1
|
Sharma R, Sharma A, Kakkar V, Saini K, Balakrishna JP, Nirankari VS. Autologous Serum Eye Drops Diluted with Cyclosporine A 0.05% and Sodium Hyaluronate 0.1%: An Experimental Comparative Study. Curr Eye Res 2025; 50:23-31. [PMID: 39099132 DOI: 10.1080/02713683.2024.2385442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE The purpose of this study was to assess in-vitro efficacy of a suffusion of autologous serum withcyclosporine 0.05% (CsA) and sodium hyaluronate 0.1% (SH). METHODS The expression of proinflammatory markers interleukin 6 (IL-6) and TNF-Alpha (TNF-α) in limbal epithelial cells was evaluated. Also, assessment of the stability of epithelial growth factor and transforming growth factor-beta (EGF, TGF-β) in the 50% combinations with autologous serum (AS) was done. The characteristics (pH, density, osmolality) of the two combinations were also evaluated. Additionally, cytotoxicity effect of given test compounds was evaluated on human limbal epithelial cells (LEpiC). RESULTS The percentage of cells expressing IL-6 subjected to AS + SH and AS + CsA were 6.23% and 5.69% respectively. There was no significant difference in percentage of cells expressing TNF-α between the formulations (5.87%, 5.83% respectively). The growth factors; EGF and TGF-β remained stable forone month duration (on 2 and 4 weeks) at 4 °C without significant difference between the time intervals tested. The results of MTT assay suggested that limbal epithelial cells treated with AS + CsA and AS + SH combinations showed minimal toxicity however it was not significant statistically (p ≤ 0.05). CONCLUSION Two test combinations (AS + CsA, AS + SH) showed stable growth factors (EGF, TGF-β) and good anti-inflammatory property against pro-inflammatory markers. Also, the 2 combinations were found safe on cultured limbal epithelial cells. The novel combination of autologous serum in CsA may provide added benefit in dry eye disease (DED) through their combined anti-inflammatory and epitheliotropic effects.
Collapse
Affiliation(s)
- Rajan Sharma
- Dr. Ashok Sharma's Cornea Centre, Chandigarh (U.T.), India
| | - Ashok Sharma
- Dr. Ashok Sharma's Cornea Centre, Chandigarh (U.T.), India
| | - Vandita Kakkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh (U.T.), India
| | - Komal Saini
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh (U.T.), India
| | | | | |
Collapse
|
2
|
Bisen AC, Srivastava S, Mishra A, Sanap SN, Biswas A, Choudhury AD, Dubey A, Gupta NM, Yadav KS, Mugale MN, Bhatta RS. Pharmaceutical Emulsions: A Viable Approach for Ocular Drug Delivery. J Ocul Pharmacol Ther 2024; 40:261-280. [PMID: 38654153 DOI: 10.1089/jop.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Saurabh Srivastava
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arpon Biswas
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | | | - Ayush Dubey
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
| | - Neeraj Mohan Gupta
- Department of Chemistry, Government P. G. College, Guna, Madhya Pradesh, India
| | - Karan Singh Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Division of Toxicology and Experimental Medicine; CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Division of Toxicology and Experimental Medicine; CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Hovanesian J, Chester T, Sorenson RC. A Prospective Study of Cyclosporine A 0.1% Combined with Loteprednol 0.2% vs Cyclosporine A 0.05% Alone in the Treatment of Dry Eye. Clin Ophthalmol 2023; 17:2181-2191. [PMID: 37554931 PMCID: PMC10404532 DOI: 10.2147/opth.s419600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE To examine the efficacy and tolerability of a combination of cyclosporine 0.1% and loteprednol 0.2% (CsA-LE; Klarity CL) in comparison to commercially available cyclosporine 0.05% (CsA; Restasis) in improving signs and symptoms of dry eye. METHODS This multicenter, prospective, randomized, controlled, open-label study evaluated 60 patients randomized to a single treatment for 4 weeks and evaluated at day 0, day 14, and day 28. Comparison was made of corneal higher-order aberrations (HOAs), dry-eye symptoms (SPEED score), tear-breakup time (TBUT), corneal staining, and ocular hyperemia, as well as tolerability of each medication with the validated COMTOL instrument. RESULTS A total of 56 patients completed enrollment. Corneal HOAs improved significantly with CsA-LE, but not CsA alone. Both groups showed significant improvement (with no significant differences between groups) in SPEED scores, corneal staining, TBUT, and conjunctival hyperemia. Tolerability was similar between the drugs, and no significant safety issues were identified. CONCLUSION The combination of CsA 0.1%-LE 0.2% provided significant improvement in corneal HOAs, while CsA 0.05% did not. For all other measures of ocular surface improvement, both medications showed similar benefits. Tolerability was comparable between the formulations. When rapid rehabilitation of the ocular surface is needed to reduce aberrations, CsA-LE is an appropriate choice.
Collapse
|
4
|
Kate A, Shanbhag SS, Donthineni PR, Amescua G, Quinones VLP, Basu S. Role of topical and systemic immunosuppression in aqueous-deficient dry eye disease. Indian J Ophthalmol 2023; 71:1176-1189. [PMID: 37026249 PMCID: PMC10276741 DOI: 10.4103/ijo.ijo_2818_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 01/27/2023] [Indexed: 04/08/2023] Open
Abstract
Immunosuppression in aqueous-deficient dry eye disease (ADDE) is required not only to improve the symptoms and signs but also to prevent further progression of the disease and its sight-threatening sequelae. This immunomodulation can be achieved through topical and/or systemic medications, and the choice of one drug over the other is determined by the underlying systemic disease. These immunosuppressive agents require a minimum of 6-8 weeks to achieve their beneficial effect, and during this time, the patient is usually placed on topical corticosteroids. Antimetabolites such as methotrexate, azathioprine, and mycophenolate mofetil, along with calcineurin inhibitors, are commonly used as first-line medications. The latter have a pivotal role in immunomodulation since T cells contribute significantly to the pathogenesis of ocular surface inflammation in dry eye disease. Alkylating agents are largely limited to controlling acute exacerbations with pulse doses of cyclophosphamide. Biologic agents, such as rituximab, are particularly useful in patients with refractory disease. Each group of drugs has its own side-effect profiles and requires a stringent monitoring schedule that must be followed to prevent systemic morbidity. A customized combination of topical and systemic medications is usually required to achieve adequate control, and this review aims to help the clinician choose the most appropriate modality and monitoring regimen for a given case of ADDE.
Collapse
Affiliation(s)
- Anahita Kate
- Shantilal Shanghvi Cornea Institue, LV Prasad Eye Institute, Vijayawada, Andhra Pradesh, India
| | - Swapna S Shanbhag
- Shantilal Shanghvi Cornea Institue, LV Prasad Eye Institute, Hyderabad, Telengana, India
| | - Pragnya R Donthineni
- Shantilal Shanghvi Cornea Institue, LV Prasad Eye Institute, Hyderabad, Telengana, India
| | - Guillermo Amescua
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham 27705, NC, USA
| | - Victor L Perez Quinones
- Foster Center for Ocular Immunology, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sayan Basu
- Shantilal Shanghvi Cornea Institue, LV Prasad Eye Institute, Hyderabad, Telengana, India
- Center for Ocular Regeneration (CORE), L. V. Prasad Eye Institute, Hyderabad, Telangana, India
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
6
|
Ling J, Chan CL, Ho CY, Gao X, Tsang SM, Leung PC, Hu JM, Wong CK. The Extracts of Dendrobium Alleviate Dry Eye Disease in Rat Model by Regulating Aquaporin Expression and MAPKs/NF-κB Signalling. Int J Mol Sci 2022; 23:ijms231911195. [PMID: 36232498 PMCID: PMC9570073 DOI: 10.3390/ijms231911195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Dry eye is one of the most common ocular surface diseases caused by tear film instability and ocular surface damage due to an abnormal quality or quantity of tears. Inflammatory factors can initiate relevant transduction signalling pathways and trigger the inflammatory cascade response, resulting in ocular surface inflammation. It has been shown that the active ingredients in Dendrobium, such as polysaccharides, alkaloids and phenols, have anti-inflammatory, anti-tumour and immunity-boosting effects, and Dendrobium officinale extract can improve glandular secretion function, increase salivary secretion and increase the expression level of water channel protein in salivary glands in patients with dry eye syndromes. We investigated the in vitro cytoprotective effect of Dendrobium extracts in sodium chloride induced hyperosmotic conditions in human cornea keratocytes (HKs). Results showed that Dendrobium officinale Kimura et Migo water extract (DOW) and Dendrobium loddigesii Rolfe water extract (DLW) could upregulate the expression of aquaporins (AQP)5 protein, thus exerting a repairing effect by promoting cell migration. Furthermore, oral administration of DOW and DLW enhanced tear production in rats and exerted a protective effect on ocular surface damage. DOW and DLW could upregulate the expression of AQP5 and mucin (muc)5ac proteins in the lacrimal gland and reduce the inflammatory response. DOW and DLW inhibited the activation of the corresponding mitogen-activated protein kinases (MAPK) and NF-KB pathway, thereby playing a role in improving dry eye symptoms. This study provides a new perspective on dry eye treatment, and DOW and DLW may be potential therapeutic agents for dry eye.
Collapse
Affiliation(s)
- Jiawei Ling
- State Key Laboratory of Research on Bioactivities, Institute of Chinese Medicine, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chung-Lap Chan
- State Key Laboratory of Research on Bioactivities, Institute of Chinese Medicine, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Yan Ho
- State Key Laboratory of Research on Bioactivities, Institute of Chinese Medicine, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 211189, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin-Man Tsang
- State Key Laboratory of Research on Bioactivities, Institute of Chinese Medicine, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- State Key Laboratory of Research on Bioactivities, Institute of Chinese Medicine, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Chun-Kwok Wong
- State Key Laboratory of Research on Bioactivities, Institute of Chinese Medicine, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
7
|
Shin D, Sang Min J. Comparison of treatment effects between 4.9% N-acetyl-aspartyl glutamic acid and 0.05% cyclosporine A eye drops in dry eye patients. Graefes Arch Clin Exp Ophthalmol 2022; 260:3285-3291. [PMID: 35486175 DOI: 10.1007/s00417-022-05682-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE We aimed to investigate the difference in the treatment effects of 4.9% N-acetyl-aspartyl glutamic acid (NAAGA) and 0.05% cyclosporine A (CsA) eye drops in dry eye patients. METHODS We retrospectively reviewed the medical records of 86 patients (86 eyes) who were diagnosed with dry eye and treated with NAAGA or CsA eye drops. Patients treated with NAAGA or CsA eye drops were designated as group A or B, respectively. We also calculated Ocular Surface Disease Index (OSDI), dry eye, and meibomian gland dysfunction (MGD) parameters before treatment and at 1 and 3 months after treatment. Eye drop discomfort was assessed by calculating visual analog scale (VAS) scores at 1 month and 3 months after treatment. RESULTS There were no significant differences in patients' demographics and OSDI, dry eye, and MGD parameters between the two groups. OSDI, dry eye, and MGD parameters at 1 month and 3 months after treatment were found to be improved in both groups. However, at 1 month after treatment, the dry eye and MGD parameters of group A, except for corneal fluorescein staining, showed more improvement than those of group B. Additionally, at 3 months after treatment, the lid margin abnormality score, corneal staining score, tear break-up time, and OSDI of group A were significantly lower than those of group B. VAS scores of group A at 1 and 3 months after treatment were significantly lower than those of group B. CONCLUSION Treatment with NAAGA eye drops was effective in dry eye patients and demonstrated faster treatment response and less discomfort during application than CsA eye drops.
Collapse
Affiliation(s)
- Daeun Shin
- Department of Ophthalmology, Kim's Eye Hospital, Konyang University College of Medicine, 1, 34 Gil, Yeongshinro, Youngdeungpo-gu, Seoul, 07301, Republic of Korea
| | - Ji Sang Min
- Department of Ophthalmology, Kim's Eye Hospital, Konyang University College of Medicine, 1, 34 Gil, Yeongshinro, Youngdeungpo-gu, Seoul, 07301, Republic of Korea.
| |
Collapse
|
8
|
The Protective Effect of Topical Spermidine on Dry Eye Disease with Retinal Damage Induced by Diesel Particulate Matter2.5. Pharmaceutics 2021; 13:pharmaceutics13091439. [PMID: 34575516 PMCID: PMC8468149 DOI: 10.3390/pharmaceutics13091439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Air pollutants, especially ambient fine particulate matter2.5, may contribute to various ocular surface disorders, including dry eye disease, keratitis and conjunctivitis. A natural polyamine spermidine has a protective effect on the retina and optic nerve; however, no study has been conducted on the application of spermidine in particulate matter2.5-induced dry eye disease. In the present study, we investigated the effect of spermidine eye drops in topically exposed particulate matter2.5-induced dry eye models of Sprague-Dawley rats, by hematological, biochemical and histological evaluation. Spermidine eye drops attenuated the particulate matter2.5 exposure-induced reduction of tear secretion and corneal epithelial damage. Furthermore, spermidine protected against conjunctival goblet cell loss and retinal ganglion cell loss induced by particulate matter2.5. Additionally, spermidine markedly prevented particulate matter2.5-induced infiltration of cluster of differentiation3+ and cluster of differentiation4+ T lymphocytes and F4/80+ macrophages on lacrimal gland. Moreover, over expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6 and interleukin-17 in the lacrimal gland and cornea. Meanwhile, the levels of serum total cholesterol and low-density lipoprotein cholesterol were markedly increased by topical exposure to particulate matter2.5, but this change in the lipid profile was decreased by spermidine. Taken together, spermidine may have protective effects against particulate matter2.5-induced dry eye symptoms via stabilization of the tear film and suppression of inflammation and may in part contribute to improving retinal function and lipid metabolism disorder.
Collapse
|
9
|
The Protective Effect of Oral Application of Corni Fructus on the Disorders of the Cornea, Conjunctiva, Lacrimal Gland and Retina by Topical Particulate Matter 2.5. Nutrients 2021; 13:nu13092986. [PMID: 34578864 PMCID: PMC8464674 DOI: 10.3390/nu13092986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter 2.5 (PM2.5) may aggravate dry eye disease (DED). Corni Fructus (CF), which is fruit of Cornus officinalis Sieb. et Zucc., has been reported to have various beneficial pharmacological effects, whereas the effect of CF on the eye is still unknown. Therefore, in this study, we investigated the effect of oral administration of water extract of CF (CFW) on the eye, hematology, and biochemistry in a DED model induced by topical exposure to PM2.5. Furthermore, the efficacy of CFW compared with cyclosporine (CsA), an anti-inflammatory agent, and lutein, the posterior eye-protective agent. Sprague-Dawley rats were topically administered 5 mg/mL PM2.5 in both eyes four times daily for 14 days. During the same period, CFW (200 mg/kg and 400 mg/kg) and lutein (4.1 mg/kg) were orally administered once a day. All eyes of rats in the 0.05% cyclosporine A (CsA)-treated group were topically exposed to 20 μL of CsA, twice daily for 14 days. Oral administration of CFW attenuated the PM2.5-induced reduction of tear secretion and corneal epithelial damage. In addition, CFW protected against goblet cell loss in conjunctiva and overexpression of inflammatory factors in the lacrimal gland following topical exposure to PM2.5. Furthermore, CFW markedly prevented PM2.5-induced ganglion cell loss and recovered the thickness of inner plexiform layer. Meanwhile, CFW treatment decreased the levels of total cholesterol and low-density lipoprotein cholesterol in serum induced by PM2.5. Importantly, the efficacy of CFW was superior or similar to that of CsA and lutein. Taken together, oral administration of CFW may have protective effects against PM2.5-induced DED symptoms via stabilization of the tear film and suppression of inflammation. Furthermore, CFW may in part contribute to improving retinal function and lipid metabolism disorder.
Collapse
|