1
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
2
|
Liang L, Xu WY, Shen A, Cen HY, Chen ZJ, Tan L, Zhang LM, Zhang Y, Fu JJ, Qin AP, Lei XP, Li SP, Qin YY, Huang JH, Yu XY. Promoter methylation-regulated miR-148a-3p inhibits lung adenocarcinoma (LUAD) progression by targeting MAP3K9. Acta Pharmacol Sin 2022; 43:2946-2955. [PMID: 35388129 PMCID: PMC9622742 DOI: 10.1038/s41401-022-00893-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/21/2022] [Indexed: 01/27/2023]
Abstract
Lung adenocarcinoma (LUAD) characterized by high metastasis and mortality is the leading subtype of non-small cell lung cancer. Evidence shows that some microRNAs (miRNAs) may act as oncogenes or tumor suppressor genes, leading to malignant tumor occurrence and progression. To better understand the molecular mechanism associated with miRNA methylation in LUAD progression and clinical outcomes, we investigated the correlation between miR-148a-3p methylation and the clinical features of LUAD. In the LUAD cell lines and tumor tissues from patients, miR-148a-3p was found to be significantly downregulated, while the methylation of miR-148a-3p promoter was notably increased. Importantly, miR-148a-3p hypermethylation was closely associated with lymph node metastasis. We demonstrated that mitogen-activated protein (MAP) kinase kinase kinase 9 (MAP3K9) was the target of miR-148a-3p and that MAP3K9 levels were significantly increased in both LUAD cell lines and clinical tumor tissues. In A549 and NCI-H1299 cells, overexpression of miR-148a-3p or silencing MAP3K9 significantly inhibited cell growth, migration, invasion and cytoskeleton reorganization accompanied by suppressing the epithelial-mesenchymal transition. In a nude mouse xenograft assay we found that tumor growth was effectively inhibited by miR-148a-3p overexpression. Taken together, the promoter methylation-associated decrease in miR-148a-3p could lead to lung cancer metastasis by targeting MAP3K9. This study suggests that miR-148a-3p and MAP3K9 may act as novel therapeutic targets for the treatment of LUAD and have potential clinical applications.
Collapse
Affiliation(s)
- Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Yan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui-Yu Cen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhi-Jun Chen
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Lin Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ling-Min Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Jun Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ai-Ping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xue-Ping Lei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Song-Pei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Yan Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jiong-Hua Huang
- Department of Cardiovascular Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Xi-Yong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Robinson I, Bertsch A, Leithner K, Stiegler P, Olschewski H, Hrzenjak A. Circulating microRNAs as molecular biomarkers for lung adenocarcinoma. Cancer Biomark 2022; 34:591-606. [DOI: 10.3233/cbm-210205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND: The potential of microRNAs (miRNAs) as molecular tumor biomarkers for early diagnosis and prognosis in lung cancer is still unclear. OBJECTIVE: To analyze expression of miRNAs in A549 lung adenocarcinoma (LUAD) cells and in primary, non-malignant bronchial epithelial (BE) cells from healthy donors. To analyze the most prominently deregulated miRNAs in plasma samples of LUAD patients and healthy donors. MATERIALS AND METHODS: The expression of 752 miRNAs in LUAD and BE cells was assessed by RT-qPCR with mean-centering restricted normalization. The relative plasma levels of 18 miRNAs in LUAD patients and healthy donors were analyzed using RT-qPCR and normalized to miR-191-5p and miR-16-3p. Putative interactions between miRNAs and their target genes were investigated in silico. RESULTS: Out of 752 miRNAs, 37 miRNAs were significantly deregulated in A549 cells compared to BE cells. MiR-15b-3p, miR-148a-3p, miR-193b-3p, and miR-195-5p were significantly deregulated in plasma samples of LUAD patients compared to donors. The target genes of those four miRNAs are involved in essential mechanisms in cancer development and progression. CONCLUSIONS: There are substantial differences between cancer and control miRNA expression in vitro and in plasma samples of LUAD patients compared to healthy donors. Four deregulated miRNAs are promising as a diagnostic biomarker for adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Irina Robinson
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Alexandra Bertsch
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Katharina Leithner
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Philipp Stiegler
- Division of Transplantation Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Pieters BCH, Arntz OJ, Aarts J, Feitsma AL, van Neerven RJJ, van der Kraan PM, Oliveira MC, van de Loo FAJ. Bovine Milk-Derived Extracellular Vesicles Inhibit Catabolic and Inflammatory Processes in Cartilage from Osteoarthritis Patients. Mol Nutr Food Res 2022; 66:e2100764. [PMID: 34965027 PMCID: PMC9285407 DOI: 10.1002/mnfr.202100764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/17/2021] [Indexed: 11/05/2022]
Abstract
SCOPE Data from the Osteoarthritis Initiative shows that females who drink milk regularly have less joint cartilage loss and OA progression, but the biologic mechanism is unclear. Bovine milk is a rich source of extracellular vesicles (EVs), which are small phospholipid bilayer bound structures that facilitate intercellular communication. In this study, the authors aim to evaluate whether these EVs may have the capacity to protect cartilage from osteoarthritis patients, ex vivo, by directly effecting chondrocytes. METHODS AND RESULTS Human cartilage explants are exposed to cow's milk-derived EVs (CMEVs), which results in reduced sulfated glycosaminoglycan release and inhibition of metalloproteinase-1 expression. Incubation of articular chondrocytes with CMEVs also effectively reduces expression of cartilage destructive enzymes (ADAMTS5, MMPs), which play key roles in the disease progression. In part, these findings are attributed to the presence of TGFβ on these vesicles, and in addition, a possible role is reserved for miR-148a, which is functionally transferred by CMEVs. CONCLUSION These findings highlight the therapeutic potential of local CMEV delivery in osteoarthritic joints, where inflammatory and catabolic mediators are responsible for joint pathology. CMEVs are carriers of both TGFβ and miR-148a, two essential regulators for maintaining chondrocyte homeostasis and protection against cartilage destruction.
Collapse
Affiliation(s)
| | - Onno J. Arntz
- Department of RheumatologyRadboud University Medical CenterNijmegenNetherlands
| | - Joyce Aarts
- Department of RheumatologyRadboud University Medical CenterNijmegenNetherlands
| | | | - R. J. Joost van Neerven
- FrieslandCampinaAmersfoortThe Netherlands
- Cell Biology and ImmunologyWageningen University & ResearchWageningenthe Netherlands
| | | | - Marina C. Oliveira
- Department of NutritionNursing SchoolUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | | |
Collapse
|
5
|
Zhang Y, Hu X. miR‑148a promotes cell sensitivity through downregulating SOS2 in radiation‑resistant non‑small cell lung cancer cells. Oncol Lett 2022; 23:135. [PMID: 35251354 PMCID: PMC8895464 DOI: 10.3892/ol.2022.13255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer; however, radioresistance is a significant barrier in NSCLC radiotherapy. MicroRNA (miR)-148a has been reported to be a tumor suppressor in various types of cancer, including NSCLC. In the present study, the potential role of miR-148a in regulating radiosensitivity of NSCLC cells was investigated. Serum miR-148a expression was evaluated by reverse transcription-quantitative PCR in patients with NSCLC and healthy controls. The effects of miR-148a on cell viability, migration and invasion were assessed by Cell Counting Kit-8 and Transwell assays in radiation-resistant NSCLC cells. Serum miR-148a was downregulated in patients with NSCLC compared with healthy controls and its expression was significantly increased after radiotherapy. By contrast, miR-148a expression was decreased in the radioresistant patients compared with the radiosensitivity patients. Additionally, miR-148a overexpression inhibited the cell proliferation, migration and invasion of radiation-resistant NSCLC cells. In addition, miR-148a had putative binding site with Son of Sevenless 2 (SOS2) and negatively regulated SOS2 expression. Silencing SOS2 expression significantly suppressed miR-148a inhibitor-induced increase in radiosensitivity in NSCLC. In conclusion, the results of the present study suggested that miR-148a could enhance the radiosensitivity of NSCLC cells through targeting SOS2, thus providing potential therapeutic targets to improve radiotherapy in NSCLC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Laboratory, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xiaoqian Hu
- Department of Laboratory, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| |
Collapse
|
6
|
Niclosamide induces miR-148a to inhibit PXR and sensitize colon cancer stem cells to chemotherapy. Stem Cell Reports 2022; 17:835-848. [PMID: 35276090 PMCID: PMC9023769 DOI: 10.1016/j.stemcr.2022.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor recurrence is often attributed to cancer stem cells (CSCs). We previously demonstrated that down-regulation of Pregnane X Receptor (PXR) decreases the chemoresistance of CSCs and prevents colorectal cancer recurrence. Currently, no PXR inhibitor is usable in clinic. Here, we identify miR-148a as a targetable element upstream of PXR signaling in CSCs, which when over-expressed decreases PXR expression and impairs tumor relapse after chemotherapy in mouse tumor xenografts. We then develop a fluorescent reporter screen for miR-148a activators and identify the anti-helminthic drug niclosamide as an inducer of miR-148a expression. Consequently, niclosamide decreased PXR expression and CSC numbers in colorectal cancer patient-derived cell lines and synergized with chemotherapeutic agents to prevent CSC chemoresistance and tumor recurrence in vivo. Our study suggests that endogenous miRNA inducers is a viable strategy to down-regulate PXR and illuminates niclosamide as a neoadjuvant repurposing strategy to prevent tumor relapse in colon cancer. miR-148a expression is decreased in colon cancer stem cells Forced expression of miR-148a inhibits colon cancer stem cell chemoresistance High-content screening identified niclosamide as a potent miR-148a inducer Niclosamide induces miR-148a expression, inhibits PXR expression in CSCs and prevents tumor
Collapse
|
7
|
Elnaggar GN, El-Hifnawi NM, Ismail A, Yahia M, Elshimy RAA. Micro RNA-148a Targets Bcl-2 in Patients with Non-Small Cell Lung Cancer. Asian Pac J Cancer Prev 2021; 22:1949-1955. [PMID: 34181356 PMCID: PMC8418855 DOI: 10.31557/apjcp.2021.22.6.1949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Lung cancer is one of the most prevalent cancers and the leading cause of cancer-related deaths worldwide. MicroRNAs regulate more than 60% of human genes, including tumor suppressor genes and oncogenes. Accordingly, they can affect cancer risk. This study aimed to evaluate the role of serum miR-148a as a non-invasive biomarker in non-small cell lung cancer (NSCLC) patients and to assess the correlation between miR-148a and Bcl-2, as one of its target proteins. MATERIALS AND METHODS A total of 50 newly diagnosed NSCLC cases and 30 apparently healthy controls were recruited in this study. MiR-148a level was measured by TaqMan- Real time RT-PCR assay and Bcl-2 level was measured by ELISA. RESULTS Significant lower expression of serum miR-148a and higher serum Bcl-2 levels were observed in NSCLC patients as compared to the control group (p.
Collapse
Affiliation(s)
- Ghada Nabil Elnaggar
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt.
| | - Niveen M El-Hifnawi
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt.
| | - Abeer Ismail
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt.
| | - Maha Yahia
- Department of Medical Oncology, National Cancer Institute, Cairo University, Egypt.
| | - Reham A A Elshimy
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt.
| |
Collapse
|
8
|
Su H, Fan G, Huang J, Qiu X. YBX1 regulated by Runx3-miR-148a-3p axis facilitates non-small-cell lung cancer progression. Cell Signal 2021; 85:110049. [PMID: 34082012 DOI: 10.1016/j.cellsig.2021.110049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Y-box binding protein 1 (YBX1) is a common oncogene in non-small-cell lung cancer (NSCLC), which is regulated by microRNAs (miRNAs) and transcription factors. This research aims to explore the function of YBX1, miR-148a-3p and Runt-related transcription factor 3 (Runx3) in NSCLC development, and analyze their interactions. METHODS YBX1, miR-148a-3p and Runx3 levels were detected using quantitative reverse transcription polymerase chain reaction(RT-PCR), Western blotting or immunohistochemical staining. The functions of YBX1, miR-148a-3p and Runx3 were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing, transwell, flow cytometry, xenograft model and Western blotting analyses. The binding correlation was validated through dual-luciferase reporter analysis and chromatin immunoprecipitation (ChIP). RESULTS YBX1 expression was upregulated, and miR-148a-3p and Runx3 levels were reduced in NSCLC samples and cell lines. YBX1 silence restrained NSCLC cell proliferation, migration, invasion and tumor growth, and enhanced apoptosis. YBX1 was targeted via miR-148a-3p. MiR-148a-3p knockdown promoted cell proliferation, migration, invasion and tumor growth, and repressed apoptosis, and these effects were abolished by YBX1 silence. Runx3 upregulation restrained cell proliferation, migration, invasion and tumor growth, and facilitated apoptosis. Runx3 bound with miR-148a-3p promotor to regulate miR-148a-3p expression. Runx3 silence modulated YBX1 expression though miR-148a-3p to promote NSCLC progression by increasing Cyclin D1, Cyclin B1, Slug-1, MMP-2 and MMP-9 levels. CONCLUSION Runx3-miR-148a-3p axis targeted YBX1 to modulate NSCLC progression.
Collapse
Affiliation(s)
- Hongbo Su
- Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Guanzhi Fan
- Department of Pathology, Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, PR China
| | - Jin Huang
- Department of Radiotherapy, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
9
|
Hu C, Hui K, Jiang X. Effects of microRNA regulation on antiangiogenic therapy resistance in non-small cell lung cancer. Biomed Pharmacother 2020; 131:110557. [PMID: 32836072 DOI: 10.1016/j.biopha.2020.110557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
Antiangiogenic drugs have become a standard therapeutic regimen for advanced non-small cell lung cancer (NSCLC); however, many issues remain to be solved. Identifying specific markers to predict patient response to antiangiogenic drugs to ensure therapeutic efficacy would increase their clinical benefit. MicroRNAs (miRNAs) are involved in the process of resistance to antiangiogenic therapy, as they regulate various key signaling pathways. Therefore, miRNAs may be used as targets for reversing tumor resistance to antiangiogenic therapy. This article reviews the molecular mechanisms of antiangiogenic therapy resistance and the specific mechanisms of miRNA regulation of resistance. Signal transducer and activator of transcription 3 (STAT3) is one of multiple target genes of miRNAs, and is closely related to antiangiogenic research. Thus, it is described separately in this review article.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China
| | - Kaiyuan Hui
- Department of Oncology, Lianyungang Clinical Medical College of Nanjing Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China.
| | - Xiaodong Jiang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China; Department of Oncology, Lianyungang Clinical Medical College of Nanjing Medical University, No.182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China.
| |
Collapse
|
10
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
11
|
ZHX2 drives cell growth and migration via activating MEK/ERK signal and induces Sunitinib resistance by regulating the autophagy in clear cell Renal Cell Carcinoma. Cell Death Dis 2020; 11:337. [PMID: 32382017 PMCID: PMC7206010 DOI: 10.1038/s41419-020-2541-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Abstract
Zinc fingers and homeoboxes 2 (ZHX2) was found as a novel VHL substrate target, and acted as an oncogenic driver in ccRCC. However, the detailed mechanism of ZHX2 in ccRCC development remains elusive, and no research has focused on studying ZHX2 in drug resistance yet. A tissue microarray with 358 ccRCC samples was used to determine the expression of ZHX2 in ccRCC patients. VHL-deficient cell line 786-O and VHL-normal cell line CAKI-1 was used for lineage reprogramming by transfecting with lentivirus. The in vitro and in vivo experiments were performed with these new cell lines to determine the mechanism of ZHX2 in ccRCC development and drug resistance. Immunohistochemistry analysis showed that ZHX2 was not highly expressed in ccRCC tumor tissues, only 33.2% (119/358) patients have high ZHX2 expression. However, high ZHX2 was significantly associated with advanced Fuhrman grade (p = 0.004), and proved to be an independent prognosis factor for progression-free survival (p = 0.0003), while there is no significant correlation with overall survival. We further discovered that ZHX2 overexpression could increase VEGF secretion and transcriptional activate the MEK/ERK1/2 and promote its downstream targets. We also found ZHX2 overexpression induce Sunitinib resistance though activating autophagy and the combination treatment of Sunitinib and Chloroquine could significantly rescue the phenomenon. In summary, these results indicate that ZHX2 drivers cell growth, migration though increase VEGF expression, and transcriptional activate MEK/ERK1/2 signaling pathway, and could induce Sunitinib resistance by regulating self-protective autophagy, these may provide new insight in advanced ccRCC treatment.
Collapse
|
12
|
Kumar S, Sharawat SK, Ali A, Gaur V, Malik PS, Kumar S, Mohan A, Guleria R. Identification of differentially expressed circulating serum microRNA for the diagnosis and prognosis of Indian non-small cell lung cancer patients. Curr Probl Cancer 2020; 44:100540. [PMID: 32007320 DOI: 10.1016/j.currproblcancer.2020.100540] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/12/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Identification of noninvasive blood-based biomarkers is of utmost importance for the early diagnosis and predicting prognosis of advance stage lung cancer patients. MicroRNAs (miRNAs) has been implicated in numerous diseases, however, their role as diagnostic and prognostic biomarkers in Indian lung cancer patients has not been evaluated yet. METHODS For the identification of differentially expressed miRNAs in the serum of non-small cell lung cancer (NSCLC) patients, we performed small RNA sequencing. We validated the expression of 10 miRNAs in 75 NSCLC patients and 40 controls using quantitative reverse transcription polymerase chain reaction (PCR). miRNA expression was correlated with survival and therapeutic response. RESULTS We identified 16 differentially expressed miRNAs in the serum of NSCLC patients as compared to controls. We observed significant downregulation of miR-15a-5p, miR-320a, miR-25-3p, miR-192-5p, let-7d-5p, let-7e-5p, miR-148a-3p, and miR-92a-3p in the serum of NSCLC patients. The expression of miR-375 and miR-10b-5p was significantly downregulated in lung squamous cell carcinoma patients than controls. The expression of miR-320a, miR-25-3p, and miR-148a-3p significantly correlated with stage. None of the miRNAs were correlated with survival outcome and therapeutic response. CONCLUSIONS We conclude that the relative abundance of miRNAs in serum may be explored for the development of miRNA-based assays for better diagnosis and prognosis of NSCLC. Moreover, further studies are warranted to elucidate the role of some of the less explored miRNAs, such as miR-375 and miR-320a, in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ashraf Ali
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Gaur
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Zhang HH, Li R, Li YJ, Yu XX, Sun QN, Li AY, Kong Y. eIF4E‑related miR‑320a and miR‑340‑5p inhibit endometrial carcinoma cell metastatic capability by preventing TGF‑β1‑induced epithelial‑mesenchymal transition. Oncol Rep 2019; 43:447-460. [PMID: 31894279 PMCID: PMC6967095 DOI: 10.3892/or.2019.7437] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer (EC) is a common form of cancer in women. Metastasis is the main cause of EC treatment failure. Eukaryotic translation initiation factor 4E (eIF4E) is an oncogene that is overexpressed in a variety of malignancies and their distant metastases. The present study analyzed microarray data from the Oncomine database and revealed that high eIF4E expression was associated with poor prognosis and high pathological grade of EC. The expression of eIF4E was higher in EC tissues compared with in adjacent normal tissues. In addition, microRNA (miR)-320a and miR-340-5p expression levels were downregulated in EC tissues compared with those in adjacent normal tissues, which suggested that these microRNAs may serve as EC tumor suppressor genes. miR-320a and miR-340-5p could bind to the 3′-UTR of eIF4E mRNA, thus downregulating the expression of eIF4E and phosphorylated (p)-eIF4E in EC cells. Overexpression of miR-320a or miR-340-5p effectively suppressed HEC-1A cell migration and invasion. The downregulation of eIF4E and p-eIF4E following miR-320a or miR-340-5p transfection reduced the invasiveness and metastatic capability of EC cells in a manner associated with decreased expression of matrix metallopeptidase (MMP)-3 and MMP-9. In addition, one of the effects of transforming growth factor β1 (TGF-β1), which is to induce the phosphorylation of eIF4E, was suppressed by miR-320a and miR-340-5p overexpression. These two microRNAs also attenuated the features of TGF-β1-induced epithelial-mesenchymal transition (EMT). In conclusion, the results of the present study demonstrated that eIF4E was upregulated in EC, whereas miR-320a and miR-340-5p were downregulated in EC compared with adjacent normal tissues. In vitro, miR-320a and miR-340-5p inhibited the migratory capability of EC cells by downregulating MMP-3 and MMP-9 and prevented TGF-β1-induced EMT through p-eIF4E.
Collapse
Affiliation(s)
- Han-Han Zhang
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ran Li
- Department of Oncology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xin-Xin Yu
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qian-Nan Sun
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ao-Ying Li
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ying Kong
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
14
|
Reif S, Elbaum Shiff Y, Golan-Gerstl R. Milk-derived exosomes (MDEs) have a different biological effect on normal fetal colon epithelial cells compared to colon tumor cells in a miRNA-dependent manner. J Transl Med 2019; 17:325. [PMID: 31564251 PMCID: PMC6767636 DOI: 10.1186/s12967-019-2072-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Breastfeeding is the ideal source of infant nutrition. Human milk consists not only of nutrients but also biologically active components. Among these latter compounds, exosomes contain proteins, lipids, mRNAs and miRNAs. Methods To elucidate the biological effects of milk-derived exosomes (MDEs) on normal colonic epithelial cells compared to colonic tumor cells, we incubated cells with MDEs. MDEs were able to enter into normal and tumor cells and change their miRNA expression profiles. Proliferation, cell morphology and protein expression were analyzed in these cells. Results Human milk-derived exosomes induced proliferation- and epithelial mesenchymal transformation-related changes, such as collagen type I and twist expression, in normal but not in tumor cells. PTEN, a target of miRNA-148a, was downregulated in normal but not in tumor cells following incubation with MDEs. Moreover, miRNA-148a-3p knockdown cells were used to demonstrate the importance of miRNA in the effect of exosomes on cell proliferation and protein expression. MDEs inhibited proliferation and DNMT1 expression in cells with knockdown of miRNA-148a. Conclusions In conclusion, the positive effect of exosomes on normal cells without affecting tumor cells may presents an aspect of their safety when considering it use as a nutritional supplement to infant formula.
Collapse
Affiliation(s)
- Shimon Reif
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaffa Elbaum Shiff
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Regina Golan-Gerstl
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
15
|
Zhang F, Qin S, Xiao X, Tan Y, Hao P, Xu Y. Overexpression of LIMD2 promotes the progression of non-small cell lung cancer. Oncol Lett 2019; 18:2073-2081. [PMID: 31423280 DOI: 10.3892/ol.2019.10473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
LIM domain containing 2 (LIMD2) is a small LIM-only protein that has been demonstrated to promote tumor progression; however, the expression and function of LIMD2 in non-small cell lung cancer (NSCLC) has not previously been reported. In the present study, reverse transcription-quantitative PCR and western blot analysis were conducted to examine the mRNA and protein expression levels of LIMD2. Cell Counting Kit-8, Transwell and wound-healing assays were performed in order to examine cell proliferation, invasion and migration, respectively. The data revealed that the LIMD2 expression levels were significantly increased in NSCLC tissues and cell lines, compared with adjacent non-tumor tissues and normal lung epithelial cells, respectively. In addition, the high expression of LIMD2 was significantly associated with lymph node metastasis, distant metastasis and advanced clinical stage in NSCLC. The patients with NSCLC with a high expression of LIMD2 exhibited shorter survival times than those with low LIMD2 expression. The knockdown of LIMD2 caused remarkable decreases in NSCLC cell proliferation, migration and invasion. Bioinformatics analysis and luciferase reporter gene assay data further confirmed that LIMD2 was a direct target gene of microRNA-124 (miR-124), a well-known tumor suppressor in NSCLC. The expression of LIMD2 was negatively regulated by miR-124 in NSCLC cells. In addition, miR-124 was downregulated in NSCLC tissues compared with adjacent non-tumor tissues, and an inverse correlation was observed between the expression of LIMD2 and miR-124 in NSCLC tissues. In conclusion, the present study demonstrates that LIMD2 serves an oncogenic role in NSCLC, suggesting that it may be used as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,PET/CT Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Shana Qin
- PET/CT Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Xiang Xiao
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuefa Tan
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peng Hao
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yikai Xu
- Department of Imaging Diagnostic Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
16
|
Complex role of miR-130a-3p and miR-148a-3p balance on drug resistance and tumor biology in esophageal squamous cell carcinoma. Sci Rep 2018; 8:17553. [PMID: 30510209 PMCID: PMC6277408 DOI: 10.1038/s41598-018-35799-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
miRNAs play a crucial role in cancer development and progression. However, results on the impact of miRNAs on drug sensitivity and tumor biology vary, and most studies to date focussed on either increasing or decreasing miRNA expression levels. Therefore, the current study investigated the role of different expression levels of miR-130a-3p and miR-148a-3p on drug resistance and tumor biology in four esophageal squamous cell carcinoma cell lines. Interestingly, up- and downregulation of both miRNAs significantly increased sensitivity towards chemotherapy. MiRNA modulation also reduced adherence and migration potential, and increased apoptosis rates. Target analyses showed that up- and downregulation of both miRNAs activated the apoptotic p53-pathway via increased expression of either BAX (miR-148a-3p) or Caspase 9 (miR-130a-3p). miR-148a-3p downregulation seemed to mediate its effects primarily via regulation of Bim rather than Bcl-2 levels, whereas we found the opposite scenario following miR-148a-3p upregulation. A similar effect was observed for miR-130a-3p regulating Bcl-2 and XIAP. Our data provide the first evidence that miRNA modulation in both directions may lead to similar effects on chemotherapy response and tumor biology in esophageal squamous cell carcinoma. Most interestingly, up- and downregulation seem to mediate their effects via modulating the balance of several validated or predicted targets.
Collapse
|
17
|
Hofbauer SL, de Martino M, Lucca I, Haitel A, Susani M, Shariat SF, Klatte T. A urinary microRNA (miR) signature for diagnosis of bladder cancer. Urol Oncol 2018; 36:531.e1-531.e8. [PMID: 30322728 DOI: 10.1016/j.urolonc.2018.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bladder cancer (BC) is diagnosed by cystoscopy, which is invasive, costly and causes considerable patient discomfort. MicroRNAs (miR) are dysregulated in BC and may serve as non-invasive urine markers for primary diagnostics and monitoring. The purpose of this study was to identify a urinary miR signature that predicts the presence of BC. METHODS For the detection of potential urinary miR markers, expression of 384 different miRs was analyzed in 16 urine samples from BC patients and controls using a Taqman™ Human MicroRNA Array (training set). The identified candidate gene signature was subsequently validated in an independent cohort of 202 urine samples of patients with BC and controls with microscopic hematuria. The final miR signature was developed from a multivariable logistic regression model. RESULTS Analysis of the training set identified 14 candidate miRs for further analysis within the validation set. Using backward stepwise elimination, we identified a subset of 6 miRs (let-7c, miR-135a, miR-135b, miR-148a, miR-204, miR-345) that distinguished BC from controls with an area under the curve of 88.3%. The signature was most accurate in diagnosing high-grade non-muscle invasive BC (area under the curve = 92.9%), but was capable to identify both low-grade and high-grade disease as well as non-muscle and muscle-invasive BC with high accuracies. CONCLUSIONS We identified a 6-gene miR signature that can accurately predict the presence of BC from urine samples, independent of stage and grade. This signature represents a simple urine assay that may help reducing costs and morbidity associated with invasive diagnostics.
Collapse
Affiliation(s)
- Sebastian L Hofbauer
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Michela de Martino
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Ilaria Lucca
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Andrea Haitel
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Martin Susani
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Tobias Klatte
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
18
|
Liu J, Si L, Tian H. MicroRNA-148a inhibits cell proliferation and cell cycle progression in lung adenocarcinoma via directly targeting transcription factor E2F3. Exp Ther Med 2018; 16:5400-5409. [PMID: 30546419 DOI: 10.3892/etm.2018.6845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) serve important roles in various human cancers, including lung adenocarcinoma. Exploring the function and regulatory mechanism of miRs underlying lung adenocarcinoma progression may contribute to identifying novel therapeutic targets and candidates. The present study aimed to examine miR-148a expression and investigate the molecular mechanisms of miR-148a in lung adenocarcinomas. The data from the current study indicated that miR-148a was significantly downregulated in lung adenocarcinoma tissues and cell lines, and low miR-148a expression was significantly associated with advanced Tumor, Node, Metastasis stages and lymph node metastasis, as well as the shorter survival time of patients. Increased miR-148a expression markedly decreased the cell proliferation, colony formation and cell cycle progression of H23 and H1975 cells. Transcription factor E2F3 (E2F3) was identified as a target of miR-148a in H23 and H1975 cells. The expression of E2F3 was negatively mediated by miR-148a in H23 and H1975 cells. In addition, E2F3 was significantly upregulated in lung adenocarcinoma tissues and cell lines, and the expression of miR-148a was inversely correlated with E2F3 expression in lung adenocarcinoma tissues. Additional experiments demonstrated that increased E2F3 expression counteracted the inhibitory effects on lung adenocarcinoma cells caused by miR-148a overexpression. In summary, the findings of the current study suggest that miR-148a may have suppressive effects on the proliferation of lung adenocarcinoma cells at least in part through directly targeting E2F3. Therefore, miR-148a may be used as a potential candidate for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Thoracic Surgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256600, P.R. China
| | - Libo Si
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
19
|
Zhao W, Hu JX, Hao RM, Zhang Q, Guo JQ, Li YJ, Xie N, Liu LY, Wang PY, Zhang C, Xie SY. Induction of microRNA‑let‑7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncol Rep 2018; 40:1843-1854. [PMID: 30066899 PMCID: PMC6111629 DOI: 10.3892/or.2018.6593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most common cause of cancer‑associated mortality. MicroRNAs (miRNAs), as oncogenes or tumor suppressor genes, serve crucial roles not only in tumorigenesis, but also in tumor invasion and metastasis. Although miRNA‑let‑7a (let‑7a) has been reported to suppress cell growth in multiple cancer types, the biological mechanisms of let‑7a in lung adenocarcinoma are yet to be fully elucidated. In the present study, the molecular roles of let‑7a in lung adenocarcinoma were investigated by detecting its expression in lung adenocarcinoma tissues and exploring its roles in the regulation of lung cancer cell proliferation. Let‑7a expression was identified to be downregulated in lung adenocarcinoma tissues compared with normal tissues. Overexpression of let‑7a effectively suppressed cancer cell proliferation, migration and invasion in H1299 and A549 cells. Let‑7a also induced cell apoptosis and cell cycle arrest. Furthermore, let‑7a significantly inhibited cell growth by directly regulating cyclin D1 signals. This novel regulatory mechanism of let‑7a in lung adenocarcinoma provides possible avenues for future targeted therapies of lung cancer.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jin-Xia Hu
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Rui-Min Hao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Qian Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jun-Qi Guo
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, Shandong 264000, P.R. China
| | - Lu-Ying Liu
- Department of Pathology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Can Zhang
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| |
Collapse
|
20
|
Huang Z, Lei W, Hu H, Zhang H, Zhu Y. H19 promotes non‐small‐cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR‐17. J Cell Physiol 2018; 233:6768-6776. [PMID: 29693721 DOI: 10.1002/jcp.26530] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiwen Huang
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Wei Lei
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Hai‐Bo Hu
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Hongyan Zhang
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Yehan Zhu
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| |
Collapse
|
21
|
Miao C, Zhang J, Zhao K, Liang C, Xu A, Zhu J, Wang Y, Hua Y, Tian Y, Liu S, Zhang C, Qin C, Wang Z. The significance of microRNA-148/152 family as a prognostic factor in multiple human malignancies: a meta-analysis. Oncotarget 2018; 8:43344-43355. [PMID: 28574848 PMCID: PMC5522150 DOI: 10.18632/oncotarget.17949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
Recent studies have demonstrated that microRNA-148/152 family emerges as a attractive biomarker for predicting tumor prognosis and progression. However, outcomes of different studies are controversial. Eligible Literature were searched through online databases: PubMed, EMBASE and Web of Science. A total of 24 eligible studies were ultimately enrolled in this meta-analysis. Results indicated that overexpression of miR-148/152 family was significantly correlated with enhanced overall/cause-specific survival (OS/CSS) (HR=0.63, 95% CI: 0.54-0.74). Stratified analysis indicated that high miR-148a and miR-148b expression predicted favorable OS/CSS (HR=0.76; 95% CI: 0.69-0.90) and (HR=0.49; 95% CI: 0.39-0.61), while miR-152 developed no significant impact (HR=0.40, 95% CI: 0.12-1.29). MiR-148/152 family was distinctly associated with superior OS/CSS in Asian (HR=0.53, 95% CI: 0.44-0.64), but not in Caucasian (HR=0.96, 95% CI: 0.82-1.13). Futhermore, miR-148/152 family expression also predicted longer disease/relapse/progression-free survival (DFS/RFS/PFS) (HR=0.37, 95% CI: 0.16-0.88). A significantly favorable DFS/RFS/PFS was observed in Asian (HR=0.21, 95% CI: 0.06-0.81) than that in Caucasian (HR=0.76, 95% CI: 0.31-1.87). miR-148/152 family overexpression also predicted longer DFS/RFS/PFS in tissues (HR=0.11, 95% CI: 0.01-0.98), but not in plasma/serum (HR=0.67, 95% CI: 0.38-1.18). Our meta-analysis demonstrated that overexpression of miR-148/152 predicted enhanced OS/CSS and DFS/RFS/PFS of cancer patients. MiR-148a/b family may serve as a potential prognostic factor in multiple human malignancies.
Collapse
Affiliation(s)
- Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhao Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Zhang F, Li J, Xiao H, Zou Y, Liu Y, Huang W. AFAP1-AS1: A novel oncogenic long non-coding RNA in human cancers. Cell Prolif 2018; 51:e12397. [PMID: 29057544 PMCID: PMC6528908 DOI: 10.1111/cpr.12397] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), a well-known long non-coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1-AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1-AS1 in the biological function and mechanism of human cancers.
Collapse
Affiliation(s)
- Fuyou Zhang
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsInstitute of UrologyPeking University Shenzhen HospitalShenzhen PKU‐HKUST Medical CenterShenzhen518036China
| | - Huizhong Xiao
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- University of South ChinaHengyangHunan421001China
| | - Yifan Zou
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- Shantou University Medical CollegeShantou515041Guangdong ProvinceChina
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- University of South ChinaHengyangHunan421001China
- Shantou University Medical CollegeShantou515041Guangdong ProvinceChina
| |
Collapse
|
23
|
Liu X, Chen B, You W, Xue S, Qin H, Jiang H. The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett 2018; 412:194-207. [PMID: 29074425 DOI: 10.1016/j.canlet.2017.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/01/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022]
|
24
|
Chang SM, Hu WW. Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis. J Cell Physiol 2017; 233:3384-3396. [PMID: 28926115 DOI: 10.1002/jcp.26185] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Shi-Min Chang
- Department of Stomatology; Beijing Friendship Hospital; Capital Medical University; Xicheng District Beijing China
| | - Wei-Wei Hu
- Department of Stomatology; Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University; Huai'an China
| |
Collapse
|
25
|
Zhang L, Li J, Wang Q, Meng G, Lv X, Zhou H, Li W, Zhang J. The relationship between microRNAs and the STAT3-related signaling pathway in cancer. Tumour Biol 2017; 39:1010428317719869. [PMID: 28859543 DOI: 10.1177/1010428317719869] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are non-coding RNAs that regulate gene expression by targeting messenger RNA molecules in 3' untranslated region. Mounting evidence indicates that microRNAs regulate several factors to influence various biological activities that are related to carcinogenesis, including signal transducer and activator of transcription 3, which is a transcription factor that also acts as an oncogene. MicroRNAs influence signal transducer and activator of transcription 3 either by directly targeting or via other pathway components upstream or downstream of signal transducer and activator of transcription 3 such as Janus kinases, members of the suppressor of cytokine signaling family, and other genes that regulate cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition. However, signal transducer and activator of transcription 3 activation changes the pattern of expression of microRNAs and mediates tumorigenesis. Moreover, the relationship between signal transducer and activator of transcription 3 and microRNAs varies among different kinds of cancers. A specific microRNA may act as an oncogene or tumor suppressor in different cancers, and microRNAs also directly or indirectly regulate signal transducer and activator of transcription 3 via pathways in the same cancers. In this review, we focus on the reciprocal regulation and roles of microRNAs and signal transducer and activator of transcription 3 in cancer, as well as describe current research progress on this relationship. A better understanding of this relationship may facilitate in the identification of targets for clinical therapeutics.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Junyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Guangping Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Xuejiao Lv
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Hong Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Wei Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
26
|
Alles J, Ludwig N, Rheinheimer S, Leidinger P, Grässer FA, Keller A, Meese E. MiR-148a impairs Ras/ERK signaling in B lymphocytes by targeting SOS proteins. Oncotarget 2017; 8:56417-56427. [PMID: 28915601 PMCID: PMC5593572 DOI: 10.18632/oncotarget.17662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Although microRNAs have been recognized as central cellular regulators, there is an evident lack of knowledge about their targets. Here, we analyzed potential target genes for miR-148a functioning in Ras signaling in B cells, including SOS1 and SOS2. A dual-luciferase reporter assay showed significantly decreased luciferase activity upon ectopic overexpression of miR-148a in HEK-293T cells that were co-transfected with the 3′UTR of either SOS1 or SOS2. Each of the 3′UTRs of SOS1 and SOS2 contained two binding sites for miR-148a both of which were necessary for the decreased luciferase activity. MiR-148a overexpression in HEK-293T lead to significantly reduced levels of both endogenous SOS1 and SOS2 proteins. Likewise, reduced levels of SOS proteins were found in two B cell lines that were transfected with miR-148a. The level of ERK1/2 phosphorylation as one of the most relevant downstream members of the Ras/ERK signaling pathway was also reduced in cells with miR-148a overexpression. The data show that miR-148a impairs the Ras/ERK signaling pathway via SOS1 and SOS2 proteins in B cells.
Collapse
Affiliation(s)
- Julia Alles
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Petra Leidinger
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|