1
|
Yu XJ, Zhang T, Wei ZZ, Gu B, Guo T, Jiang WJ, Shen YQ, Wang D, Wang Q, Wang J. Abnormal expression of miRNA-122 in cerebral infarction and related mechanism of regulating vascular endothelial cell proliferation and apoptosis by targeting CCNG1. Clinics (Sao Paulo) 2023; 78:100199. [PMID: 37119591 PMCID: PMC10173405 DOI: 10.1016/j.clinsp.2023.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 05/01/2023] Open
Abstract
OBJECTIVE To analyze the value of serum miRNA-122 expression in the diagnosis, severity, and prognosis of Acute Cerebral Infarction (ACI) and the correlation mechanism of serum miRNA-122 on the proliferation and apoptosis of vascular endothelial cells in ACI. METHOD A total of 60 patients with ACI who were admitted to the emergency department of the Taizhou People's Hospital from January 1, 2019, to December 30, 2019, and 30 healthy controls during the same period were selected. General clinical data of all patients at admission were collected. Including age, sex, medical history, and inflammatory factors (C-Reactive Protein [CRP], Interleukin-6 [IL-6], Procalcitonin [PCT], Neutrophil Gelatinase-Associated Lipid carrier protein [NGAL]). The National Institutes of Health Stroke Scale (NIHSS) score at admission and short-term prognosis (the Modified Rankin Score [mRS]) score at 3 months after onset were recorded. The expression level of miRNA-122 in the serum of patients with ACI and normal controls was detected by reverse-transcription quantitative Real-Time Polymerase Chain Reaction (RT-QPCR), and the correlation between the expression level of miRNA-122 in the serum of patients with ACI and the level of inflammatory factors, NIHSS and mRS scores were analyzed. The expression levels of miRNA-122 in the serum of patients with ACI, normal people, and Human Umbilical cord Endothelial Cells (HUVECs) cultured in a blank control group were detected by RT-QPCR and statistically analyzed. MTT and flow cytometry was used to compare the proliferation and apoptosis of vascular endothelial cells in the miRNA-122 mimics and inhibitors transfection groups and the corresponding negative control group. The mRNA and protein levels of apoptosis-related factors Bax, Bcl-2, Caspase-3, and angiogenesis-related proteins Hes1, Notch1, Vascular Endothelial Growth Factors (VEGF), and CCNG1 were detected by RT-QPCR and Western blot. Bioinformatics methods predicted CCNG1 to be the target of miRNA-122, and the direct targeting relationship between CCNG1 and miRNA-122 was verified by a dual-luciferase reporting assay. RESULT Serum miRNA-122 expression in patients with ACI was significantly higher than that in healthy controls, with an area under the receiver operating characteristic curve of 0.929, 95% Confidence Interval of 0.875‒0.983, and an optimal cut-off value of 1.397. The expression levels of CRP, IL-6, and NGAL in patients with ACI were higher than those in healthy control groups, p < 0.05; miRNA-122 was positively correlated with CPR, IL-6, NIHSS score, and mRS score. At 48h and 72h, the proliferation rate of HUVECs cells in the miRNA-122 mimics group decreased and the apoptosis rate increased. Cell proliferation rate increased, and apoptosis rate decreased significantly in the groups transfected with miRNA-122 inhibitors. The mRNA and protein levels of pro-apoptotic factors Bax and caspase-3 were significantly increased in the miRNA-122 mimics transfection group, while those of anti-apoptotic factor Bcl-2 were significantly decreased compared to those of the control group. The expression of Bax and Caspase-3 decreased, and the expression of anti-apoptotic factor Bcl-2 increased in the transfected miRNA-122 inhibitors group. mRNA expression levels of Hes1, Notch1, VEGF, and CCNG1 in the miRNA-122 mimic transfected group were significantly decreased, while mRNA expression levels in the miRNA-122 inhibitors transfected group were significantly increased. Bioinformatics showed that there was a miRNA-122 binding site in the 3'UTR region of CCNG1, and dual luciferase assay confirmed that CCNG1 was the target of miRNA-122. CONCLUSION Serum miRNA-122 increased significantly after ACI, which may be a diagnostic marker of ACI. miRNA-122 may be involved in the pathological process of ACI and is related to the degree of neurological impairment and short-term prognosis in patients with ACI. miRNA-122 may play a regulatory role in ACI by inhibiting cell proliferation, increasing apoptosis, and inhibiting vascular endothelial cell regeneration through the CCNG1 channel.
Collapse
Affiliation(s)
- Xiao-Juan Yu
- Emergency Department, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Tian Zhang
- Emergency Department, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Zeng-Zhen Wei
- Emergency Department, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Bin Gu
- Emergency Department, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Ting Guo
- Emergency Department, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Wen-Juan Jiang
- Emergency Department, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Yue-Qin Shen
- Emergency Department, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Dong Wang
- Clinical Laboratory, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Qian Wang
- Blood Purification Center, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China
| | - Jun Wang
- Emergency Department, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, P.R. China.
| |
Collapse
|
2
|
Machida K. HCV and tumor-initiating stem-like cells. Front Physiol 2022; 13:903302. [PMID: 36187761 PMCID: PMC9520593 DOI: 10.3389/fphys.2022.903302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Neoplasms contain tumor-initiating stem-like cells (TICs) that are characterized by increased drug resistance. The incidence of many cancer types have trended downward except for few cancer types, including hepatocellular carcinoma (HCC). Therefore mechanism of HCC development and therapy resistance needs to be understood. These multiple hits by hepatitis C virus (HCV) eventually promotes transformation and TIC genesis, leading to HCC development. This review article describes links between HCV-associated HCC and TICs. This review discusses 1) how HCV promotes genesis of TICs and HCC development; 2) how this process avails itself as a novel therapeutic target for HCC treatment; and 3) ten hall marks of TIC oncogenesis and HCC development as targets for novel therapeutic modalities.
Collapse
|
3
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
4
|
Tang P, Chen C, Huang X. miR-29b Modulates Bone Marrow Mesenchymal Stem Cells (BMSCs) Differentiation and Induces Nerve Repair in Diabetic Retina Rat Model. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
microRNAs are involved in diabetic retinopathy (DR). This study intends to analyze miR-29b’s role in bone marrow mesenchymal stem cells (BMSCs) differentiation in DR rat models to induce nerve repair. BMSCs from DR rat models were cultured and transfected with miR-29b mimics and
inhibitors followed by measuring miR-29b level, cell proliferation and apoptosis. Retinal ganglion cells (RGC) were treated with high glucose for 24 h, and BMSCs and si-miR-29b-BMSC were cocultured for 24 h, respectively followed by assessing cell proliferation and apoptosis, inflammatory
cytokines by ELISA, MDA, SOD, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) level by ELISA. MiR-29b was up-regulated in BMSCs of DR rats. miR-29b mimics significantly up-regulated miR-29b, inhibited cell proliferation and promoted apoptosis (P <
0.05), which were reversed by miR-29b inhibitor (P < 0.05). Co-culture of BMSCs with si-miR-29b-BMSC promoted RGC proliferation, inhibited apoptosis and IL-6 secretion, decreased MDA, increased SOD, BDNF and CNTF expression (P < 0.05) with more significant changes in si-miR-29b-BMSC
group (P < 0.05). In conclusion, down-regulation of miR-29b promotes BMSCs proliferation in DR rat models, inhibits BMSCs apoptosis, and promotes the recovery of retinal ganglion cell function.
Collapse
Affiliation(s)
- Ping Tang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Chunmei Chen
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| |
Collapse
|
5
|
Ma M, Zeng G, Li J, Liang J, Huang L, Chen J, Lai J. Expressional and prognostic value of HPCAL1 in cholangiocarcinoma via integrated bioinformatics analyses and experiments. Cancer Med 2022; 12:824-836. [PMID: 35645147 PMCID: PMC9844623 DOI: 10.1002/cam4.4897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hippocalcin-like 1 (HPCAL1) is involved in the development of several cancer types. However, our understanding of the HPCAL1 activity in cholangiocarcinoma (CCA) remains limited. METHODS Two microarray datasets were used to screen for differentially expressed genes (DEGs) involved in the development of CCA. The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) database was integrated to determine the prognostic significance of DEGs in CCA. The association between clinical characteristics and HPCAL1 expression levels was initially explored to assess the clinical profile of CCA. The prognostic value of HPCAL1 overexpression in the validation cohort was analyzed, followed by Gene Ontology (GO) term analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of HPCAL1. RESULTS Three upregulated genes and 10 downregulated genes were detected from two microarray-based screenings. High expression of HPCAL1 as a poor prognostic factor of CCA was validated using TCGA/GEO integrated database and our database. Univariate and multivariate analyses along with Kaplan-Meier survival analysis showed that high HPCAL1 expression was an independent factor affecting the overall survival and relapse-free survival in patients with CCA. The high expression of HPCAL1 was significantly associated with cancer antigen 125 (CA-125) levels, number of tumors, lymph node invasion, and TNM stage. Analysis of the enriched GO terms and KEGG pathways revealed that the high expression of HPCAL1 was involved in the critical biological processes and molecular pathways, including modulation by a host of symbiont processes, the clathrin coat, actinin binding, and Rap1 signaling pathways. CONCLUSION HPCAL1 was enriched in CCA in our study and has the potential to be applied in the identification of patients with CCA with an unfavorable prognosis.
Collapse
Affiliation(s)
- Mingjian Ma
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Guangyan Zeng
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China,Department of Gastrointestinal SurgeryEighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPR China
| | - Jinhui Li
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Jiahua Liang
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Li Huang
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Jiancong Chen
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Jiaming Lai
- Department of Pancreato‐Biliary SurgeryFirst Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| |
Collapse
|
6
|
Tang Q, Li X, Chen Y, Long S, Yu Y, Sheng H, Wang S, Han L, Wu W. Solamargine inhibits the growth of hepatocellular carcinoma and enhances the anticancer effect of sorafenib by regulating HOTTIP-TUG1/miR-4726-5p/MUC1 pathway. Mol Carcinog 2022; 61:417-432. [PMID: 35040191 PMCID: PMC9302658 DOI: 10.1002/mc.23389] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary malignancies. Drug resistance has significantly prevented the clinical application of sorafenib (SF), a first‐line targeted medicine for the treatment of HCC. Solamargine (SM), a natural alkaloid, has shown potential antitumor activity, but studies about antitumor effect of SM are obviously insufficient in HCC. In the present study, we found that SM significantly inhibited the growth of HCC and enhanced the anticancer effect of SF. In brief, SM significantly inhibited the growth of HepG2 and Huh‐7 cells. The combination of SM and SF showed a synergistic antitumor effect. Mechanistically, SM downregulated the expression of long noncoding RNA HOTTIP and TUG1, followed by increasing the expression of miR‐4726‐5p. Moreover, miR‐4726‐5p directly bound to the 3′‐UTR region of MUC1 and decreased the expression of MUC1 protein. Overexpression of MUC1 partially reversed the inhibitory effect of SM on HepG2 and Huh‐7 cells viability, which suggested that MUC1 may be the key target in SM‐induced growth inhibition of HCC. More importantly, the combination of SM and SF synergistically restrained the expression of MUC1 protein. Taken together, our study revealed that SM inhibited the growth of HCC and enhanced the anticancer effect of SF through HOTTIP‐TUG1/miR‐4726‐5p/MUC1 signaling pathway. These findings will provide potential therapeutic targets and strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Qing Tang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Xiaojuan Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yun Chen
- Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Shunqin Long
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yaya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Honghao Sheng
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Ling Han
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
7
|
Lin X, Xiang X, Feng B, Zhou H, Wang T, Chu X, Wang R. Targeting Long Non-Coding RNAs in Hepatocellular Carcinoma: Progress and Prospects. Front Oncol 2021; 11:670838. [PMID: 34249710 PMCID: PMC8267409 DOI: 10.3389/fonc.2021.670838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma is the fifth-ranked cancer worldwide with a relatively low five-year survival rate. Long non-coding RNAs are a group of RNAs with remarkable aberrant expression which could act on multiple bioprocesses and ultimately impact upon tumor proliferation, invasion, migration, metastasis, apoptosis, and therapy resistance in cancer cells including hepatocellular carcinoma cells. In recent years, long non-coding RNAs have been reported to be indispensable targets in clinical target therapy to stop the growth of cancer and prolong the lifespan of patients with hepatocellular carcinoma. In this review, we enumerate the signaling pathways and life activities affected by long non-coding RNAs in hepatocellular carcinoma cells to illustrate the role of long non-coding RNAs in the development and therapy resistance of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaosong Xiang
- Affiliated Jingling Hospital Research Institution of General Surgery, School of Medicine, Nanjing University, Nanjing, China
| | - Bing Feng
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Unfried JP, Fortes P. LncRNAs in HCV Infection and HCV-Related Liver Disease. Int J Mol Sci 2020; 21:ijms21062255. [PMID: 32214045 PMCID: PMC7139329 DOI: 10.3390/ijms21062255] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with poor coding capacity that may interact with proteins, DNA, or other RNAs to perform structural and regulatory functions. The lncRNA transcriptome changes significantly in most diseases, including cancer and viral infections. In this review, we summarize the functional implications of lncRNA-deregulation after infection with hepatitis C virus (HCV). HCV leads to chronic infection in many patients that may progress to liver cirrhosis and hepatocellular carcinoma (HCC). Most lncRNAs deregulated in infected cells that have been described function to potentiate or block the antiviral response and, therefore, they have a great impact on HCV viral replication. In addition, several lncRNAs upregulated by the infection contribute to viral release. Finally, many lncRNAs have been described as deregulated in HCV-related HCC that function to enhance cell survival, proliferation, and tumor progression by different mechanisms. Interestingly, some HCV-related HCC lncRNAs can be detected in bodily fluids, and there is great hope that they could be used as biomarkers to predict cancer initiation, progression, tumor burden, response to treatment, resistance to therapy, or tumor recurrence. Finally, there is high confidence that lncRNAs could also be used to improve the suboptimal long-term outcomes of current HCC treatment options.
Collapse
Affiliation(s)
| | - P. Fortes
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
9
|
The Variant at TGFBRAP1 but Not TGFBR2 Is Associated with Antituberculosis Drug-Induced Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1685128. [PMID: 31534460 PMCID: PMC6724436 DOI: 10.1155/2019/1685128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/12/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023]
Abstract
Background TGFBRAP1 and TGFBR2 play important roles in the TGF-β/smad signalling pathway and may disturb liver homeostasis by regulating liver injury and renewal. However, little is known about the association between their genetic polymorphisms and antituberculosis drug-induced liver injury (ATDILI), so we explored the association between their variants and the susceptibility to ATDILI. Materials and Methods A total of 746 tuberculosis patients were prospectively enrolled, and fifteen selected SNPs were genotyped. The allele, genotype, and genetic model frequencies of the variants were compared between patients with or without ATDILI, as well as the joint effect analysis of SNP-SNP interactions. The odds ratio (OR) with the corresponding 95% confidence interval (CI) was calculated. Results The A variant at rs17687727 was significantly associated with an increased risk for ATDILI (OR 1.55; 95% CI: 1.08–2.22; p = 0.016), which is consistent with the results in the additive and dominant models. Other allele, genotype, and genetic model frequencies were similar in the two groups for the other fourteen SNPs (all p > 0.05). Conclusion Our study first implied that the A variant of rs17687727 in TGFBRAP1 influenced the susceptibility to ATDILI in first-line antituberculosis combination treatment in the Han Chinese population in a dependent manner.
Collapse
|