1
|
Chen YC, Takada M, Nagornyuk A, Yu M, Yamada H, Nagashima T, Ohtsuka M, DeLuca JG, Markus SM, Takaku M, Suzuki A. Inhibition of p38-MK2 pathway enhances the efficacy of microtubule inhibitors in breast cancer cells. eLife 2025; 13:RP104859. [PMID: 40439108 PMCID: PMC12122001 DOI: 10.7554/elife.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025] Open
Abstract
Microtubule-targeting agents (MTAs) are widely used as first- and second-line chemotherapies for various cancers. However, current MTAs exhibit positive responses only in subsets of patients and are often accompanied by side effects due to their impact on normal cells. This underscores an urgent need to develop novel therapeutic strategies that enhance MTA efficacy while minimizing toxicity to normal tissues. Here, we demonstrate that inhibition of the p38 MAPK-MK2 signaling pathway sensitizes cancer cells to MTA treatment. We utilize CMPD1, a dual-target inhibitor, to concurrently suppress the p38-MK2 pathway and microtubule dynamicity. In addition to its established role as an MK2 inhibitor, we find that CMPD1 rapidly induces microtubule depolymerization, preferentially at the microtubule plus end, leading to the inhibition of tumor growth and cancer cell invasion in both in vitro and in vivo models. Notably, 10 nM CMPD1 is sufficient to induce irreversible mitotic defects in cancer cells, but not in non-transformed normal cells, highlighting its high specificity to cancer cells. We further validate that a specific p38-MK2 inhibitor significantly potentiates the efficacy of subclinical concentrations of MTA. In summary, our findings suggest that the p38-MK2 pathway presents a promising therapeutic target in combination with MTAs in cancer treatment.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Mamoru Takada
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Aerica Nagornyuk
- Department of Biomedical Science, University of North Dakota School of Medicine and Health ScienceGrand ForksUnited States
| | - Muhan Yu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Hideyuki Yamada
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Takeshi Nagashima
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Motoki Takaku
- Department of Biomedical Science, University of North Dakota School of Medicine and Health ScienceGrand ForksUnited States
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- Carbone Comprehensive Cancer Center, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
2
|
Zhang J, Su J, Ni C, Lu J. Comparative efficacy and safety of eribulin versus paclitaxel in breast cancer: a systematic review and meta-analysis. Future Oncol 2024; 20:3507-3517. [PMID: 39563608 PMCID: PMC11776855 DOI: 10.1080/14796694.2024.2431479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
AIM We conducted a meta-analysis of published randomized controlled trials to compare the effectiveness and safety of eribulin versus paclitaxel for patients with breast cancer. METHODS We systematically searched multiple databases including Cochrane, PubMed, Medline, and Embase. The primary outcomes analyzed were overall survival (OS), complete response (CR), partial response (PR), stable disease (SD), and adverse events (AEs). These outcomes were evaluated using RevMan5.3 software. RESULTS A total of 5 studies were included in the analysis. Compared to paclitaxel plus other chemotherapy drugs, eribulin plus other chemotherapy drugs not only extended the overall survival of patients but also improved the disease control rate (DCR) [risk ratio (RR) 0.98, (95% confidence intervals (CI): 0.70, 1.38), p = 0.92]. Hematological system diseases [RR 1.18 (95% CI: 1.07, 1.31), p = 0.002] were the most frequently observed adverse event with eribulin, while paclitaxel was more likely to cause nervous system lesion [RR 0.66 (95% CI: 0.54, 0.80), p < 0.0001]. CONCLUSION Compared with paclitaxel plus other chemotherapy drugs, eribulin plus other chemotherapy drugs can also prolong the PFS and OS of BC patients. Our recommendation is to use eribulin plus other chemotherapy drugs to treat advanced BC and to continuously monitor and manage the drug-related adverse events.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jingyang Su
- Department of General internal medicine, Tongde Hospital Affiliated to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, China
| | - Cui Ni
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
3
|
Chen YC, Takada M, Nagornyuk A, Muhan W, Yamada H, Nagashima T, Ohtsuka M, DeLuca JG, Markus S, Takaku M, Suzuki A. Inhibition of p38-MK2 pathway enhances the efficacy of microtubule inhibitors in breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621816. [PMID: 39574707 PMCID: PMC11580888 DOI: 10.1101/2024.11.04.621816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Microtubule-targeting agents (MTAs) have been successfully translated from basic research into clinical therapies and have been widely used as first- and second-line chemotherapy drugs for various cancers. However, current MTAs exhibit positive responses only in subsets of patients and are often accompanied by side effects due to their impact on normal cells. This underscores an urgent need to develop novel therapeutic strategies that enhance MTA efficacy while minimizing toxicity to normal tissues. In this study, we demonstrate that inhibition of the p38-MK2 (MAP kinase-activated protein kinase 2) pathway sensitizes cancer cells to MTA treatment. We utilize CMPD1, a dual-target inhibitor, to concurrently suppress the p38-MK2 pathway and microtubule dynamicity. In addition to established role as an MK2 inhibitor, we find that CMPD1 rapidly induces microtubule depolymerization, preferentially at the microtubule plus-end, leading to the inhibition of tumor growth and cancer cell invasion in both in vitro and in vivo models. Notably, 10 nM CMPD1 is sufficient to induce irreversible mitotic defects in cancer cells, but not in non-transformed RPE1 cells, highlighting its high specificity to cancer cells. We further validate that a specific p38-MK2 inhibitor significantly potentiates the efficacy of sub-clinical concentrations of MTA. In summary, our findings suggest that the p38-MK2 pathway presents a promising therapeutic target in combination with MTAs in cancer treatment.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- These authors contributed equally
| | - Mamoru Takada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- These authors contributed equally
| | - Aerica Nagornyuk
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Folks, North Dakota, USA
| | - Wu Muhan
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yamada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Nagashima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Motoki Takaku
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Folks, North Dakota, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Wu L, Ye K, Jiang S, Zhou G. Marine Power on Cancer: Drugs, Lead Compounds, and Mechanisms. Mar Drugs 2021; 19:md19090488. [PMID: 34564150 PMCID: PMC8472172 DOI: 10.3390/md19090488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin's disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.
Collapse
Affiliation(s)
- Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China;
| | - Ke Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
- Correspondence: (S.J.); (G.Z.)
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.J.); (G.Z.)
| |
Collapse
|
5
|
Jimenez PC, Wilke DV, Branco PC, Bauermeister A, Rezende‐Teixeira P, Gaudêncio SP, Costa‐Lotufo LV. Enriching cancer pharmacology with drugs of marine origin. Br J Pharmacol 2020; 177:3-27. [PMID: 31621891 PMCID: PMC6976878 DOI: 10.1111/bph.14876] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Marine natural products have proven, over the last half-century, to be effective biological modulators. These molecules have revealed new targets for cancer therapy as well as dissimilar modes of action within typical classes of drugs. In this scenario, innovation from marine-based pharmaceuticals has helped advance cancer chemotherapy in many aspects, as most of these are designated as first-in-class drugs. Here, by examining the path from discovery to development of clinically approved drugs of marine origin for cancer treatment-cytarabine (Cytosar-U®), trabectedin (Yondelis®), eribulin (Halaven®), brentuximab vedotin (Adcetris®), and plitidepsin (Aplidin®)- together with those in late clinical trial phases-lurbinectedin, plinabulin, marizomib, and plocabulin-the present review offers a critical analysis of the contributions given by these new compounds to cancer pharmacotherapy.
Collapse
Affiliation(s)
- Paula C. Jimenez
- Departamento de Ciências do MarUniversidade Federal de São PauloSantosSPBrasil
| | - Diego V. Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Departamento de Fisiologia e Farmacologia, Faculdade de MedicinaUniversidade Federal do CearáFortalezaCEBrasil
| | - Paola C. Branco
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Paula Rezende‐Teixeira
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Susana P. Gaudêncio
- UCIBIO, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, Faculty of Science and TechnologyNOVA University of LisbonCaparicaPortugal
| | - Leticia V. Costa‐Lotufo
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| |
Collapse
|
6
|
Abstract
The availability of an unprecedented massive amount of data has provided a magnificent window of opportunity for the development of new drugs. There are currently more drugs in development targeting cancer than any other disease. While this has brought us new waves of drugs, the counterpart is that with these new molecules we have different mechanisms of action, drug kinetics and dynamics, response types and toxicity profiles, which impair classical early clinical trial designs from being effective and efficient. What we once treated as a 'one-size-fits-all' homogeneous disease, has now been uncovered to be a rather heterogeneous condition with multiple targetable mutations. As this generates endless scenarios, it will be impossible to design single 'me-too' trials for every different disease, target, biomarker and agent. To overcome this, we must focus on improving early phase studies, undoubtedly the most critical step from bench to bedside. Goals include decreasing clinical development times, lowering research and development costs and optimizing decisions in advancing through the several phases with a higher degree of certainty in exchange for less failed attempts. We need more informative and, really, transformative early phase designs that seek to obtain the typical late phase objectives in a time continuum and to allow for more robust and efficient go/no-go decisions. With this in mind, different classes of drugs seem to fit with different designs, which present solutions to the different challenges that they pose after finding the maximum tolerated dose/optimum biological dose. This article reviews these concepts and designs and how they can adapt to this new reality in early phase investigation.
Collapse
Affiliation(s)
- A Mansinho
- Medical Oncology Division, Centro Hospitalar Universitário Lisboa Norte - Hospital de Santa Maria, Lisbon, Portugal; START Madrid, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - V Boni
- START Madrid, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - M Miguel
- START Madrid, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - E Calvo
- START Madrid, Centro Integral Oncológico Clara Campal, Madrid, Spain.
| |
Collapse
|
7
|
Garrido ML, Morago AJ, Rovira PS, Olarte PE, Sánchez CP, Sánchez LM. Experience with eribulin in the treatment of elderly women with metastatic breast cancer: case studies. Future Oncol 2018; 14:21-27. [PMID: 29611758 DOI: 10.2217/fon-2017-0357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although advancing age can greatly increase the complexities of treating metastatic breast cancer, chronological age alone is insufficient to determine the type or intensity of treatment. Older patients require an individualized approach that takes into account the patient's physical ability, social circumstances and mental capacity to tolerate treatment. This section features three older women treated with eribulin for metastatic breast cancer. In the first case, a 70-year-old woman maintained stable disease into her 34th month of treatment with third-line eribulin. In the remaining cases, two heavily pretreated women (80 and 90 years, respectively) with metastatic disease and liver involvement presented objective radiological benefit to later-line eribulin along with prolonged clinical improvement and good tolerability.
Collapse
Affiliation(s)
| | - Ana Jaén Morago
- Medical Oncology Department, Medical-Surgical Hospital of Jaén, Jaén, Spain
| | | | | | | | - Luis Manso Sánchez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|