1
|
Garemilla SSS, Gampa SC, Garimella S. Role of the tumor microenvironment in cancer therapy: unveiling new targets to overcome drug resistance. Med Oncol 2025; 42:202. [PMID: 40332723 DOI: 10.1007/s12032-025-02754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Cancer is a leading cause of death globally, with resistance to therapy representing a major obstacle to effective treatment. The tumor microenvironment (TME), comprising a complex network to cellular and non-cellular components including cancer-associated fibroblasts, immune cells, the extracellular matrix and region of hypoxia, is integral to cancer progression and therapeutic resistance. This review delves into the multifaceted interactions within the TME that contribute to tumor growth, survival and immune evasion. Key elements such as the role of cancer- associated fibroblasts in remodeling the extracellular matrix and promoting angiogenesis, the influence of immune cells such as tumor-associated macrophages in creating an immunosuppressive milieu and the impact of hypoxia conditions on metabolic adaptation and therapy resistance are thoroughly examined. This review evaluates current and emerging TME-targeted therapeutic strategies, including inhibitors of extracellular matrix components, modulators of immune cell activity and approached to alleviate hypoxia. Combination therapies that integrate TME-targeted agents with conventional treatments such as chemotherapy and immunotherapy are also discussed for their potential to enhance treatment efficacy and circumvent resistance mechanisms. By synthesising recent advances in TME research and therapeutic innovation, this paper aims to underscore the importance of TME in cancer therapy and highlight promising avenues for improving patient outcomes through targeted intervention.
Collapse
Affiliation(s)
| | - Siri Chandana Gampa
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Sireesha Garimella
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
2
|
Mozzicafreddo M, Benfaremo D, Paolini C, Agarbati S, Svegliati Baroni S, Moroncini G. Screening and Analysis of Possible Drugs Binding to PDGFRα: A Molecular Modeling Study. Int J Mol Sci 2023; 24:ijms24119623. [PMID: 37298573 DOI: 10.3390/ijms24119623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/12/2023] Open
Abstract
The platelet-derived growth factor receptor (PDGFR) is a membrane tyrosine kinase receptor involved in several metabolic pathways, not only physiological but also pathological, as in tumor progression, immune-mediated diseases, and viral diseases. Considering this macromolecule as a druggable target for modulation/inhibition of these conditions, the aim of this work was to find new ligands or new information to design novel effective drugs. We performed an initial interaction screening with the human intracellular PDGFRα of about 7200 drugs and natural compounds contained in 5 independent databases/libraries implemented in the MTiOpenScreen web server. After the selection of 27 compounds, a structural analysis of the obtained complexes was performed. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses were also performed to understand the physicochemical properties of identified compounds to increase affinity and selectivity for PDGFRα. Among these 27 compounds, the drugs Bafetinib, Radotinib, Flumatinib, and Imatinib showed higher affinity for this tyrosine kinase receptor, lying in the nanomolar order, while the natural products included in this group, such as curcumin, luteolin, and epigallocatechin gallate (EGCG), showed sub-micromolar affinities. Although experimental studies are mandatory to fully understand the mechanisms behind PDGFRα inhibitors, the structural information obtained through this study could provide useful insight into the future development of more effective and targeted treatments for PDGFRα-related diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Devis Benfaremo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Silvia Svegliati Baroni
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| |
Collapse
|
3
|
Rodríguez-Nava C, Ortuño-Pineda C, Illades-Aguiar B, Flores-Alfaro E, Leyva-Vázquez MA, Parra-Rojas I, Del Moral-Hernández O, Vences-Velázquez A, Cortés-Sarabia K, Alarcón-Romero LDC. Mechanisms of Action and Limitations of Monoclonal Antibodies and Single Chain Fragment Variable (scFv) in the Treatment of Cancer. Biomedicines 2023; 11:1610. [PMID: 37371712 DOI: 10.3390/biomedicines11061610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Monoclonal antibodies are among the most effective tools for detecting tumor-associated antigens. The U.S. Food and Drug Administration (FDA) has approved more than 36 therapeutic antibodies for developing novel alternative therapies that have significant success rates in fighting cancer. However, some functional limitations have been described, such as their access to solid tumors and low interaction with the immune system. Single-chain variable fragments (scFv) are versatile and easy to produce, and being an attractive tool for use in immunotherapy models. The small size of scFv can be advantageous for treatment due to its short half-life and other characteristics related to the structural and functional aspects of the antibodies. Therefore, the main objective of this review was to describe the current situation regarding the mechanisms of action, applications, and limitations of monoclonal antibodies and scFv in the treatment of cancer.
Collapse
Affiliation(s)
- Cynthia Rodríguez-Nava
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Proteínas y Ácidos Nucleicos, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | | | - Amalia Vences-Velázquez
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Karen Cortés-Sarabia
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| |
Collapse
|
4
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
5
|
Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother 2023; 161:114491. [PMID: 37002577 DOI: 10.1016/j.biopha.2023.114491] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Numerous cancers express platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs). By directly stimulating tumour cells in an autocrine manner or by stimulating tumour stromal cells in a paracrine manner, the platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) pathway is crucial in the growth and spread of several cancers. To combat hypoxia in the tumour microenvironment, it encourages angiogenesis. A growing body of experimental data shows that PDGFs target malignant cells, vascular cells, and stromal cells to modulate tumour growth, metastasis, and the tumour microenvironment. To combat medication resistance and enhance patient outcomes in cancers, targeting the PDGF/PDGFR pathway is a viable therapeutic approach. There have been reports of anomalies in the PDGF pathway, including the gain of function point mutations, activating chromosomal translocations, or overexpression or amplification of PDGF receptors (PDGFRs). As a result, it has been shown that targeting the PDGF/PDGFR signaling pathway is an effective method for treating cancer. As a result, this study will concentrate on the regulation of the PDGF/PDGFR signaling system, in particular the current methods and inhibitors used in cancer treatment, as well as the associated therapeutic advantages and side effects.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India.
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Moon Seungjoon
- Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon 21390, Republic of Korea; Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Paolini C, Agarbati S, Benfaremo D, Mozzicafreddo M, Svegliati S, Moroncini G. PDGF/PDGFR: A Possible Molecular Target in Scleroderma Fibrosis. Int J Mol Sci 2022; 23:ijms23073904. [PMID: 35409263 PMCID: PMC8999630 DOI: 10.3390/ijms23073904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Systemic sclerosis (SSc) is a clinically heterogeneous disorder of the connective tissue characterized by vascular alterations, immune/inflammatory manifestations, and organ fibrosis. SSc pathogenesis is complex and still poorly understood. Therefore, effective therapies are lacking and remain nonspecific and limited to disease symptoms. In the last few years, many molecular and cellular mediators of SSc fibrosis have been described, providing new potential options for targeted therapies. In this review: (i) we focused on the PDGF/PDGFR pathway as key signaling molecules in the development of tissue fibrosis; (ii) we highlighted the possible role of stimulatory anti-PDGFRα autoantibodies in the pathogenesis of SSc; (iii) we reported the most promising PDGF/PDGFR targeting therapies.
Collapse
Affiliation(s)
- Chiara Paolini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Devis Benfaremo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
- Department of Internal Medicine, Clinica Medica, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
- Department of Internal Medicine, Clinica Medica, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy
- Correspondence:
| |
Collapse
|
7
|
Zhao L, Jiang Y, Wang Y, Bai Y, Sun Y, Li Y. Primary Intracranial Leiomyosarcoma Secondary to Glioblastoma: Case Report and Literature Review. Front Oncol 2021; 11:642683. [PMID: 34094927 PMCID: PMC8173044 DOI: 10.3389/fonc.2021.642683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background Leiomyosarcoma is a highly malignant soft-tissue sarcoma with a poor prognosis. In recent years, treatment for leiomyosarcoma has not shown much progress. Primary intracranial leiomyosarcoma (PILMS) is a much rarer type of neoplasm, which occurs more frequently in immunocompromised patients. PILMS cases reported in the literature are scarce and treatment strategy and prognosis are still under debate. In this study, a case of PILMS secondary to the total resection of giant cell glioblastoma is reported. Case Description A 38-year-old male was hospitalized with a three-month history of a temporal opisthotic bump. His medical history included a total resection of a tumor located in the right temporal lobe performed 4 years earlier. Pathological examination led to a diagnosis of giant cell glioblastoma, and the patient underwent postoperative chemotherapy with temozolomide for 6 weeks plus simultaneous radiotherapy with 63.66 Gary. Four years later, during regular follow-up, a preoperative MRI brain scan resulted in a well-defined signal pointing out two nodule-like features located at the right temporal lobe and subcutaneous soft tissue, respectively, and near the area where the previous giant cell glioblastoma was located. The mass was completely removed by a transtemporal approach and postoperative pathology revealed that the mass was a leiomyosarcoma. The patient underwent postoperative radiotherapy and no recurrence occurred until now. Conclusions To date, research on soft-tissue sarcoma, especially PILMS, has not made much progress, and a limited number of studies have provided few details on the management of PILMS. The treatment of choice for PILMS is aggressive multimodal treatment based on total tumor resection and radiotherapy. Moreover, systemic treatment with chemotherapy and targeted therapy, such as olaratumab, as well as further research still needs to be performed as many questions are left unanswered. To our knowledge, this is the first report on a case of PILMS secondary to glioblastoma, which might serve as a potential reference for clinicians and clinical studies.
Collapse
Affiliation(s)
- Liyan Zhao
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Yining Jiang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yang Bai
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Candidate Biomarkers for Specific Intraoperative Near-Infrared Imaging of Soft Tissue Sarcomas: A Systematic Review. Cancers (Basel) 2021; 13:cancers13030557. [PMID: 33535618 PMCID: PMC7867119 DOI: 10.3390/cancers13030557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Near-infrared imaging of tumors during surgery facilitates the oncologic surgeon to distinguish malignant from healthy tissue. The technique is based on fluorescent tracers binding to tumor biomarkers on malignant cells. Currently, there are no clinically available fluorescent tracers that specifically target soft tissue sarcomas. This review searched the literature to find candidate biomarkers for soft tissue sarcomas, based on clinically used therapeutic antibodies. The search revealed 7 biomarkers: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. These biomarkers are abundantly present on soft tissue sarcoma tumor cells and are already being targeted with humanized monoclonal antibodies. The conjugation of these antibodies with a fluorescent dye will yield in specific tracers for image-guided surgery of soft tissue sarcomas to improve the success rates of tumor resections. Abstract Surgery is the mainstay of treatment for localized soft tissue sarcomas (STS). The curative treatment highly depends on complete tumor resection, as positive margins are associated with local recurrence (LR) and prognosis. However, determining the tumor margin during surgery is challenging. Real-time tumor-specific imaging can facilitate complete resection by visualizing tumor tissue during surgery. Unfortunately, STS specific tracers are presently not clinically available. In this review, STS-associated cell surface-expressed biomarkers, which are currently already clinically targeted with monoclonal antibodies for therapeutic purposes, are evaluated for their use in near-infrared fluorescence (NIRF) imaging of STS. Clinically targeted biomarkers in STS were extracted from clinical trial registers and a PubMed search was performed. Data on biomarker characteristics, sample size, percentage of biomarker-positive STS samples, pattern of biomarker expression, biomarker internalization features, and previous applications of the biomarker in imaging were extracted. The biomarkers were ranked utilizing a previously described scoring system. Eleven cell surface-expressed biomarkers were identified from which 7 were selected as potential biomarkers for NIRF imaging: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. Promising biomarkers in common and aggressive STS subtypes are TEM1 for myxofibrosarcoma, TEM1, and PDGFRα for undifferentiated soft tissue sarcoma and EGFR for synovial sarcoma.
Collapse
|
9
|
Martín-Broto J, Pousa AL, Brohl AS, Van Tine BA, Powers B, Stacchiotti S, Blay JY, Hu JS, Oakley GJ, Wang H, Szpurka AM, Levy DE, Mo G, Ceccarelli M, Jones RL. Circulating Tumor Cells and Biomarker Modulation with Olaratumab Monotherapy Followed by Olaratumab plus Doxorubicin: Phase Ib Study in Patients with Soft-Tissue Sarcoma. Mol Cancer Ther 2020; 20:132-141. [PMID: 33177152 DOI: 10.1158/1535-7163.mct-20-0441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
This phase Ib study enumerated whole blood circulating tumor cells (CTC) and evaluated biomarkers in patients with potentially resectable soft-tissue sarcoma (STS) treated with olaratumab monotherapy (20 mg/kg) for one cycle followed by up to six cycles of olaratumab (20 mg/kg, cycles 1-2; 15 mg/kg, cycles 3-7) plus doxorubicin (75 mg/m2 on day 1). CTCs, platelet-derived growth factor receptors (PDGFR), and PDGF ligand expression in tumor tissue pre- and post-olaratumab monotherapy were evaluated. Antitumor activity, safety, pharmacokinetics, and PET/biomarker association with clinical outcome were assessed. Of 51 treated patients, 35, 43, and 37 were evaluable for CTC enumeration, PDGFRs, and PDGF ligand expression, respectively. An increase in CTCs at cycle 1 day 8 was observed, followed by a significant reduction by cycle 3 day 1 or 30-day follow-up. Decrease in CTC counts after olaratumab monotherapy was higher in patients with disease control than without disease control (57.9% vs. 31.2%). Baseline IHC expression was positive in most patients for PDGFRα [n = 31 (72.1%)] and PDGFRβ [n = 36 (83.7%)]. Similar rates were observed post-olaratumab monotherapy [PDGFRα, n = 30 (69.8%); PDGFRβ, n = 33 (76.7%)]. Eleven patients (29.7%) showed a 30% reduction by RT-PCR in PDGFRα at cycle 2. PDGFR expression and PET response showed no correlation with clinical outcome. Safety and pharmacokinetic profiles were consistent with previous reports. This study, the first to use a validated method for CTC detection, confirms that CTC enumeration in STS is feasible. However, no correlation was observed between PDGFRα expression and clinical outcome.
Collapse
Affiliation(s)
- Javier Martín-Broto
- University Hospital Virgen del Rocio/Institute of Biomedicine of Seville, Seville, Spain
| | | | - Andrew S Brohl
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | | | | | | | - James S Hu
- Keck School of Medicine of University of Southern California, Los Angeles, California
| | | | - Hong Wang
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Gary Mo
- Eli Lilly and Company, Indianapolis, Indiana.,Metrum Research Group, Tariffville, Connecticut
| | | | - Robin L Jones
- Royal Marsden Hospital/Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
10
|
MacDonald IJ, Lin CY, Kuo SJ, Su CM, Tang CH. An update on current and future treatment options for chondrosarcoma. Expert Rev Anticancer Ther 2019; 19:773-786. [PMID: 31462102 DOI: 10.1080/14737140.2019.1659731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Human chondrosarcomas (CS; a malignant cartilage-forming bone tumor) respond poorly to chemotherapy and radiation treatment, resulting in high morbidity and mortality rates. Expanded treatment options are urgently needed. Areas covered: This article updates our 2014 review, in which we evaluated the CS treatments available at that time and potential treatment options under investigation. Since then, advances in research findings, particularly from Chinese herbal medicines, may be bringing us closer to more effective therapies for CS. In particular, promising findings have been reported from research targeting platelet-derived growth factor receptor. Expert opinion: Few treatment options exist for CS; chemotherapy is not even an option for unresectable disease, in which 5-year survival rates are just 2%. New information about the multitude of genes and signaling pathways that encourage CS growth, invasion and metastasis are clarifying how certain signaling pathways and plant-derived active compounds, especially molecularly-targeted therapies that inhibit the PDGF receptor, interfering with these biological processes. This review summarizes discoveries from the last 5 years and discusses how these findings are fueling ongoing work into effectively dealing with the disease process and improving the treatment of CS.
Collapse
Affiliation(s)
- Iona J MacDonald
- Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College , New Taipei City , Taiwan
| | - Shu-Jui Kuo
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung , Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital , Taichung , Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, College of Health Care, China Medical University , Taichung , Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan.,Department of Pharmacology, School of Medicine, China Medical University , Taichung , Taiwan.,Chinese Medicine Research Center, China Medical University , Taichung , Taiwan.,Department of Biotechnology, College of Health Science, Asia University , Taichung , Taiwan
| |
Collapse
|
11
|
Andreeva-Gateva P, Chakar S. The place of trabectedin in the treatment of soft tissue sarcoma: an umbrella review of the level one evidence. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1589449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
- Department of Pharmacology, Sofia University, Sofia, Bulgaria
| | - Shenol Chakar
- Department of Pharmacology, Sofia University, Sofia, Bulgaria
| |
Collapse
|
12
|
Song EJ, Ashcraft KA, Lowery CD, Mowery YM, Luo L, Ma Y, Campos LDS, Cardona DM, Stancato L, Kirsch DG. Investigating a chimeric anti-mouse PDGFRα antibody as a radiosensitizer in primary mouse sarcomas. EBioMedicine 2019; 40:224-230. [PMID: 30711517 PMCID: PMC6413473 DOI: 10.1016/j.ebiom.2019.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Olaratumab (LY3012207/IMC-3G3/Lartruvo™) is a fully human monoclonal antibody specific for platelet-derived growth factor receptor alpha (PDGFRα). Phase Ib/II trial results of olaratumab plus doxorubicin in adult patients with advanced soft tissue sarcoma (STS) supported accelerated FDA approval of this regimen. Radiation therapy (RT) is frequently used for high-risk localized STS. However, olaratumab has not been tested with concurrent RT. Here, we evaluate the chimeric anti-mouse PDGFRα antibody 1E10Fc as a radiosensitizer in a primary mouse model of STS. METHODS Primary STS were initiated in mice. When tumors reached 70 mm3, mice were allocated into treatment groups: 1) isotype, 2) 1E10Fc, 3) isotype + RT, 4) 1E10Fc + RT. 1E10Fc or isotype was given biweekly. RT (25 Gy delivered in 5 daily 5 Gy fractions) was initiated on Day 0 with first drug treatment. Tumors were measured 3× per week. Upon reaching 900 mm3, tumors and lungs were harvested. A two-way ANOVA was performed to compare tumor growth delay. Primary tumors were stained for CD31 and PDGFRα and lungs were assessed for micrometastases. A Chi-square test was performed to compare the development of micrometastases in the lungs after treatment with 1E10Fc or isotype. FINDINGS RT significantly delayed time to tumor quintupling compared to no RT (p < 0·0001) [two-way ANOVA], but no difference in tumor growth was seen between mice receiving isotype or 1E10Fc treatment regardless of concurrent RT. Lower microvessel density was observed in the 1E10Fc + RT group. Fewer mice treated with 1E10Fc had micrometastases, but this difference was not statistically significant (p < 0·09). INTERPRETATION 1E10Fc did not act as a radiosensitizer in this primary STS model. FUNDING This study was funded by a research agreement from Eli Lilly and Company.
Collapse
Affiliation(s)
- Erin J Song
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, United States
| | | | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Lixia Luo
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Yan Ma
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Lorraine Da Silva Campos
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Diana M Cardona
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Louis Stancato
- Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, United States; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|