1
|
Dos Santos PRM, da Silva Gomes PR, Romão P, Maluf FC, Guimarães VR, Candido P, Gonçalves GL, de Camargo JA, Dos Santos GA, Silva I, Leite KRM, Nahas W, Reis ST, Pimenta R, Viana NI. Enhancing RECK Expression Through miR-21 Inhibition: A Promising Strategy for Bladder Carcinoma Control. Biochem Genet 2025; 63:817-831. [PMID: 38522065 DOI: 10.1007/s10528-024-10714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 03/25/2024]
Abstract
Bladder carcinoma (BC) is the tenth most frequent malignancy worldwide, with high morbidity and mortality rates. Despite recent treatment advances, high-grade BC and muscle-invasive BC present with significant progression and recurrence rates, urging the need for alternative treatments. The microRNA-21 (miR-21) has superexpression in many malignancies and is associated with cellular invasion and progression. One of its mechanisms of action is the regulation of RECK, a tumor suppressor gene responsible for inhibiting metalloproteinases, including MMP9. In a high-grade urothelial cancer cell line, we aimed to assess if miR-21 downregulation would promote RECK expression and decrease MMP9 expression. We also evaluated cellular migration and proliferation potential by inhibition of this pathway. In a T24 cell line, we inhibited miR-21 expression by transfection of a specific microRNA inhibitor (anti-miR-21). There were also control and scramble groups, the last with a negative microRNA transfected. After the procedure, we performed a genetic expression analysis of miR-21, RECK, and MMP9 through qPCR. Migration, proliferation, and protein expression were evaluated via wound healing assay, colony formation assay, flow cytometry, and immunofluorescence.After anti-miR-21 transfection, miR-21 expression decreased with RECK upregulation and MMP9 downregulation. The immunofluorescence assay showed a significant increase in RECK protein expression (p < 0.0001) and a decrease in MMP9 protein expression (p = 0.0101). The anti-miR-21 transfection significantly reduced cellular migration in the wound healing assay (p < 0.0001). Furthermore, in the colony formation assay, the anti-miR-21 group demonstrated reduced cellular proliferation (p = 0.0008), also revealed in the cell cycle analysis by flow cytometry (p = 0.0038). Our results corroborate the hypothesis that miR-21 is associated with BC cellular migration and proliferation, revealing its potential as a new effective treatment for this pathology.
Collapse
Affiliation(s)
- Paulo Rodolfo Moraes Dos Santos
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Faculdade de Medicina, Universidade Anhembi Morumbi, São Paulo, SP, Brazil
| | - Paulo Ricardo da Silva Gomes
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Faculdade de Medicina, Universidade Federal do Pará, Belém, PA, Brazil
| | - Poliana Romão
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Feres Camargo Maluf
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa Ribeiro Guimarães
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Candido
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Moriah Institute of Science and Education (MISE), Hospital Moriah, São Paulo, SP, Brazil
| | - Guilherme Lopes Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Alves de Camargo
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriel Arantes Dos Santos
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Iran Silva
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Katia Ramos Moreira Leite
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - William Nahas
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Moriah Institute of Science and Education (MISE), Hospital Moriah, São Paulo, SP, Brazil
| | - Ruan Pimenta
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
- Precision Immunology Institute, Department of Immunology and Immunotherapy, and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Nayara Izabel Viana
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
- Universidade do Estado de Minas Gerais - UEMG, Passos, MG, Brazil.
| |
Collapse
|
2
|
Gozdz A, Maksym RB, Ścieżyńska A, Götte M, Kieda C, Włodarski PK, Malejczyk J. Expression of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs ( RECK) Gene and Its Regulation by miR200b in Ovarian Endometriosis. Int J Mol Sci 2024; 25:11594. [PMID: 39519143 PMCID: PMC11547164 DOI: 10.3390/ijms252111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Endometriosis is a common chronic disorder characterized by the growth of endometrium-like tissue outside the uterine cavity. The disease is associated with chronic inflammation and pelvic pain and may have an impact on the patient's fertility. The causative factors and pathophysiology of the disease are still poorly recognized. The dysregulation of the immune system, aberrant tissue remodeling, and angiogenesis contribute to the disease progression. In endometriosis patients, the proteins regulating the breakdown and reorganization of the connective tissue, e.g., collagenases, and other proteases, as well as their inhibitors, show an incorrect pattern of expression. Here, we report that the expression of reversion-inducing cysteine-rich protein with Kazal motifs (RECK), one of the inhibitors of connective tissue proteases, is elevated in endometrioma cysts as compared to normal endometrium from unaffected women. We also demonstrate a reduced level of miR200b in endometriotic tissue that correlates with RECK mRNA levels. Furthermore, we employ the 12Z cell line, derived from a peritoneal endometriotic lesion, and the Ishikawa cell line, originating from endometrial adenocarcinoma to identify RECK as a direct target of miR200b. The described effect of miR200b on RECK, together with the aberrant expression of both genes in endometrioma, may help to understand the role played by the tissue remodeling system in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Agata Gozdz
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| | - Radosław B. Maksym
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 01-004 Warsaw, Poland
- Center for Molecular Biophysics UPR 4301 CNRS, 45071 Orleans, France;
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Martin Götte
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Claudine Kieda
- Center for Molecular Biophysics UPR 4301 CNRS, 45071 Orleans, France;
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| | - Jacek Malejczyk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| |
Collapse
|
3
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
4
|
Singh V, Singh MK, Jain M, Pandey AK, Kumar A, Sahu DK. The relationship between BCG immunotherapy and oxidative stress parameters in patients with nonmuscle invasive bladder cancer. Urol Oncol 2023; 41:486.e25-486.e32. [PMID: 37932135 DOI: 10.1016/j.urolonc.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Environmental chemicals have been associated with the regulation of oxidative stress markers, which have the potential for the development of bladder cancer. However, limited studies on the function of oxidative stress parameters and nonmuscle invasive bladder cancer (NMIBC) in therapy response are available. Here we studied the oxidative stress parameters in response to BCG immunotherapy in NMIBC patients. MATERIAL AND METHODS A total of 120 patients with NMIBC and treatment with BCG were enrolled and categorized into 2 groups on BCG response, 50 patients were BCG-responsive (BCG-R) and 70 were BCG-nonresponsive (BCG-N). BCG-R have no evidence of tumor recurrence or advancement after 1 year of BCG immunotherapy, but BCG-N has a recurrence of tumor after 3 to 6 months cycles of BCG instillation, as determined by cystoscopy. In all groups, we measured the levels of oxidative stress markers- malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). RESULTS The levels of oxidative stress markers viz. MDA, NO, and SOD in the BCG-N group were significantly higher (P < 0.001) than in the BCG-R group. Furthermore, the data demonstrated a significant correlation between oxidative stress marker and NMIBC T1 high grade and tumor size >2.5 cm. However, no statistically significant difference was found between studied groups with CAT. CONCLUSION The findings suggest that the carcinogenesis of NMIBC is associated with oxidative damage of biomolecules and indicates the involvement of oxidative stress markers in the development and recurrence of NMIBC.; Therefore, it is critical to ensure the management for T1 high grade and tumor size of >2.5 cm for antioxidant protection.
Collapse
Affiliation(s)
- Vishwajeet Singh
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India.
| | - Mukul Kumar Singh
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mayank Jain
- Department of Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anuj Kumar Pandey
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anil Kumar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar Sahu
- Post Graduate Institute of Child Health, Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Crosstalk of miRNAs with signaling networks in bladder cancer progression: Therapeutic, diagnostic and prognostic functions. Pharmacol Res 2022; 185:106475. [DOI: 10.1016/j.phrs.2022.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
|
6
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
7
|
Wen Z, Huang G, Lai Y, Xiao L, Peng X, Liu K, Zhang C, Chen X, Li R, Li X, Lai Y, Ni L. Diagnostic panel of serum miR-125b-5p, miR-182-5p, and miR-200c-3p as non-invasive biomarkers for urothelial bladder cancer. Clin Transl Oncol 2022; 24:909-918. [PMID: 35028929 DOI: 10.1007/s12094-021-02741-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aimed to identify a diagnostic panel of serum microRNAs (miRNAs) for the early detection of bladder cancer (BC). METHODS Serum samples were collected from 112 BC patients and 112 normal controls (NCs). A three-stage selection was conducted to identify differentially expressed miRNAs as candidates to construct the diagnostic panel. Further, to explore their potential roles in urothelial BC, bioinformatics analyses, including target genes prediction and functional annotation, were used. RESULTS Six downregulated miRNAs (miR-1-3p, miR-30a-5p, miR-100-5p, miR-125b-5p, miR-143-3p, and miR-200c-3p) and one upregulated, miR-182-5p, in BC patients' serum were detected compared to NCs and were selected to establish the diagnostic panel. Based on a backward stepwise logistic regression analysis, miR-125b-5p, miR-182-5p, and miR-200c-3p comprehended the diagnostic panel [area under the curve (AUC) = 0.959, sensitivity = 91.67%, specificity = 92.5%]. CONCLUSION The panel of three miRNAs had an excellent diagnostic capability, representing a potential non-invasive method for early BC detection.
Collapse
Affiliation(s)
- Z Wen
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - G Huang
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Y Lai
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, People's Republic of China
| | - L Xiao
- Department of Urology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518109, People's Republic of China
| | - X Peng
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - K Liu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - C Zhang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - X Chen
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - R Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - X Li
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Y Lai
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - L Ni
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| |
Collapse
|
8
|
Zhang X, Xiong H, Zhao Y, Lin S, Huang X, Lin C, Mao S, Chen D. Circular RNA LONP2 regulates proliferation, invasion, and apoptosis of bladder cancer cells by sponging microRNA-584-5p. Bioengineered 2022; 13:8823-8835. [PMID: 35358000 PMCID: PMC9161836 DOI: 10.1080/21655979.2022.2054753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bladder cancer (BC) is the most frequent type of urinary tumor and a barely treatable disease. Although extensive efforts have been invested in the research of BC, the underlying etiology and pathophysiology remain unclear. CircLONP2 is a circular RNA implicated in the development of many cancers, and miR-584-5p and YAP1 have been reported to contribute to the progression of BC. In this research, we presented novel evidence supporting circLONP2/miR-584-5p/YAP1 axis as a novel regulatory module in the progression of BC. We analyzed the expression of circLONP2 between precancerous BC samples and normal tissues using a published RNA-seq dataset. The expression of circLONP2 was also validated in clinical samples and cell lines by quantitative RT-PCR. Small interfering RNA (siRNA) and miRNA inhibitor was utilized to modulate the expression of circLONP2 and miR-584-5p and investigate their functions on cell proliferation and invasion. Luciferase reporter assay and RNA pull-down were performed to confirm the functional interactions among circLONP2/miR-584-5p/YAP1. CircLONP2 was significantly upregulated in precancerous BC tissues and BC cells. CircLONP2 depletion inhibited cell viability, proliferation, and invasion of BC cell lines, which could be partially rescued by miR-584-5p inhibitor. Further experiments indicated that miR-584-5p regulates cell viability, proliferation, and invasion via directly targeting YAP1. In summary, our work indicates that circLONP2 plays an oncogenic function in BC by regulating miR-584-5p/YAP1 axis, and its interaction with miR-584-5p provides a potential strategy to target BC.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Hao Xiong
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Yong Zhao
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Shengqiang Lin
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Xiang Huang
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Cheng Lin
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Shihui Mao
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Demin Chen
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| |
Collapse
|
9
|
Niklander S, Guerra D, Contreras F, González-Arriagada W, Marín C. MicroRNAs and their role in the malignant transformation of oral leukoplakia: a scoping review. Med Oral Patol Oral Cir Bucal 2022; 27:e77-e84. [PMID: 34564679 PMCID: PMC8719793 DOI: 10.4317/medoral.24975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND MiRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level and have been associated with malignant transformation of oral epithelial precursor lesions such as oral leukoplakia. The aim was to perform a scoping review of the contemporary literature about the different roles of miRNAs during the malignant transformation of oral leukoplakia. MATERIAL AND METHODS We conducted a systematic search with the following MeSH terms: 'oral leukoplakia', 'carcinoma in situ', 'microRNAs', 'mouth neoplasms' and 'epithelial-mesenchymal transition' in PubMed/MEDLINE, EMBASE and SpringerLink. RESULTS Fifteen articles were included for analysis, among which in vivo and in vitro articles were included. A total of 21 different miRNAs were found to be involved in the malignant transformation process of oral leukoplakia. Regarding their possible effects, 6 miRNAs were classified as oncogenic, 5 as tumour suppressors and 10 were related to epithelial-mesenchymal transition, invasion and migration. CONCLUSIONS Based on the current review, we concluded that miRNAs-21, 345, 181-b and 31* seem to be potential markers of malignant transformation of oral leukoplakia. However, further clinical prospective studies are needed in order to validate their utility as prognostic biomarkers.
Collapse
Affiliation(s)
- S Niklander
- Departamento de Patología y Medicina Oral Universidad Andres Bello Postcode: 2520000. Quillota 980, Viña del Mar, Chile
| | | | | | | | | |
Collapse
|
10
|
Mao C, Xu X, Ding Y, Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine. Front Med (Lausanne) 2021; 8:735590. [PMID: 34660642 PMCID: PMC8514698 DOI: 10.3389/fmed.2021.735590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer and the thirteenth most common cause of mortality worldwide. Bacillus Calmette Guerin (BCG) instillation is a common treatment option for BC. BCG therapy is associated with the less adversary effects, compared to chemotherapy, radiotherapy, and other conventional treatments. BCG could inhibit the progression and recurrence of BC by triggering apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formation. However, BCG therapy is not efficient for metastatic cancer. NETs and autophagy were induced by BCG and help to suppress the growth of tumor cells especially in the primary stages of BC. Activated neutrophils can stimulate autophagy pathway and release NETs in the presence of microbial pathogenesis, inflammatory agents, and tumor cells. Autophagy can also regulate NETs formation and induce production of reactive oxygen species (ROS) and NETs. Moreover, miRNAs are important regulator of gene expression. These small non-coding RNAs are also considered as an essential factor to control the levels of tumor development. However, the interaction between BCG and miRNAs has not been well-understood yet. Therefore, the present study discusses the roles of miRNAs in regulations of autophagy and NETs formation in BCG therapy in the treatment of BC. The roles of autophagy and NETs formation in BC treatment and efficiency of BCG are also discussed.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Explore prognostic biomarker of bladder cancer based on competing endogenous network. Biosci Rep 2021; 40:226921. [PMID: 33169791 PMCID: PMC7711062 DOI: 10.1042/bsr20202463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is the most common tumor of the urinary tract. Increasing evidence showed that long non-coding RNA (lncRNA) is a critical regulator in cancer development and progression. However, the functions of lncRNAs in the development of BC remain mostly undefined. In the present study, based on RNA sequence profiles from The Cancer Genome Atlas database, we identified 723 lncRNAs, 157 miRNAs, and 1816 mRNAs aberrantly expressed in BC tissues. A competing endogenous RNA network, including 49 lncRNAs, 17 miRNAs, and 36 mRNAs, was then established. The functional enrichment analyses showed that the mRNAs in the ceRNA network mainly participated in ‘regulation of transcription’ and ‘pathways in cancer’. Moreover, the Cox regression analyses demonstrated that three lncRNAs (AC112721.1, TMPRSS11GP, and ADAMTS9-AS1) could serve as independent risk factors. We established a risk prediction model with these lncRNAs. Kaplan–Meier curve analysis showed that high-risk patients’ prognosis was lower than that of low-risk patients (P=0.001). The present study provides novel insights into the lncRNA-mediated ceRNA network and the potential of lncRNAs to be candidate prognostic biomarkers in BC, which could help better understand the pathological changes and pathogenesis of BC and be useful for clinical studies in the future.
Collapse
|
12
|
Parizi PK, Yarahmadi F, Tabar HM, Hosseini Z, Sarli A, Kia N, Tafazoli A, Esmaeili SA. MicroRNAs and target molecules in bladder cancer. Med Oncol 2020; 37:118. [PMID: 33216248 DOI: 10.1007/s12032-020-01435-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Bladder cancer (BC) is considered as one of the most common malignant tumors in humans with complex pathogenesis including gene expression variation, protein degradation, and changes in signaling pathways. Many studies on involved miRNAs in BC have demonstrated that they could be used as potential biomarkers in the prognosis, response to treatment, and screening before the cancerous phenotype onset. MicroRNAs (miRNAs) regulate many cellular processes through their different effects on special targets along with modifying signaling pathways, apoptosis, cell growth, and differentiation. The diverse expression of miRNAs in cancerous tissues could mediate procedures leading to the oncogenic or suppressor behavior of certain genes in cancer cells. Since a specific miRNA may have multiple targets, an mRNA could also be regulated by multiple miRNAs which further demonstrates the actual role of miRNAs in cancer. In addition, miRNAs can be utilized as biomarkers in some cancers that cannot be screened in the early stages. Hence, finding blood, urine, or tissue miRNA biomarkers by novel or routine gene expression method could be an essential step in the prognosis and control of cancer. In the present review, we have thoroughly evaluated the recent findings on different miRNAs in BC which can provide comprehensive information on better understanding the role of diverse miRNAs and better decision making regarding the new approaches in the diagnosis, prognosis, prevention, and treatment of BC.
Collapse
Affiliation(s)
- Payam Kheirmand Parizi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Genome Medical Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Zohreh Hosseini
- Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Abdolazim Sarli
- Department of Medical Genetic, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Nadia Kia
- Agostino Gemelli University Hospital, Torvergata University of Medical Sciences, Rome, Italy
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland.,Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Mojarrad M, Moghbeli M. Genetic and molecular biology of bladder cancer among Iranian patients. Mol Genet Genomic Med 2020; 8:e1233. [PMID: 32253828 PMCID: PMC7284045 DOI: 10.1002/mgg3.1233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Bladder cancer (BC) is the sixth common cancer among Iranians. Various risk factors such as smoking, body mass index, chronic infection, age, and genetic factors are associated with BC progression. Methods It has been shown that a significant ratio of patients have tumors with muscle bladder layer invasion and poor prognosis at the time of diagnosis. Therefore, the early detection of tumors is required to reduce the mortality rate of BC cases. Since there is a wide geographical incidence variation in BC in Iran, it seems that the ethnic and genetic factors can be the main risk factors among Iranian BC patients. Results For the first time, in present review we have summarized all of the reported genes among Iranian BC patients until now which were significantly associated with tumorigenesis. Moreover, we categorized all of the reported genes based on their cell and molecular functions to clarify the genetic and molecular biology of BC among Iranian population. Conclusion This review paves the way of determination of a population‐based genetic panel markers for the early detection of BC in this population.
Collapse
Affiliation(s)
- Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Liu Y, Jiang Y, Li W, Han C, Zhou L, Hu H. MicroRNA-200c-3p inhibits proliferation and migration of renal artery endothelial cells by directly targeting ZEB2. Exp Cell Res 2019; 387:111778. [PMID: 31881206 DOI: 10.1016/j.yexcr.2019.111778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023]
Abstract
Continuous activation of angiotensin II (Ang II) induces renal vascular endothelial dysfunction, inflammation, and oxidative stress, all of which may contribute to renal damage. It is well established that microRNAs (miRNAs) play crucial regulatory roles in the pathogenesis of hypertensive renal damage. However, the detailed mechanisms and regulatory roles of miRNAs as therapeutic targets underlying Ang II-induced renal artery endothelial cell dysfunction in hypertensive renal damage have yet to be fully elucidated. The present study aimed to explore the expression status and putative role of miRNA-200c-3p in mediating the progression of hypertensive renal damage. We carried out real-time quantitative PCR (RT-qPCR) to detect the expression of miRNA-200c-3p in rat renal artery endothelial cells (RRAECs) induced by Ang II. MTT and transwell assays were utilized to evaluate the effects of miRNA-200c-3p on cell proliferation and migration, respectively. The present results revealed that the expression of miRNA-200c-3p was significantly upregulated in RRAECs exposed to Ang II compared with that of normal cells. miRNA-200c-3p overexpression markedly inhibited cell proliferation and migration of Ang II-induced RRAECs. Furthermore, bioinformatics predictions and dual-luciferase reporter assays indicated that zinc finger E-box-binding homeobox 2 (ZEB2) was a direct target gene of miRNA-200c-3p and that ZEB2 expression was inversely correlated with the levels of miRNA-200c-3p in RRAECs after exposure to Ang II. The effects of ZEB2 silencing were similar to the inhibitory effects observed following miRNA-200c-3p overexpression, and recovered ZEB2 expression reversed the anti-proliferative and anti-migratory influence of miRNA-200c-3p upregulation in RRAECs induced by Ang II. The present study indicated that miRNA-200c-3p might suppress the proliferation and migration of Ang II-induced RRAECs by targeting ZEB2. The miRNA-200c-3p/ZEB2 axis will provide valuable insights into the clinical management of hypertension-related kidney disease.
Collapse
Affiliation(s)
- Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Yuehua Jiang
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Cong Han
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Le Zhou
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Hongzhen Hu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| |
Collapse
|
15
|
Du Y, Chi X, An W. Downregulation of microRNA-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating expression of RECK and inactivating the AKT signaling pathway. Chem Biol Interact 2019; 307:223-233. [PMID: 31018114 DOI: 10.1016/j.cbi.2019.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the role of mircoRNA-200c-3p (miR-200c-3p) on hippocampal neuron injury in epileptic rats through the regulation of the AKT signaling pathway by targeting RECK. METHODS The epilepsy rat model was induced by intraperitoneal injection of lithium chloride-pilocarpine. Successful modeled rats were injected with miR-200c-3p inhibitors, inhibitors NC, siRNA-negative control (NC) and RECK-siRNA. The astrocyte activation, levels of oxidative stress indexes, contents of inflammatory factors and the AKT signaling pathway-related proteins in hippocampus tissues were evaluated. RESULTS High expression of miR-200c-3p and low expression of RECK were found in the hippocampus tissues of epileptic rats. Downregulation of miR-200c-3p or upregulation of RECK decreased apoptosis of hippocampal neurons, expression of GFAP, content of MDA and increased the activities of GSH-Px and SOD, decreased expression of TNF-α, IL-1β and IL-6 as well as expression of p-PI3K/t-PI3K and p-Akt/t-Akt in hippocampus tissues of epileptic rats. CONCLUSION Our study provides evidence that downregulation of miR-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating RECK and inactivating the AKT signaling pathway.
Collapse
Affiliation(s)
- Yumin Du
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China.
| | - Xiaowen Chi
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Wen An
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| |
Collapse
|
16
|
Baicalin, the major component of traditional Chinese medicine Scutellaria baicalensis induces colon cancer cell apoptosis through inhibition of oncomiRNAs. Sci Rep 2018; 8:14477. [PMID: 30262902 PMCID: PMC6160418 DOI: 10.1038/s41598-018-32734-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is among the most frequently occurring cancers worldwide. Baicalin is isolated from the roots of Scutellaria baicalensis and is its dominant flavonoid. Anticancer activity of baicalin has been evaluated in different types of cancers, especially in CRC. However, the molecular mechanisms underlying the contribution of baicalin to the treatment of CRC are still unknown. Here, we confirmed that baicalin can effectively induce and enhance apoptosis in HT-29 cells in a dose-dependent manner and suppress tumour growth in xenografted nude mice. We further performed a miRNA microarray analysis of baicalin-treated and untreated HT-29 cells. The results showed that a large number of oncomiRs, including miR-10a, miR-23a, miR-30c, miR-31, miR-151a and miR-205, were significantly suppressed in baicalin-treated HT-29 cells. Furthermore, our in vitro and in vivo studies showed that baicalin suppressed oncomiRs by reducing the expression of c-Myc. Taken together, our study shows a novel mechanism for anti-cancer action of baicalin, that it induces apoptosis in colon cancer cells and suppresses tumour growth by reducing the expression of c-Myc and oncomiRs.
Collapse
|
17
|
Zhang H, Jiang M, Liu Q, Han Z, Zhao Y, Ji S. miR-145-5p inhibits the proliferation and migration of bladder cancer cells by targeting TAGLN2. Oncol Lett 2018; 16:6355-6360. [PMID: 30405771 PMCID: PMC6202496 DOI: 10.3892/ol.2018.9436] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/28/2018] [Indexed: 01/20/2023] Open
Abstract
MicroRNA-145-5p (miR-145-5p) is found to be involved in tumor development and progression. However, there are few studies on the effects of miR-145-5p on bladder cancer (BC). The role of miR-145-5p in BC was predicted by analysis of cell proliferation and migration in this study. The miR-145-5p and transgelin-2 (TAGLN2) expressions were evaluated via reverse transcription-quantitative PCR (RT-qPCR) or western blot analysis. The MTT and Transwell assay assessed cell proliferation and migration. TAGLN2 targeted to miR-145-5p was determined using luciferase assays. The results showed that the miR-145-5p downregulation was found in BC. miR-145-5p overexpression inhibited cell proliferation and migration in BC. Moreover, miR-145-5p directly targeted TAGLN2, and TAGLN2 expression was increased in BC. In addition, the high expression of TAGLN2 promoted cell proliferation and migration in BC. miR-145-5p appeared to regulate TAGLN2 in BC, and it also inhibited the cell proliferation and migration. The novel miR-145-5p/TAGLN2 axis may provide new therapeutic implications for BC.
Collapse
Affiliation(s)
- Haijian Zhang
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Meijuan Jiang
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Qingjun Liu
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yuqian Zhao
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Shiqi Ji
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
18
|
Kitdumrongthum S, Metheetrairut C, Charoensawan V, Ounjai P, Janpipatkul K, Panvongsa W, Weerachayaphorn J, Piyachaturawat P, Chairoungdua A. Dysregulated microRNA expression profiles in cholangiocarcinoma cell-derived exosomes. Life Sci 2018; 210:65-75. [PMID: 30165035 DOI: 10.1016/j.lfs.2018.08.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
AIM Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelial cells. The prognosis of CCA is poor due to lack of effective therapeutic targets and detection at an advanced stage. Exosomes are secreted nano-sized vesicles and contribute to the malignancy of several cancers via transferring their miRNAs between cells. Thus, exosomal miRNAs may serve as new therapeutic targets and potential biomarkers for CCA. MAIN METHODS Exosomes were isolated from three different CCA cell lines and normal human cholangiocyte cells, followed by miRNA profiling analysis. Potential role of dysregulated miRNA was investigated by knockdown experiment. KEY FINDINGS We found that 38 and 460 miRNAs in CCA exosomes were significantly up- and down-regulated, respectively. Of these differentially expressed miRNAs, the hsa-miR-205-5p and miR-200 family members were markedly up-regulated for 600-1500 folds, whereas the miR-199 family members and their clustered miRNA, hsa-miR-214-3p, were down-regulated for 1000-2000 folds. The expression patterns of these representative exosomal miRNAs were similar to those observed in all types of CCA cells. The target genes of the top ten most up- and down-regulated miRNAs are significantly associated with well-characterized cancer-related pathways. Consistently, knockdown of the most up-regulated miRNA, miR-205-5p, reduced KKU-M213 cell invasion and migration. SIGNIFICANCE We have demonstrated the distinct miRNA signatures in exosomes released from CCA cells, compared to normal human cholangiocyte cells. These exosomal miRNAs may have the potential to be novel therapeutic targets and biomarkers for CCA.
Collapse
Affiliation(s)
- Sarunya Kitdumrongthum
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Chanatip Metheetrairut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Keatdamrong Janpipatkul
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Jittima Weerachayaphorn
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pawinee Piyachaturawat
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
19
|
Li M, Liu Y, Zhang X, Liu J, Wang P. Transcriptomic analysis of high-throughput sequencing about circRNA, lncRNA and mRNA in bladder cancer. Gene 2018; 677:189-197. [PMID: 30025927 DOI: 10.1016/j.gene.2018.07.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
An increasing number of studies have revealed that long noncoding RNA (lncRNA) and circular RNA (circRNA) participate in the carcinogenesis and progression of tumors. However, most of these noncoding RNAs are of unknown function or without annotation. We carried out high-throughput sequencing to investigate the differential expression of lncRNAs and circRNAs and their biological functions in four coupled bladder cancer and adjacent noncancerous tissues. We identified significant differentially expressed transcripts and genes and acquired their annotations from the RefSeq and circBase databases, then confirmed the expression of randomly selected RNAs with quantitative real-time PCR. We also constructed a coding-noncoding co-expression (CNC) network and a competing endogenous RNA (ceRNA) network to predict the functions of these RNAs using well-studied protein-coding mRNA. Compared with adjacent tissues, 56 lncRNAs, 34 circRNAs and 467 protein-coding mRNAs were upregulated while 32 lncRNAs, 84 circRNAs and 326 protein-coding mRNAs were downregulated in cancer tissues. Co-expression analysis showed that expression of LINC00885 were correlated with GATA3 expression. The ceRNA network indicated that lncRNA MIR194-2HG, AATBC and circRNA PGM5 could harbor bladder cancer-related microRNA (miRNA) recognition elements. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to ascertain the biological function of significantly dysregulated genes. Cell cycle and cell division pathways related to proliferation and apoptosis were obvious in enriched terms. Comprehensive analysis indicated that the dysregulated lncRNAs and circRNAs could participate in the genesis and progression of bladder cancer. Our approach may therefore be valuable for detecting novel transcripts, discovering new biomarkers for bladder cancer and expounding the pathogenic mechanisms of this disease.
Collapse
Affiliation(s)
- Mingshan Li
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yili Liu
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xiling Zhang
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jie Liu
- Science Experiment Center of China Medical University, Shenyang 110122, China
| | - Ping Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
20
|
Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure. Oncotarget 2018; 8:27547-27568. [PMID: 28187437 PMCID: PMC5432357 DOI: 10.18632/oncotarget.15173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease.
Collapse
|
21
|
Gao JM, Huang LZ, Huang ZG, He RQ. Clinical value and potential pathways of miR-183-5p in bladder cancer: A study based on miRNA-seq data and bioinformatics analysis. Oncol Lett 2018; 15:5056-5070. [PMID: 29616090 DOI: 10.3892/ol.2018.7967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers; however, to the best of the author's knowledge, no similar research has been reported for bladder cancer. In the present study, it was revealed that the expression level of miR-183-5p was notably increased in bladder cancer tissues compared with adjacent non-cancerous tissues (P=0.001) and was markedly increased in the tissue samples of papillary, pathological T stage (T0-T2) and pathological stage (I-II) compared with tissue samples of their counterparts (P=0.05), according to data from The Cancer Genome Atlas. Receiver operating characteristic analysis revealed the robust diagnostic value of miR-183-5p for distinguishing bladder cancer from non-cancerous bladder tissues (area under curve=0.948; 95% confidence interval: 0.919-0.977). Amplification and deep deletion of miR-183-5p were indicated by cBioPortal, accounting for 1% (4/412) of bladder cancer cases. Data from YM500v3 demonstrated that compared with other cancers, bladder cancer exhibited high expression levels of miR-183-5p, and miR-183-5p expression in primary solid tumors was much higher compared with solid normal tissues. A meta-analysis indicated that miR-183-5p was more highly expressed in bladder cancer samples compared with normal counterparts. A total of 88 potential target genes of miR-183-5p were identified, 13 of which were discerned as hub genes by protein-protein interaction. The epithelial-to-mesenchymal transition pathway was the most significantly enriched pathway by FunRich (P=0.0001). In summary, miR-183-5p may participate in the tumorigenesis and development of bladder cancer via certain signaling pathways, particularly the epithelial-to-mesenchymal transition pathway. However, the exact molecular mechanism of miR-183-5p in bladder cancer must be validated by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Jia-Min Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Biochemistry, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin-Zhen Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Guang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Biochemistry, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
22
|
Wieczorek E, Reszka E. mRNA, microRNA and lncRNA as novel bladder tumor markers. Clin Chim Acta 2017; 477:141-153. [PMID: 29224950 DOI: 10.1016/j.cca.2017.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
Early detection of bladder cancer (BC) is essential for improvement of the patient's prognosis and general survival rates. Current diagnostic methods are still limited, so new specific and cost-effective biomarkers are emerging as the noninvasive tools in treatment decisions in recurrent BC. Gene expression and epigenetic profile can be analysed using quantitative real-time-PCR (qRT-PCR) method in urine, blood and tissue. This review provides an update of recent findings on BC molecular profile as novel markers in diagnosis and prognosis of bladder tumors. We describe mRNA-, microRNA- and lncRNA-based biomarkers involved in the BC detection, diagnosis, prediction of recurrence and monitoring after treatment.
Collapse
Affiliation(s)
- Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
23
|
Huang H, Jin H, Zhao H, Wang J, Li X, Yan H, Wang S, Guo X, Xue L, Li J, Peng M, Wang A, Zhu J, Wu XR, Chen C, Huang C. RhoGDIβ promotes Sp1/MMP-2 expression and bladder cancer invasion through perturbing miR-200c-targeted JNK2 protein translation. Mol Oncol 2017; 11:1579-1594. [PMID: 28846829 PMCID: PMC5663999 DOI: 10.1002/1878-0261.12132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
Our most recent studies demonstrate that RhoGDIβ is able to promote human bladder cancer (BC) invasion and metastasis in an X‐link inhibitor of apoptosis protein‐dependent fashion accompanied by increased levels of matrix metalloproteinase (MMP)‐2 protein expression. We also found that RhoGDIβ and MMP‐2 protein expressions are consistently upregulated in both invasive BC tissues and cell lines. In the present study, we show that knockdown of RhoGDIβ inhibited MMP‐2 protein expression accompanied by a reduction of invasion in human BC cells, whereas ectopic expression of RhoGDIβ upregulated MMP‐2 protein expression and promoted invasion as well. The mechanistic studies indicated that MMP‐2 was upregulated by RhoGDIβ at the transcriptional level by increased specific binding of the transcription factor Sp1 to the mmp‐2 promoter region. Further investigation revealed that RhoGDIβ overexpression led to downregulation of miR‐200c, whereas miR‐200c was able directly to target 3′‐UTR of jnk2mRNA and attenuated JNK2 protein translation, which resulted in attenuation of Sp1mRNA and protein expression in turn, inhibiting Sp1‐dependent mmp‐2 transcription. Collectively, our studies demonstrate that RhoGDIβ overexpression inhibits miR‐200c abundance, which consequently results in increases of JNK2 protein translation, Sp1 expression, mmp‐2 transcription, and BC invasion. These findings, together with our previous results showing X‐link inhibitor of apoptosis protein mediating mRNA stabilization of both RhoGDIβ and mmp‐2, reveal the nature of the MMP‐2 regulatory network, which leads to MMP‐2 overexpression and BC invasion.
Collapse
Affiliation(s)
- Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China.,Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Huirong Zhao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Jingjing Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Huiying Yan
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Shuai Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Xirui Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Lei Xue
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Minggang Peng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Annette Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Xue-Ru Wu
- Departments of Urology, New York University School of Medicine, NY, USA
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA, USA
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China.,Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA.,Departments of Urology, New York University School of Medicine, NY, USA
| |
Collapse
|
24
|
Jiang Z, Zhang Y, Cao R, Li L, Zhong K, Chen Q, Xiao J. miR-5195-3p Inhibits Proliferation and Invasion of Human Bladder Cancer Cells by Directly Targeting Oncogene KLF5. Oncol Res 2017; 25:1081-1087. [PMID: 28109084 PMCID: PMC7841123 DOI: 10.3727/096504016x14831120463349] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
miRNAs play a key role in the carcinogenesis of many cancers, including bladder cancer. In the current study, the role of miR-5195-3p, a quite recently discovered and poorly studied miRNA, in the proliferation and invasion of human bladder cancer cells was investigated. Our data displayed that, compared with healthy volunteers (control) and SU-HUC-1 normal human bladder epithelial cells, miR-5195-3p was sharply downregulated in bladder cancer patients and five human bladder cancer cell lines. The oligo miR-5195-3p mimic or miR-5195-3p antagomir was subsequently transfected into both T24 and BIU-87 bladder cancer cell lines. The miR-5195-3p mimic robustly increased the miR-5195-3p expression level and distinctly reduced the proliferation and invasion of T24 and BIU-87 cells. In contrast, the miR-5195-3p antagomir had an opposite effect on miR-5195-3p expression, cell proliferation, and invasion. Our data from bioinformatic and luciferase reporter gene assays identified that miR-5195-3p targeted the mRNA 3'-UTR of Krüppel-like factor 5 (KLF5), which is a proven proto-oncogene in bladder cancer. miR-5195-3p sharply reduced KLF5 expression and suppressed the expression or activation of its several downstream genes that are kinases improving cell survival or promoting cell cycle regulators, including ERK1/2, VEGFA, and cyclin D1. In conclusion, miR-5195-3p suppressed proliferation and invasion of human bladder cancer cells via suppression of KLF5.
Collapse
Affiliation(s)
- Zhangjie Jiang
- *Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yida Zhang
- †Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Runfu Cao
- †Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Li Li
- ‡Department of Anesthesiology, Ganzhou Renmin Hospital, Ganzhou, P.R. China
| | - Kezhao Zhong
- †Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Qingsheng Chen
- †Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jianjun Xiao
- †Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
25
|
Shao YY, Zhang TL, Wu LX, Zou HC, Li S, Huang J, Zhou HH. AKT Axis, miR-21, and RECK Play Pivotal Roles in Dihydroartemisinin Killing Malignant Glioma Cells. Int J Mol Sci 2017; 18:ijms18020350. [PMID: 28208619 PMCID: PMC5343885 DOI: 10.3390/ijms18020350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/04/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is known to play important roles in inhibiting proliferation rate, inducing apoptosis, as well as hindering the metastasis and invasion of glioma cells, but the underlying mechanisms are still unclear so far. In this study, methyl thiazolyl tetrazolium (MTT), colony-forming, wound healing, invasion, and apoptosis assays were performed to investigate the effect of DHA on malignant glioma cells. Results showed that DHA induced apoptosis of malignant glioma cells through Protein Kinase B (AKT) axis, induced death of malignant glioma cells by downregulating miR-21, and inhibited the invasion of malignant glioma cells corresponding with up-regulation of the reversion-inducing-cysteine-rich protein with kazal motifs (RECK). These results revealed that AKT axis, miR-21, and RECK play pivotal roles in DHA killing malignant glioma cells, suggesting that DHA is a potential agent for treating glioma.
Collapse
Affiliation(s)
- Ying-Ying Shao
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| | - Tao-Lan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| | - He-Cun Zou
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| | - Shuang Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Jin Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Hong-Hao Zhou
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|