyed demonstrating the ability of the nanoparticles to cause anomalies in aquatic life.
Collapse
Affiliation(s)
- Jamshid Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nazish Shah
- Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan.
| | - Farmanullah Dawar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Iqra Irfan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adil Jan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ismail Khan
- Department of Zoology, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
16
|
Mierczynska-Vasilev A. The Role of Nanoparticles in Wine Science: Innovations and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:175. [PMID: 39940150 PMCID: PMC11819714 DOI: 10.3390/nano15030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Viticulture, the science of growing, cultivating, and harvesting grapes, and enology, the art and science of making wine, are rapidly evolving through innovative approaches aimed at improving the quality and efficiency of grape and wine production. This review explores the emerging use of nanoparticles, in particular gold, silver, and magnetic nanoparticles, to improve the quality, safety, and sustainability of both grape growing and winemaking processes. The unique properties of these nanoparticles, such as their small size, high surface area, and distinct chemical properties, enable them to address key challenges within the industry. In viticulture, nanoparticles have shown potential in protecting vines from pathogens, optimizing grape yield, and improving quality. In enology, nanoparticles are making a significant contribution to microbial control, reducing spoilage and refining wine analysis techniques, leading to improved product quality and safety. This review also highlights the synergy between different types of nanoparticles and their diverse applications, from microbial control in wine production to their use in innovative packaging solutions. In addition, nanoparticles have the potential to reduce dependence on agrochemicals and improve the sustainability of wine production, which is a promising avenue for future research. However, the integration of nanoparticles in viticulture and enology also poses regulatory and safety challenges, including the potential for nanoparticles to leach into wine products. Further research and regulatory advances are essential to ensure the safe and effective use of these technologies in winemaking. Overall, nanoparticles offer significant benefits to the wine industry, driving improvements in efficiency, sustainability, and quality.
Collapse
Affiliation(s)
- Agnieszka Mierczynska-Vasilev
- The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Adelaide, SA 5064, Australia;
- College of Medicine and Public Health, Flinders University, Sturt Road, Adelaide, SA 5042, Australia
| |
Collapse
|
17
|
Dănilă AI, Romînu M, Munteanu K, Moacă EA, Geamantan-Sîrbu A, Olariu I, Marian D, Olariu T, Talpoş-Niculescu IC, Cosoroabă RM, Popovici R, Dinu Ş. Development of Solid Nanosystem for Delivery of Chlorhexidine with Increased Antimicrobial Activity and Decreased Cytotoxicity: Characterization and In Vitro and In Ovo Toxicological Screening. Molecules 2025; 30:162. [PMID: 39795218 PMCID: PMC11721946 DOI: 10.3390/molecules30010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines-HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells. After the characterization of the CHX-NPS nanosystem through infrared spectroscopy and electronic microscopy, the in vitro results showed that the CHX antimicrobial efficacy was enhanced when delivered through a nanoscale system, with improved bioavailability and reduced toxicity when this was tested as the newly CHX-NPS nanosystem. The in ovo screening exhibited that the CHX-NPS nanosystem did not cause any sign of irritation on the chorioallantoic membrane vasculature and was classified as a non-irritant substance. Despite this, future research should focus on optimizing this type of nanosystem and conducting comprehensive in vivo studies to validate its therapeutic efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Alexandra-Ioana Dănilă
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.D.); (K.M.)
| | - Mihai Romînu
- Research Center of Digital and Advanced Technique for Endodontic, Restorative and Prosthetic Treatment (TADERP), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Krisztina Munteanu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.D.); (K.M.)
| | - Elena-Alina Moacă
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation (FARMTOX), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andreea Geamantan-Sîrbu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation (FARMTOX), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iustin Olariu
- Faculty of Dental Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Diana Marian
- Faculty of Dental Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Teodora Olariu
- Faculty of Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Ioana-Cristina Talpoş-Niculescu
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Raluca Mioara Cosoroabă
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Ramona Popovici
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Ştefania Dinu
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
- Pediatric Dentistry Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
18
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
19
|
Shi K, Nokhodchi A, Ghafourian T. Magnetic microscale polymeric nanocomposites in drug delivery: advances and challenges. Drug Discov Today 2025; 30:104276. [PMID: 39736462 DOI: 10.1016/j.drudis.2024.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds. The focus is on the role that might be played by magnetic nanocomposites as an interface between the magnetic and polymeric domains in the establishment of a new generation of advanced materials.
Collapse
Affiliation(s)
- Kejing Shi
- Department for Bioscience, School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK.
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Taravat Ghafourian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
20
|
Lopalco A, Iacobazzi RM, Lopedota AA, Denora N. Recent Advances in Nanodrug Delivery Systems Production, Efficacy, Safety, and Toxicity. Methods Mol Biol 2025; 2834:303-332. [PMID: 39312172 DOI: 10.1007/978-1-0716-4003-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In the last three decades, the development of nanoparticles or nano-formulations as drug delivery systems has emerged as a promising tool to overcome the limitations of conventional delivery, potentially to improve the stability and solubility of active molecules, promote their transport across the biological membranes, and prolong circulation times to increase efficacy of a therapy. Despite several nano-formulations having applications in drug delivery, some issues concerning their safety and toxicity are still debated. This chapter describes the recent available information regarding safety, toxicity, and efficacy of nano-formulations for drug delivery. Several key factors can influence the behavior of nanoparticles in a biological environment, and their evaluation is crucial to design non-toxic and effective nano-formulations. Among them, we have focused our attention on materials and methods for their preparation (including the innovative microfluidic technique), mechanisms of interactions with biological systems, purification of nanoparticles, manufacture impurities, and nano-stability. This chapter places emphasis on the utilization of in silico, in vitro, and in vivo models for the assessment and prediction of toxicity associated with these nano-formulations. Furthermore, the chapter includes specific examples of in vitro and in vivo studies conducted on nanoparticles, illustrating their application in this field.
Collapse
Affiliation(s)
- Antonio Lopalco
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Rosa Maria Iacobazzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Angela Assunta Lopedota
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
21
|
Zhang D, Zhang J, Bian X, Zhang P, Wu W, Zuo X. Iron Oxide Nanoparticle-Based T 1 Contrast Agents for Magnetic Resonance Imaging: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:33. [PMID: 39791792 PMCID: PMC11722098 DOI: 10.3390/nano15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T1 contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T1 contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment. This review also evaluates the biocompatibility, organ accumulation, and clearance pathways of IONPs for clinical applications. Finally, the challenges associated with the clinical translation of IONP-based T1 CAs are included.
Collapse
Affiliation(s)
- Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Jing Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xianglin Bian
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Pei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Weihua Wu
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xudong Zuo
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
- The Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou 213100, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
22
|
Kołodziej A, Świętek M, Hlukhaniuk A, Horák D, Wesełucha-Birczyńska A. Raman spectroscopic investigation of polymer based magnetic multicomponent scaffolds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124800. [PMID: 39024784 DOI: 10.1016/j.saa.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Scaffolds acting as an artificial matrix for cell proliferation are one of the bone tissue engineering approaches to the treatment of bone tissue defects. In the presented study, novel multicomponent scaffolds composed of a poly(ε-caprolactone) (PCL), phenolic compounds such as tannic (TA) and gallic acids (GA), and nanocomponents such as silica-coated magnetic iron oxide nanoparticles (MNPs-c) and functionalized multi-walled carbon nanotubes (CNTs) have been produced as candidates for such artificial substitutes. Well-developed interconnected porous structures were observed using scanning electron microscopy (SEM). Raman spectra showed that the highly crystalline nature of PCL was reduced by the addition of nanoadditives. In the case of scaffolds containing MNPs-c and TA, the formation of a Fe-TA complex was concluded because characteristic bands of chelation of the Fe3+ ion by phenolic catechol oxygen appeared. It was found that the necessary conditions for the crystallization of the PCL/MNPs-c/TA are for the catechol groups to be able to penetrate the porous silica shell of MNPs-c, as during experiment with MNPs-c and TA without polymer, no such complexation was observed. Moreover, the number of catechol groups, the spatial structure and molecular size of this phenolic compound are also crucial for complexation process because GA does not form complexes. Therefore, the PCL/CNTs/MNPs-c/TA scaffolds are interesting candidates to consider for their possible medical applications.
Collapse
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Anna Hlukhaniuk
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | | |
Collapse
|
23
|
Swain SK, Phaomei G, Dash SK, Tripathy SK. Synthesis of Magnetic Luminescent Nanoparticle Fe 3O 4@LaF 3:Eu,Ag@APTES@β-CD, a Potential Carrier of Antimicrobial Drug Ciprofloxacin. Indian J Microbiol 2024; 64:1637-1645. [PMID: 39678968 PMCID: PMC11645346 DOI: 10.1007/s12088-024-01202-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/06/2024] [Indexed: 12/17/2024] Open
Abstract
Fe3O4@LaF3:Eu,Ag hybrid magnetic luminescent nanoparticles (NPs) were synthesized using a simple co-precipitation method and then functionalized with β-cyclodextrin (β-CD) using (3-aminopropyl)triethoxysilane (APTES). The chemical composition, crystalline nature, particle size, and surface morphology of the Fe3O4@LaF3:Eu,Ag@APTES@β-CD NPs were investigated, using powder X-ray diffraction, and high-resolution transmission electron microscopy. The uptake and release profiling of the LaF3:Eu,Ag@Fe3O4@β-CD NPs for the hydrophilic drug ciprofloxacin, showed 40 and 85% efficiency, respectively. The results indicated that the NPs have a high drug loading yield and a sustained drug releasing profile of the NPs, indicating that they can be used as a drug carrier. The photoluminescence spectral analysis of the NPs revealed their potentiality for use in bioimaging. Further analysis of the drug-loaded NPs (Fe3O4@LaF3:Eu,Ag@APTES@β-CD-ciprofloxacin) revealed, 100% microbial inhibition efficiency against Escherichia coli and Vibrio cholerae, and a minimum of 80% against Bacillus cereus.
Collapse
Affiliation(s)
- Sangita Kumari Swain
- Center of Excellence in Nanoscience and Technology for Development of Sensors (CoENSTds), Berhampur University, Ganjam, Odisha 760007 India
| | - Ganngam Phaomei
- Center of Excellence in Nanoscience and Technology for Development of Sensors (CoENSTds), Berhampur University, Ganjam, Odisha 760007 India
- Department of Chemistry, Berhampur University, Berhampur, Ganjam, Odisha 760007 India
| | - Sandip Kumar Dash
- Center of Excellence in Nanoscience and Technology for Development of Sensors (CoENSTds), Berhampur University, Ganjam, Odisha 760007 India
- Department of Zoology, Berhampur University, Berhampur, Ganjam, Odisha 760007 India
| | - Sukanta Kumar Tripathy
- Center of Excellence in Nanoscience and Technology for Development of Sensors (CoENSTds), Berhampur University, Ganjam, Odisha 760007 India
- Department of Physics, Berhampur University, Berhampur, Ganjam, Odisha 760007 India
| |
Collapse
|
24
|
Biedrzycka A, Skwarek E. Composites of hydroxyapatite and their application in adsorption, medicine and as catalysts. Adv Colloid Interface Sci 2024; 334:103308. [PMID: 39396420 DOI: 10.1016/j.cis.2024.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Composites of hydroxyapatite, recognized by its peculiar crystal architecture and distinctive attributes showcased the potential in adsorbing heavy metal ions and radioactive elements as well as selected organic substances. In this paper, the intrinsic mechanism of adsorption by composites hydroxyapatite was proved for the first time. Subsequently, selectivity and competitiveness of composites of hydroxyapatite for a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, composites of hydroxyapatite were further categorized according to their morphological dimensions. Adsorption properties and intrinsic mechanisms were investigated based on different morphologies. It was shown that although composites of hydroxyapatite were characterized by excellent adsorption capacity and cost-effectiveness, their application is often challenging due to inherent fragility and agglomeration, technical problems required for their handling as well as difficulty in recycling. Finally, to address these issues, the paper discusses the tendency of hydroxyapatite composites to adsorb heavy metal ions and radioactive elements as well as the limitations of their applications. Summarizing the limitations and future directions of modification of HAP in the field of heavy metal ions and different substances contamination abatement, the paper provides insightful perspectives for its gradual improvement and rational application.
Collapse
Affiliation(s)
- Adrianna Biedrzycka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20 031 Lublin, Poland
| | - Ewa Skwarek
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20 031 Lublin, Poland.
| |
Collapse
|
25
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
26
|
Mustafa S, Alharbi LM, Abdelraheem MZ, Mobashar M, Qamar W, A Al-Doaiss A, Abbas RZ. Role of Silver Nanoparticles for the Control of Anthelmintic Resistance in Small and Large Ruminants. Biol Trace Elem Res 2024; 202:5502-5521. [PMID: 38436800 DOI: 10.1007/s12011-024-04132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Helminths are considered a significant threat to the livestock industry, as they cause substantial economic losses in small and large ruminant farming. Their morbidity and mortality rates are also increasing day by day as they have zoonotic importance. Anthelmintic drugs have been used for controlling these parasites; unfortunately, due to the development of resistance of these drugs in helminths (parasites), especially in three major classes like benzimidazoles, nicotinic agonists, and macrocyclic lactones, their use is becoming very low. Although new anthelmintics are being developed, the process is time-consuming and costly. As a result, nanoparticles are being explored as an alternative to anthelmintics. Nanoparticles enhance drug effectiveness, drug delivery, and target specificity and have no resistance against parasites. Different types of nanoparticles are used, such as organic (chitosan) and inorganic (gold, silver, zinc oxide, iron oxide, and nickel oxide). One of them, silver nanoparticles (AgNPs), has unique properties in various fields, especially parasitology. AgNPs are synthesized from three primary methods: physical, chemical, and biological. Their primary mechanism of action is causing stress through the production of ROS that destroys cells, organs, proteins, and DNA parasites. The present review is about AgNPs, their mode of action, and their role in controlling anthelmintic resistance against small and large ruminants.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Lafi M Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Mona Z Abdelraheem
- The National Institute of Oceanography and Fisheries (NIOF), Aswan, Egypt
| | - Muhammad Mobashar
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Warda Qamar
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
27
|
Li S, Li F, Wang Y, Li W, Wu J, Hu X, Tang T, Liu X. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: current strategies and future prospective. Drug Deliv 2024; 31:2298514. [PMID: 38147501 PMCID: PMC10763895 DOI: 10.1080/10717544.2023.2298514] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Acute myocardial infarction, characterized by high morbidity and mortality, has now become a serious health hazard for human beings. Conventional surgical interventions to restore blood flow can rapidly relieve acute myocardial ischemia, but the ensuing myocardial ischemia-reperfusion injury (MI/RI) and subsequent heart failure have become medical challenges that researchers have been trying to overcome. The pathogenesis of MI/RI involves several mechanisms, including overproduction of reactive oxygen species, abnormal mitochondrial function, calcium overload, and other factors that induce cell death and inflammatory responses. These mechanisms have led to the exploration of antioxidant and inflammation-modulating therapies, as well as the development of myocardial protective factors and stem cell therapies. However, the short half-life, low bioavailability, and lack of targeting of these drugs that modulate these pathological mechanisms, combined with liver and spleen sequestration and continuous washout of blood flow from myocardial sites, severely compromise the expected efficacy of clinical drugs. To address these issues, employing conventional nanocarriers and integrating them with contemporary biomimetic nanocarriers, which rely on passive targeting and active targeting through precise modifications, can effectively prolong the duration of therapeutic agents within the body, enhance their bioavailability, and augment their retention at the injured myocardium. Consequently, these approaches significantly enhance therapeutic effectiveness while minimizing toxic side effects. This article reviews current drug delivery systems used for MI/RI, aiming to offer a fresh perspective on treating this disease.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
28
|
Kimmins SD, Henríquez A, Torres C, Wilson L, Flores M, Pio E, Jullian D, Urbano B, Braun-Galleani S, Ottone C, Muñoz L, Claros M, Urrutia P. Immobilization of Naringinase onto Polydopamine-Coated Magnetic Iron Oxide Nanoparticles for Juice Debittering Applications. Polymers (Basel) 2024; 16:3279. [PMID: 39684024 DOI: 10.3390/polym16233279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Chemical amination of the enzyme was demonstrated to favor immobilization onto polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the first time, to the best of the author's knowledge. MNPs prepared via hydrothermal synthesis were coated with PDA for the immobilization of naringinase. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy showed that the MNPs were composed mainly of Fe3O4 with an average size of 38.9 nm, and coated with a 15.1 nm PDA layer. Although the specific activities of α-L-rhamnosidase (RAM) and β-D-glucosidase (GLU) of free naringinase decreased with amination, the immobilization yields of the aminated enzyme increased by more than 40% for RAM and more than 10-fold for GLU. The immobilization improved the enzyme's thermal stability (at 50 °C), reaching a half-life of 40.7 and 23.1 h for RAM and GLU activities, respectively. The biocatalyst was successfully used for the debittering of grapefruit juice, detecting a reduction in naringin of 56% after 24 h. These results demonstrate that the enzyme amination is an effective strategy to enhance the immobilization on a PDA coating and could be applied to other enzymes in order to obtain an easily recoverable biocatalyst using a simple immobilization methodology.
Collapse
Affiliation(s)
- Scott D Kimmins
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Antonella Henríquez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Celia Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Marcos Flores
- Laboratory of Surface and Nanomaterials, Physics Department, Faculty of Mathematical and Physical Sciences, University of Chile, Santiago 8330111, Chile
| | - Edgar Pio
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua 2841959, Chile
| | - Domingo Jullian
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua 2841959, Chile
| | - Bruno Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 3349001, Chile
| | - Stephanie Braun-Galleani
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Lisa Muñoz
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Martha Claros
- Departamento de Ingeniería Metalúrgica y de Materiales, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Paulina Urrutia
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
29
|
Aswini R, Hartati S, Jothimani K, Pothu R, Shanmugam P, Lee YY, Masimukku S, Boddula R, Selvaraj M, Al-Qahtani N. Revolutionizing microorganism inactivation: Magnetic nanomaterials in sustainable photocatalytic disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122738. [PMID: 39405884 DOI: 10.1016/j.jenvman.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 11/17/2024]
Abstract
The rapid emergence of antibiotic-resistant microorganisms and the demand for sustainable water purification methods have spurred research into advanced disinfection, with photocatalysis as a promising approach. This study explores magnetic nanomaterials as catalysts in photocatalytic processes for microorganism inactivation. Magnetic nanoparticles and composites, due to their unique properties, are promising for enhancing photocatalytic disinfection. Their inherent magnetic traits enable easy separation and recyclability, reducing operational costs and environmental impact. These materials also act as efficient electron transfer mediators, enhancing overall photocatalytic efficiency. The review covers the synthesis and characterization of magnetic nanomaterials for photocatalytic applications, focusing on their structural, magnetic, and surface properties. Photocatalytic mechanisms, including reactive oxygen species (ROS) generation vital for microorganism inactivation, are discussed. The study examines combining common photocatalysts like TiO2, ZnO, and semiconductors with magnetic nanomaterials, highlighting synergistic effects. Recent advances and challenges, such as optimal nanomaterials selection and scalability for large-scale applications, are addressed. Case studies and experimental setups for microorganism inactivation underscore the potential of magnetic nanomaterials in water treatment, air purification, and medical disinfection. Finally, further research directions and research highlights the substantial potential of magnetic nanomaterials as catalysts in photocatalytic processes, offering an efficient and sustainable solution for microorganism inactivation and contributing valuable insights to environmental and public health advancement.
Collapse
Affiliation(s)
- Rangayasami Aswini
- Department of Botany, Padmavani Arts and Science College for Women, Salem, 636 011, Tamil Nadu, India
| | - Sri Hartati
- Research Centre for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno Jl Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Kannupaiyan Jothimani
- Research Centre for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno Jl Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Ramyakrishna Pothu
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Yen-Yi Lee
- Center for Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Institute of Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Srinivaas Masimukku
- Center for Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Institute of Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University, Doha, 2713, Qatar; Allied Sciences, Department of Chemistry, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Allied Sciences, Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India.
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Noora Al-Qahtani
- Center for Advanced Materials (CAM), Qatar University, Doha, 2713, Qatar; Central Laboratories Unit (CLU), Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
30
|
Yadav K. Nanotechnology in diabetes Management: Revolutionizing treatment and diagnostics. J Mol Liq 2024; 414:126117. [DOI: 10.1016/j.molliq.2024.126117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Khaleel DS, Mutter TY, Huang X. Potential mechanism of gallic acid-coated iron oxide nanoparticles against associated genes of Klebsiella pneumoniae capsule, antibacterial and antibiofilm. Microsc Res Tech 2024; 87:2774-2784. [PMID: 38984399 DOI: 10.1002/jemt.24650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Antibiotic resistance has increased in recent years, especially for pathogens like Klebsiella pneumoniae. Discovering and developing new drugs is challenging due to the high resistance of pathogens. Metal nanoparticles have been widely used in recent years to overcome and treat infections. Gallic acid-coated iron oxide nanoparticles (IONPs-GA) were synthesized in a simple and cost-effective method. The morphology characteristics of synthesized IONPs-GA were analyzed using Fourier transform infrared spectroscopy (FTIR), x-ray diffraction analysis (XRD), and scanning electron microscope (SEM) analysis. IONPs were mostly spherical in shape with sizes ranging between 32 and 61 nm. All analyses used in this study confirmed the successful coating of gallic acid to iron oxide. Biological activities were studied phenotypically and on the molecular level, including antibacterial, antibiofilm, and mRNA levels of capsule-associated genes. The results showed high antimicrobial activity of the synthesized nanoparticles against different G+ve and G-ve bacteria. The highest activity was recorded against Staphylococcus aureus (43 mm) and K. pneumoniae (22 mm). The MIC of IONPs against K. pneumoniae was 3.12 mg/mL and SEM analysis showed adhering the IONPs-GA to the cell surface of K. pneumoniae resulted in disrupting the cell membrane. Different concentrations of sub-MIC inhibited K. pneumoniae biofilm formation with the highest inhibition percentage at ½ × MIC (66.86%). Also, the synthesized IONPs-GA differently affected the regulation and mRNA level of capsule-associated genes in K. pneumoniae. The results indicated that IONPs-GA could be useful in biological applications such as in drug delivery and treatment wide range of pathogens. RESEARCH HIGHLIGHTS: Gallic acid was successfully coated into iron oxide nanoparticles synthesized in a simple way. IONPs-GA was morphologically characterized using FTIR, XRD, and SEM. Evaluation the activity of IONPs-GA as antibacterial, antibiofilm, and study the potential level of mRNA affected by IONPs-GA.
Collapse
Affiliation(s)
- Dhuha S Khaleel
- Department of Biology, College of Science, University of Anbar, Anbar, Iraq
| | - Thamer Y Mutter
- Department of Biology, College of Science, University of Anbar, Anbar, Iraq
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
32
|
Cardoza JV, Ali Z, Simon S, Thakkar D, George SS, Isaac SP. The Role of Nanoparticles in Accelerating Tissue Recovery and Inflammation Control in Physiotherapy Practices. Cureus 2024; 16:e73540. [PMID: 39669817 PMCID: PMC11636964 DOI: 10.7759/cureus.73540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Physiotherapy has significantly evolved since its inception in the late 19th century, expanding into various specializations such as sports, neurology, and wound care. Its primary goal is to restore or enhance bodily functions through therapeutic interventions, aiding in conditions ranging from injuries to chronic pain. Tissue recovery, which involves repair and regeneration, is a critical aspect of physiotherapy. This natural process is influenced by factors like inflammation and injury severity. Nanotechnology, a relatively recent advancement, has transformed medicine, including wound care, through innovations in drug delivery, diagnostics, and anti-inflammatory treatments. Nanoparticles, owing to their small size and enhanced bioavailability, play a crucial role in improving drug delivery, increasing the efficacy of treatments, and promoting faster recovery. In the context of tissue healing, nanoparticles aid in cell proliferation, inflammation control, and scar reduction, among other therapeutic benefits. They are increasingly used in physiotherapy applications, to support tissue regeneration and inflammation management. This review examines the role of nanoparticles in physiotherapy, with a focus on their application in wound healing, muscle recovery, and inflammation control. It discusses various in-vitro and in-vivo studies that have explored the therapeutic potential of nanoparticles in these domains, providing insights into their mechanisms of action and effectiveness in promoting tissue regeneration and managing inflammation in physiotherapy settings.
Collapse
Affiliation(s)
| | - Zeeshan Ali
- Physiology, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | - Simi Simon
- Biochemistry, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | - Darshni Thakkar
- Physiotherapy, Krupanidhi college of physiotherapy, Bengaluru, IND
| | - Sudhan S George
- Physiotherapy, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | | |
Collapse
|
33
|
Wang X, He Y, Liu L, Song D, Kovarik L, Bowden ME, Engelhard M, Li X, Du Y, Miller QR, Wang C, De Yoreo JJ, Rosso KM, Zhang X. Uncovering the Size-Dependent Thermal Solid Transformation of Akaganéite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402717. [PMID: 39148218 DOI: 10.1002/smll.202402717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/06/2024] [Indexed: 08/17/2024]
Abstract
Investigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-Fe2O3) and subsequent crystal growth. Specifically, it is observed that akaganéite nanorods with a diameter of ∼50 nm transformed into hollow polycrystalline maghemite nanorods, which demonstrated remarkable stability without arresting crystal growth under continuous heating. In contrast, smaller akaganéite nanoneedles or nanowires with a diameter ranging from 20 to 8 nm displayed a propensity for forming single-crystal nanoneedles or nanowires through phase transformation and densification. By manipulating the size of the precursors, a straightforward method is developed for the synthesis of single-crystal and polycrystalline maghemite nanowires through solid-phase transformation. These significant findings provide new insights into the size-dependent structural evolution and phase transformation of iron oxides at the nanoscale.
Collapse
Affiliation(s)
- Xiang Wang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Yang He
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 10083, China
| | - Lili Liu
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Duo Song
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Libor Kovarik
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Mark E Bowden
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Mark Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Xiaoxu Li
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Yingge Du
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Quin Rs Miller
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - James J De Yoreo
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195, United States
| | - Kevin M Rosso
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Xin Zhang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| |
Collapse
|
34
|
Ali NA, Morsi NM, Badr-Eldin SM, Shamma RN. Diacerein-loaded surface modified iron oxide microparticles (SMIOMPs): an emerging magnetic system for management of osteoarthritis via intra-articular injection. Front Bioeng Biotechnol 2024; 12:1439085. [PMID: 39530062 PMCID: PMC11551035 DOI: 10.3389/fbioe.2024.1439085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Osteoarthritis (OA) is regarded as one of the most prevealent irreversible joint degenerative disorder worldwide. Recently, considerable interest in utilizing intra-articular (IA) injections for managing OA has been raised. Methods In this study, IA injectable surface modified iron oxide microparticles (SMIOMPs) loaded with Diacerein (DCN) were developed. The effects of formulation parameters on particle size, entrapment efficiency, and zeta potential were explored using factorial design. The optimized formulation was characterized regarding morphology and in vitro release. Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) were done to assess interactions. Further, sterilization and in vivo performance in rats with induced arthritis has been performed for the optimized formulation. Results and Discussion The selected optimized system included 2M FeCL3 and 1% chitosan as a surface modifier achieved high drug entrapment of 85.25% with a PS of 1.54 µm and sustained DCN release. Morphological examination of the optimized formulation revealed spherical particles with chitosan coat. DSC and FTIR results indicated the absence of undesired interactions between DCN and the used components. No significant change in the measured parameters was observed following sterilization using gamma radiation. In vivo assessment revealed superior performance for the optimized formulation in reducing cartilage inflammation and degradation. Plasma levels of tumor necrosis factor α and Interleukin-1 beta, as well as knee diameter, were significantly reduced in the treated groups compared to the untreated ones. Conclusion Overall, the results suggest that the proposed DCN-loaded SMIOMPs represent a promising advancement in the arena of cartilage regeneration.
Collapse
Affiliation(s)
- Nouran Abdelmageed Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo university, Jeddah, Egypt
| | - Nadia M. Morsi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo university, Jeddah, Egypt
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rehab N. Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo university, Jeddah, Egypt
| |
Collapse
|
35
|
Moglia I, Santiago M, Arellano A, Salazar Sandoval S, Olivera-Nappa Á, Kogan MJ, Soler M. Synthesis of dumbbell-like heteronanostructures encapsulated in ferritin protein: Towards multifunctional protein based opto-magnetic nanomaterials for biomedical theranostic. Colloids Surf B Biointerfaces 2024; 245:114332. [PMID: 39486373 DOI: 10.1016/j.colsurfb.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Dumbbell-like hetero nanostructures based on gold and iron oxides is a promising material for biomedical applications, useful as versatile theranostic agents due the synergistic effect of their optical and magnetic properties. However, achieving precise control on their morphology, size dispersion, colloidal stability, biocompatibility and cell targeting remains as a current challenge. In this study, we address this challenge by employing biomimetic routes, using ferritin protein nanocages as template for these nanoparticles' synthesis. We present the development of an opto-magnetic nanostructures using the ferritin protein, wherein gold and iron oxide nanostructures were produced within its cavity. Initially, we investigated the synthesis of gold nanostructures within the protein, generating clusters and plasmonic nanoparticles. Subsequently, we optimized the conditions for the superparamagnetic nanoparticles synthesis through controlled iron oxidation, thereby enhancing the magnetic properties of the resulting system. Finally, we produce magnetic nanoparticles in the protein with gold clusters, achieving the coexistence of both nanostructures within a single protein molecule, a novel material unprecedented to date. We observed that factors such as temperature, metal/protein ratios, pH, dialysis, and purification processes all have an impact on protein recovery, loading efficiency, morphology, and nanoparticle size. Our findings highlight the development of ferritin-based nanomaterials as versatile platforms for potential biomedical use as multifunctional theranostic agents.
Collapse
Affiliation(s)
- Italo Moglia
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medioambiente, Universidad Tecnológica Metropolitana-UTEM, Chile.
| | | | - Andreas Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico-IDT, Universidad Tecnológica Metropolitana-UTEM, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Millennium Nucleus in NanoBioPhysics-N2BP, Chile
| | | | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering-CEBiB, Chile; Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases-ACCDiS, Chile
| | - Mónica Soler
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| |
Collapse
|
36
|
Youssif MM, El-Attar HG, Hessel V, Wojnicki M. Recent Developments in the Adsorption of Heavy Metal Ions from Aqueous Solutions Using Various Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5141. [PMID: 39517417 PMCID: PMC11546202 DOI: 10.3390/ma17215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is caused by heavy metals, minerals, and dyes. It has become a global environmental problem. There are numerous methods for removing different types of pollutants from wastewater. Adsorption is viewed as the most promising and financially viable option. Nanostructured materials are used as effective materials for adsorption techniques to extract metal ions from wastewater. Many types of nanomaterials, such as zero-valent metals, metal oxides, carbon nanomaterials, and magnetic nanocomposites, are used as adsorbents. Magnetic nanocomposites as adsorbents have magnetic properties and abundant active functional groups, and unique nanomaterials endow them with better properties than nonmagnetic materials (classic adsorbents). Nonmagnetic materials (classic adsorbents) typically have limitations such as limited adsorption capacity, adsorbent recovery, poor selective adsorption, and secondary treatment. Magnetic nanocomposites are easy to recover, have strong selectivity and high adsorption capacity, are safe and economical, and have always been a hotspot for research. A large amount of data has been collected in this review, which is based on an extensive study of the synthesis, characterization, and adsorption capacity for the elimination of ions from wastewater and their separation from water. The effects of several experimental parameters on metal ion removal, including contact duration, temperature, adsorbent dose, pH, starting ion concentration, and ionic strength, have also been investigated. In addition, a variety of illustrations are used to describe the various adsorption kinetics and adsorption isotherm models, providing insight into the adsorption process.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Heba G. El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Volker Hessel
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
37
|
Attea SA, Ghareeb MA, Kelany AK, Elhakim HKA, Allemailem KS, Bukhari SI, Rashidi FB, Hamed AA. Biosynthesis of Iron Oxide Nanoparticles by Marine Streptomyces sp. SMGL39 with Antibiofilm Activity: In Vitro and In Silico Study. Molecules 2024; 29:4784. [PMID: 39407712 PMCID: PMC11478020 DOI: 10.3390/molecules29194784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
One of the major global health threats in the present era is antibiotic resistance. Biosynthesized iron oxide nanoparticles (FeNPs) can combat microbial infections and can be synthesized without harmful chemicals. In the present investigation, 16S rRNA gene sequencing was used to discover Streptomyces sp. SMGL39, an actinomycete isolate utilized to reduce ferrous sulfate heptahydrate (FeSO4.7H2O) to biosynthesize FeNPs, which were then characterized using UV-Vis, XRD, FTIR, and TEM analyses. Furthermore, in our current study, the biosynthesized FeNPs were tested for antimicrobial and antibiofilm characteristics against different Gram-negative, Gram-positive, and fungal strains. Additionally, our work examines the biosynthesized FeNPs' molecular docking and binding affinity to key enzymes, which contributed to bacterial infection cooperation via quorum sensing (QS) processes. A bright yellow to dark brown color shift indicated the production of FeNPs, which have polydispersed forms with particle sizes ranging from 80 to 180 nm and UV absorbance ranging from 220 to 280 nm. Biosynthesized FeNPs from actinobacteria significantly reduced the microbial growth of Fusarium oxysporum and L. monocytogenes, while they showed weak antimicrobial activity against P. aeruginosa and no activity against E. coli, MRSA, or Aspergillus niger. On the other hand, biosynthesized FeNPs showed strong antibiofilm activity against P. aeruginosa while showing mild and weak activity against B. subtilis and E. coli, respectively. The collaboration of biosynthesized FeNPs and key enzymes for bacterial infection exhibits hydrophobic and/or hydrogen bonding, according to this research. These results show that actinobacteria-biosynthesized FeNPs prevent biofilm development in bacteria.
Collapse
Affiliation(s)
- Sara A. Attea
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.A.A.); (H.K.A.E.); (F.B.R.)
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Ayda K. Kelany
- Department of Genomic Medicine, Cairo University Hospitals, Cairo University, Cairo 11566, Egypt;
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Heba K. A. Elhakim
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.A.A.); (H.K.A.E.); (F.B.R.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fatma B. Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.A.A.); (H.K.A.E.); (F.B.R.)
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| |
Collapse
|
38
|
Garrappa G, Martínez-López C, Jiménez-Movilla M, García-Vázquez FA. In vitro exposure of porcine sperm to functionalized superparamagnetic nanoparticles. Reprod Domest Anim 2024; 59 Suppl 3:e14654. [PMID: 39396860 DOI: 10.1111/rda.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 10/15/2024]
Abstract
Nanotechnology and its applications have advanced significantly in recent decades, contributing to various fields, including reproduction. This study introduces a novel method to label porcine oocytes with nanoparticles (NPs) bound to oviductin (OVGP1, Ov) for use in Assisted Reproductive Technologies (ARTs). Despite promising developments, concerns about NP toxicity in gametes necessitate thorough investigation. This research aims to assess the impact of functionalized NPs (NPOv) on sperm functionality. Boar sperm were co-incubated with NPOv for 0, 0.5 and 1 h in two media: BTS (semen dilution and conservation) and TALP (sperm capacitation and in vitro fertilization-IVF). Sperm quality parameters (viability, motility and kinematics) showed no significant differences in TALP medium (p > .05). In BTS, although some kinetic parameters were altered, motility, progressive motility and viability remained unaffected (p > .05). Additionally, NPs presence on the zona pellucida (ZP) of oocytes did not affect sperm attachment (p > .05). In conclusion, in vitro exposure of boar sperm to OVGP1-functionalized NPs in IVF medium or attached to the ZP surface of matured oocytes does not impair sperm functionality, including their binding ability to the ZP.
Collapse
Affiliation(s)
- Gabriela Garrappa
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
- Instituto Nacional de Tecnología Agropecuaria (INTA), Rafaela, Santa Fe, Argentina
| | - Cristina Martínez-López
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - María Jiménez-Movilla
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
39
|
Fascineli ML, Cáceres-Vélez PR, Pinheiro WO, Chaves SB, Sousa MH, Peternella WS, Horst FH, Fernandes MDC, Guimarães W, Azevedo RB, Grisolia CK. Lack of genotoxicity of iron oxide maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles to Oreochromis niloticus after acute exposures. Genet Mol Biol 2024; 47:e20230330. [PMID: 39535165 PMCID: PMC11559487 DOI: 10.1590/1678-4685-gmb2023-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/23/2024] [Indexed: 11/16/2024] Open
Abstract
Iron oxide nanoparticles (FeO-NPs) are widely used in scientific and technological fields. Environmental concerns have been raised about residual FeO-NPs levels as their toxicity and bioaccumulative potential are not well understood. Oreochromis niloticus were exposed to nanoparticles of γ-Fe2O3 and Fe3O4. Micro-CT 3D image and grayscale graphic assessments revealed the accumulation of radiopaque material in the digestive tract of fish exposed to FeO-NPs. Histological analysis showed the presence of such NPs in the hepatopancreas, gills, kidneys, and muscles. No genotoxicity occurred, through micronucleus test and comet assay in peripheral erythrocytes. Body clearance was confirmed by iron-content reduction in organisms exposed to FeO-NPs after recovery period. No tissue injuries were observed in the exposed animals which may be attributed to the absence or low toxicity of iron oxide nanoparticles under the study conditions. O. niloticus showed tolerance to sublethal exposures to FeO-NPs.
Collapse
Affiliation(s)
- Maria Luiza Fascineli
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Morfologia, João Pessoa, PB, Brazil
| | - Paolin Rocio Cáceres-Vélez
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Willie Oliveira Pinheiro
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Sacha Braun Chaves
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | | | | | - Frederico Hillesheim Horst
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Michele de Castro Fernandes
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Wania Guimarães
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Ricardo Bentes Azevedo
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Cesar Koppe Grisolia
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| |
Collapse
|
40
|
Fatima E, Arooj I, Shahid H, Aziz A. Characterization and applications of iron oxide nanoparticles synthesized from Phyllanthus emblica fruit extract. PLoS One 2024; 19:e0310728. [PMID: 39298494 DOI: 10.1371/journal.pone.0310728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
Nanotechnology is a treasure trove of diversified themes which are endowed with broad applications. Herein, iron oxide (Fe2O3) nanoparticles were synthesized using Phyllanthus emblica aqueous fruit extract. The UV-Visible spectrum exhibited a surface plasmon resonance peak at 295nm. Fourier Transform Infrared Spectroscopy provided insight into the functional groups responsible for capping. X-ray diffraction analysis authenticated the crystalline nature of nanoparticles, while energy dispersive X-ray spectroscopy divulged that iron and oxygen comprised 54% of the nanoparticles' weight. Scanning electron microscopy established irregular morphology and agglomeration of nanoparticles. The Fe2O3 nanoparticles validated potent antimicrobial activity against 11 bacterial and 1 fungal isolates. The biggest zone of inhibition (23mm) was measured against S. enterica, whereas the smallest zone of inhibition (12mm) was documented against C. albicans and E. coli. The values for minimum inhibitory concentration ranged between 10 and 15μg/ml for all microbes. Nevertheless, no synergy was exhibited by the nanoparticles with any of the selected antibiotics (Fractional Inhibitory Concentration Index > 1). The photocatalytic dye degradation capability of Fe2O3 nanoparticles was assessed and the observations implied a significant increase in degradation of methyl red although, not of methylene blue. Furthermore, the nanoparticles were in possession of substantial antioxidant (34-38%) and anti-inflammatory (31-38%) capacities. Consequent upon the robust activities of P. emblica-mediated nanoparticles, these can be scrutinized for biomedical and environmental implementations in future.
Collapse
Affiliation(s)
- Easha Fatima
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, Pakistan
| | - Iqra Arooj
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, Pakistan
| | - Hamna Shahid
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, Pakistan
| | - Abida Aziz
- Department of Botany, Faculty of Life Sciences, The Women University, Multan, Pakistan
| |
Collapse
|
41
|
Reviansyah FH, Putra DRD, Supriatna JA, Takarini V, Komariah M. Green Dentistry in Oral Cancer Treatment Using Biosynthesis Superparamagnetic Iron Oxide Nanoparticles: A Systematic Review. Cancer Manag Res 2024; 16:1231-1245. [PMID: 39282609 PMCID: PMC11402364 DOI: 10.2147/cmar.s477791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Oral cancer is a worldwide health issue with high incidence and mortality, demands an effective treatment to improve patient prognosis. Superparamagnetic iron oxide nanoparticles (SPIONs) emerged as a candidate for oral cancer treatment due to their unique attributes, enabling a synergistic combination with its drug-delivery capabilities and hyperthermia when exposed to magnetic fields. SPIONs can be synthesized using biopolymers from agricultural waste like lignin from paddy, which produce biogenic nano iron oxide with superparamagnetic and antioxidant effects. In addition, lignin also acts as a stabilizing agent in creating SPIONs. This study aimed to explore how agricultural waste could be used to prepare SPIONs using the green synthesis method and to evaluate its potential for oral cancer specifically focusing on its effectiveness, side effects, biocompatibility, and toxicity. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. PubMed, EBSCO, and Scopus databases were exploited in the selection of articles published within the last decade. This study quality assessment uses OHAT for critical appraisal tools. Only 10 studies met the inclusion criteria. The findings suggest that the use of agricultural waste in the preparation of SPIONs not only holds potency for oral cancer treatment through drug delivery and hyperthermia but also aligns with the concept of green dentistry. SPIONs as a treatment modality for oral cancer have demonstrated notable effectiveness and versatility. This study provides robust evidence supporting green dentistry by using agricultural waste in the preparation and formulation of SPIONs for managing oral cancer. Its multifunctional nature and ability to enhance treatment efficacy while minimizing adverse effects on healthy tissues highlights the potency of SPION-based oral cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Veni Takarini
- Department of Dental Materials and Technology, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
- Oral Biomaterials Research Centre, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
| | - Maria Komariah
- Department of Fundamental Nursing, Faculty of Nursing, Padjadjaran University, Bandung, 40132, Indonesia
| |
Collapse
|
42
|
Kim JH, Dareowolabi BO, Thiruvengadam R, Moon EY. Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics 2024; 16:1169. [PMID: 39339205 PMCID: PMC11435124 DOI: 10.3390/pharmaceutics16091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer is well recognized as a leading cause of mortality. Although surgery tends to be the primary treatment option for many solid cancers, cancer surgery is still a risk factor for metastatic diseases and recurrence. For this reason, a variety of medications has been adopted for the postsurgical care of patients with cancer. However, conventional medicines have shown major challenges such as drug resistance, a high level of drug toxicity, and different drug responses, due to tumor heterogeneity. Nanotechnology-based therapeutic formulations could effectively overcome the challenges faced by conventional treatment methods. In particular, the combined use of nanomedicine with natural phytochemicals can enhance tumor targeting and increase the efficacy of anticancer agents with better solubility and bioavailability and reduced side effects. However, there is limited evidence in relation to the application of phytochemicals in cancer treatment, particularly focusing on nanotechnology. Therefore, in this review, first, we introduce the drug carriers used in advanced nanotechnology and their strengths and limitations. Second, we provide an update on well-studied nanotechnology-based anticancer therapies related to the carcinogenesis process, including signaling pathways related to transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), Wnt, poly(ADP-ribose) polymerase (PARP), Notch, and Hedgehog (HH). Third, we introduce approved nanomedicines currently available for anticancer therapy. Fourth, we discuss the potential roles of natural phytochemicals as anticancer drugs. Fifth, we also discuss the synergistic effect of nanocarriers and phytochemicals in anticancer therapy.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Boluwatife Olamide Dareowolabi
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College, Saveetha University, Chennai 600077, India;
| | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| |
Collapse
|
43
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Lamichhane P, Acharya TR, Dhakal OB, Dahal R, Choi EH. Investigating the synergy of rapidly synthesized iron oxide predecessor and plasma-gaseous species for dye-removal to reuse water in irrigation. CHEMOSPHERE 2024; 364:143040. [PMID: 39127193 DOI: 10.1016/j.chemosphere.2024.143040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
This study explores a novel and sustainable approach to reusing textile wastewater for irrigation. This is investigated by degrading Evans blue dye, a model azo dye, in wastewater by combining iron oxide predecessor (IOP) catalyst with gaseous species generated by multi-electrode cylindrical plasma device (MCPD). Analysis of IOP-plasma gaseous species revealed the generation of different types of reactive oxygen species in solution which were responsible for degradation of model dye. Key factors influencing the degradation process were studied by performing optimization experiments that resulted in rates of up to 0.008 L mg-1 min-1, more than twice as fast as using plasma gas treatment alone. These studies included mechanistic response of MCPD generated gaseous species with the IOP. In particular, reusability testing of IOP affirmed the robustness and performance efficiency up to three cycles. Finally, toxicity analysis revealed not only reduced negative effects on plant growth by the treated wastewater, but also it can used as minerals to plants. These findings highlight the feasibility of the IOP-MCPD system as a sustainable and eco-friendly solution to reduce scarcity of water in irrigation by treating textile effluent.
Collapse
Affiliation(s)
- Prajwal Lamichhane
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Oat Bahadur Dhakal
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Roshani Dahal
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
45
|
Lu Y, Yi L, Fu Z, Xie J, Cheng Q, Fu Z, Zou Z. Nonclassical crystallization of goethite nanorods in limpet teeth by self-assembly of silica-rich nanoparticles reveals structure-mechanical property relations. J Colloid Interface Sci 2024; 669:64-74. [PMID: 38705113 DOI: 10.1016/j.jcis.2024.04.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.
Collapse
Affiliation(s)
- Yan Lu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Luyao Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyong Zou
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
46
|
Swathi Pon Sakthi Sri V, Aron Santhosh Kumar Y, Savurirajan M, Jha DK, Vinithkumar NV, Dharani G. Anticancer efficacy of magnetite nanoparticles synthesized using aqueous extract of brown seaweed Rosenvingea intricata, South Andaman, India. Sci Rep 2024; 14:20255. [PMID: 39215065 PMCID: PMC11364866 DOI: 10.1038/s41598-024-67820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a global issue and hence various efforts are being made. Iron oxide is considered a significant biochemical agent in the biomedical arena for cancer treatment. Marine macroalgae-mediated iron oxides especially, magnetite (Fe3O4) nanoparticles (NPs) are a prospective alternative to diagnose and treat cancer owing to their fluorescent and magnetic properties. We intend to appraise the usability of the aqueous extract of Rosenvingea intricata (R. intricata) in Fe3O4 NPs synthesis and to study their cytotoxic effects against human hepatocarcinoma (Hep3B) and pancreatic (PANC1) cancer cells. In the present study, R. intricata were collected from the coastal region of South Andaman, India. Aqueous extracts of R. intricata were utilized to synthesize Fe3O4 NPs via the co-precipitation method. Phycosynthesized Fe3O4 NPs exhibited wide peak at 400-600 nm from ultraviolet-visible diffused reflectance spectroscopic analysis which validated the formation of NPs. Band edge emission peak at 660 nm in fluorescent spectra confirmed the quantum confinement in Fe3O4 NPs. Fourier transform infrared spectroscopy confirmed the role of R. intricata as a capping and reducing agent with functional groups such as O-H, C-H, C=O, N=O, C=C, C-O, C-N, and C-S arising from amino acids, polysaccharides, aliphatic hydrocarbons, esters, amides, lignins, alkanes, aliphatic amines, and sulfates. Physicochemical properties such as crystallite size (14.36 nm), hydrodynamic size (84.6 nm), irregular morphology, elemental composition, particle size (125 nm), crystallinity, and saturation magnetization (0.90007 emu/g) were obtained from x-ray diffractometer, dynamic light scattering, scanning electron microscopy, energy dispersive x-ray spectrometer, high-resolution transmission electron microscopy, selected area electron diffraction and vibrating sample magnetometer techniques, respectively. The cell viability showed dose-dependent cytotoxic effects and enhanced the apoptosis against Hep3B and PANC1 cancer cells. R. intricata extract capped Fe3O4 NPs could be the most appropriate and effective nanomaterial for cancer treatment and management.
Collapse
Affiliation(s)
- V Swathi Pon Sakthi Sri
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India.
| | - Y Aron Santhosh Kumar
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - M Savurirajan
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - Dilip Kumar Jha
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - N V Vinithkumar
- Marine Biotechnology Division, Ministry of Earth Sciences, National Institute of Ocean Technology (NIOT), Goverment of India, Pallikaranai, Chennai, India
| | - G Dharani
- Marine Biotechnology Division, Ministry of Earth Sciences, National Institute of Ocean Technology (NIOT), Goverment of India, Pallikaranai, Chennai, India
| |
Collapse
|
47
|
Wang C, Zhang Y, Kong W, Rong X, Zhong Z, Jiang L, Chen S, Li C, Zhang F, Jiang J. Delivery of miRNAs Using Nanoparticles for the Treatment of Osteosarcoma. Int J Nanomedicine 2024; 19:8641-8660. [PMID: 39188861 PMCID: PMC11346496 DOI: 10.2147/ijn.s471900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer-based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for clinical applications.
Collapse
Affiliation(s)
- Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Yihong Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Weihui Kong
- Department of Stomatology, the First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Ziming Zhong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Lei Jiang
- Department of Geriatric Medicine, Changchun Central Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Shuhan Chen
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Chuang Li
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Fuqiang Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
48
|
Mishra S, Yadav MD. Magnetic Nanoparticles: A Comprehensive Review from Synthesis to Biomedical Frontiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17239-17269. [PMID: 39132737 DOI: 10.1021/acs.langmuir.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanotechnology has opened new doors of exploration, particularly in materials science and healthcare. Magnetic nanoparticles (MNP), the tiny magnets, because of their various properties, have the potential to bring about radical changes in the field of medicine. The distinctive surface chemistry, nontoxicity, biocompatibility, and, in particular, the inducible magnetic moment of magnetic materials has attracted a great deal of interest in morphological structures from a variety of scientific domains. This review presents a concise overview of MNPs and their crucial properties and synthesis routes. It also aims to highlight the continuous synthesis methods available for MNP production. In recent years, the use of computational methods for understanding the behavior of nanoparticles has been on the rise. Thus, we also discuss the numerical models developed to understand how magnetic nanoparticles can be used in magnetic hyperthermia and targeting the Circle of Wilis. With the increasing use of MNPs in biomedical applications, it becomes necessary to understand the mechanisms of toxicity, which are elucidated in this review. The review focuses on the biomedical applications of MNPs in drug delivery, theranostics, and MRI contrasting agents. We anticipate that this article will broaden the perspective on magnetic nanoparticles and help to understand their functionality and applicability better.
Collapse
Affiliation(s)
- Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Manishkumar D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
49
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
50
|
Yan L, Chen Y, Zhang S, Zhu C, Xiao S, Xia H, Chen X, Guo D, Lv X, Rao L, Zhuang M. Reconstruction of TNF-α with specific isoelectric point released from SPIONs basing on variable charge to enhance pH-sensitive controlled-release. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102758. [PMID: 38852881 DOI: 10.1016/j.nano.2024.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The clinical application of tumor necrosis factor-α (TNF-α) is limited by its short half-life, subeffective concentration in the targeted area and severe systemic toxicity. In this study, the recombinant polypeptide S4-TNF-α was constructed and coupled with chitosan-modified superparamagnetic iron oxide nanoparticles (S4-TNF-α-SPIONs) to achieve pH-sensitive controlled release and active tumor targeting activity. The isoelectric point (pI) of S4-TNF-α was reconstructed to approach the pH of the tumor microenvironment. The negative-charge S4-TNF-α was adsorbed to chitosan-modified superparamagnetic iron oxide nanoparticles (CS-SPIONs) with a positive charge through electrostatic adsorption at physiological pH. The acidic tumor microenvironment endowed S4-TNF-α with a zero charge, which accelerated S4-TNF-α release from CS-SPIONs. Our studies showed that S4-TNF-α-SPIONs displayed an ideal pH-sensitive controlled release capacity and improved antitumor effects. Our study presents a novel approach to enhance the pH-sensitive controlled-release of genetically engineered drugs by adjusting their pI to match the pH of the tumor microenvironment.
Collapse
Affiliation(s)
- Lin Yan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Yadi Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Shihao Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Chunjie Zhu
- School of Basic Medicine Guangdong Medical University, Dongguan 523808, China
| | - Shangying Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Haishan Xia
- School of Basic Medicine Guangdong Medical University, Dongguan 523808, China
| | - Xiaohua Chen
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China
| | - Dan Guo
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China
| | - Xiaohua Lv
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Lei Rao
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China; Department of Biomedicine, Chengdu Medical College, Chengdu 610500, China.
| | - Manjiao Zhuang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China.
| |
Collapse
|