1
|
Shosha MI, El-Ablack FZ, Saad EA. New thiazole derivative as a potential anticancer and topoisomerase II inhibitor. Sci Rep 2025; 15:710. [PMID: 39753588 PMCID: PMC11698983 DOI: 10.1038/s41598-024-81294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7. The interaction of the newly synthesized compound with calf-thymus DNA (CT-DNA) was investigated at pH 7.2 by using UV-Vis absorption measurements, also, molecular docking was carried out to investigate the DNA binding affinity of the proposed compound with the prospective target, DNA (PDB ID: 1d12). Finally, molecular docking was carried out to examine the binding patterns with the prospective target, DNA-Topo II complex (PDB-code: 3QX3). Results indicated that the investigated compound strongly binds to CT-DNA via intercalative mode, and correlated with those obtained from molecular docking and in agreement with that of in vitro cytotoxicity activity.
Collapse
Affiliation(s)
- Mayada I Shosha
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt
| | - Fawzia Z El-Ablack
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.
| |
Collapse
|
2
|
Ramachandran B, Jeyarajpandian C, Jeyaseelan JM, Prabhu D, Rajamanikandan S, Boomi P, Venkateswari R, Jeyakanthan J. Quercetin-induced apoptosis in HepG2 cells and identification of quercetin derivatives as potent inhibitors for Caspase-3 through computational methods. Struct Chem 2022. [DOI: 10.1007/s11224-022-01933-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
3
|
Kyei-Barffour I, Kwarkoh RKB, Acheampong DO, Brah AS, Akwetey SA, Aboagye B. Alkaloidal extract from Carica papaya seeds ameliorates CCl 4-induced hepatocellular carcinoma in rats. Heliyon 2021; 7:e07849. [PMID: 34471716 PMCID: PMC8387916 DOI: 10.1016/j.heliyon.2021.e07849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third cause of cancer-related mortality globally. However, available treatments are expensive and are associated with adverse effects or poor treatment outcomes in advanced disease. Meanwhile, plants like Carica papaya have demonstrated various biological activities that further studies may lead to the identification of newer and safer treatment options for HCC. Aim To evaluate the anticancer activity of an alkaloidal extract derived from Carica papaya seeds using rodent models of HCC. Experimental procedure Carica Papaya fruits were collected and authenticated. The seeds were isolated and air-dried. Alkaloidal extract was prepared from a 70% ethanol soxhlet crude extract and referred to as Carica papaya alkaloidal extract (CPAE). HCC was induced in 68 out of 84 healthy male Sprague Dawley rats by intraperitoneal injection of carbon tetrachloride (CCl4) for 16 weeks. These rats were put into five groups of 10; Carica papaya alkaloidal extract [(CPAE) (50, 100, and 200 mg/kg), Lenvatinib (4 mg/kg)], 1% dimethyl sulphoxide (DMSO), and 2 untreated groups (control and model). A prophylaxis study was performed with 10 rats by co-administration of CPAE (200 mg/kg) and CCl4 six hours apart for 16 weeks. Rats were sacrificed after a twelve-week treatment program under anesthesia for histological, hematological, and biochemical analyses. Results and conclusion CPAE (100 and 200 mg/kg) significantly restored weight loss (48.44 and 51.75% respectively), reduced tumor multiplicity, and dose-dependently reversed liver histomorphological changes induced by CCl4 compared to the model group. The CPAE (100 and 200 mg/kg) further reduced bleeding time, improved prothrombin time and restored platelet count (p < 0.01) compared to the model. The CPAE (200 mg/kg) again significantly (p < 0.0001) reduced serum alpha-fetoprotein levels compared to the model group and prevented the establishment of HCC in rats when concerrently administered with CCl4 in 16 weeks prophylactic study.
Collapse
Affiliation(s)
- Isaac Kyei-Barffour
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Roselind Kyei Baah Kwarkoh
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Augustine Suurinobah Brah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Samuel Addo Akwetey
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Benjamin Aboagye
- Department of Forensic Sciences, School of Biological Sciences, College of Agricultural and Natural Sciences, University of Cape Coast, Ghana
| |
Collapse
|
4
|
Hopea odorata Extract Can Efficiently Kill Breast Cancer Cells and Cancer Stem-Like Cells in Three-Dimensional Culture More Than in Monolayer Cell Culture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1292:145-155. [PMID: 32430853 DOI: 10.1007/5584_2020_524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The breast cancer cells with CD44+CD24- phenotype are known to play an important role in tumorigenesis, drug resistance, and cancer recurrence. Breast cancer cells with CD44+CD24- phenotype are cultured in three-dimensional (3D) stereotype showing the recapitulation of tumors in vivo such as cell differentiation, heterogeneity, and microenvironment. Using this 3D model in anti-cancer compound research results in a more accurate reflection than conventional monolayer cell culture. This study aimed to identify the antitumor activity of Hopea odorata methanol extract (HO-MeOH-E) on breast cancer cells and cancer stem-like cells in both models of three-dimensional culture (3D) and monolayer cell culture (2D). METHODS HO-MeOH-E was produced from Hopea odorata plant. The VN9 breast cancer cells (VN9) were collected and expanded from the previous study. The breast cancer stem-like cells (VN9CSC) were sorted from the VN9 based on phenotype CD44+CD24-. Both VN9 and VN9CSC were used to culture in monolayer culture (2D) and organoids (3D) before they were used to treat with HO-MeOH-E. Two other anticancer drugs, doxorubicin and tirapazamine, were used as references. The antitumor activities of extracts and drugs were determined via two assays: antiproliferation using the Alamar blue assay and cell cycle assay. RESULTS The results showed that HO-MeOH-E was sensitive to both VN9 and VN9CSC in 3D more than 2D culture (IC50 on 3D organoids 144.8 ± 2.172 μg/mL and on 2D 340.2 ± 17.01 μg/mL for VN9CSC (p < 0.001); IC50 on 3D organoids 2055 ± 82.2 μg/mL and on 2D 430.6 ± 8.612 μg/mL for VN9 (p < 0.0001), respectively). HO-MeOH-E inhibits VN9CSC proliferation by blocking S phase and increasing the populations of apoptotic cells; this is consensus to the effect of tirapazamine (TPZ) which is used in hypoxia-activated chemotherapy. CONCLUSION Taken these results, HO-MeOH-E has the potential effect in hypoxia-activated chemotherapy specifically on breast cancer stem-like cells with CD44+CD24- phenotype.
Collapse
|
5
|
Chen H, Wang H, Yu X, Zhou S, Zhang Y, Wang Z, Huang S, Wang Z. ERCC6L promotes the progression of hepatocellular carcinoma through activating PI3K/AKT and NF-κB signaling pathway. BMC Cancer 2020; 20:853. [PMID: 32891122 PMCID: PMC7487553 DOI: 10.1186/s12885-020-07367-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background Excision Repair Cross-Complementation group 6-like (ERCC6L) has been shown to exhibit carcinogenic effect in several malignant tumors. However, the function and molecular mechanism of the ERCC6L in hepatocellular carcinoma (HCC) have not been investigated extensively. Methods Immunohistochemistry analyses were used to detect ERCC6L expression in a HCC tissue microarray, and the Chi-square test was used to assess the correlation between ERCC6L expression and patients’ clinicopathological features. shRNA was used to down-regulation ERCC6L expression in HCC cell lines. MTT assay, plate clone formation assay, flow cytometry, caspase 3/7 activity and migration assays were performed to evaluate the impact of ERCC6L on HCC cells in vitro. Nude mice xenograft models were used to assess the role of ERCC6L in vivo. The regulatory of mechanism of PI3K/AKT pathway was evaluated by western blotting. Results ERCC6L was highly expressed in HCC tissue compared with tumor adjacent tissues in 90 paired samples. ERCC6L expression positively correlated with gender, tumor encapsulation, and pathological stage. Patients with low ERCC6L expression had significantly longer OS than those with high ERCC6L expression. Knockdown of ERCC6L expression significantly inhibited proliferation, invasion and metastasis in vitro and tumor growth in vivo, and it promoted cell cycle arrest and apoptosis. Mechanistic analyses revealed that PI3K/AKT and NF-κB signaling pathway were inhibited by silencing ERCC6L. Conclusion These results demonstrate that ERCC6L plays a critical role in HCC progression, and thereby might be a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Han Chen
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Hengxiao Wang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiqiao Yu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Shuping Zhou
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Yueying Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Zhaopeng Wang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Zhaoxia Wang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|
6
|
Pham PV, Nguyen ST, Phan NLC, Do NM, Vo PH. Adipose-Derived Stem Cells Can Replace Fibroblasts as Cell Control for Anti-Tumor Screening Assay. Onco Targets Ther 2020; 13:6417-6423. [PMID: 32753883 PMCID: PMC7342328 DOI: 10.2147/ott.s259114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Anti-tumor activity screening is a typical process used in anti-tumor drug discovery. The ideal anti-tumor drug candidates are extracts or compounds that can inhibit the proliferation of cancer cells via apoptosis, while exerting minimal effects on normal somatic cells. For a long time, fibroblasts were used as normal cells for all anti-tumor screening assays. However, the fibroblasts exhibited several limitations as cell controls for anti-tumor screening. This study aimed to compare the usage of dermal fibroblasts (DFs) and adipose-derived stem cells (ADSCs) as normal cell controls in anti-tumor screening protocols. The DFs and ADSCs were prepared per the published protocols. The IC50 values of doxorubicin on hepatocellular carcinoma cells HepG2, breast cancer cells MCF-7, DFs and ADSCs were determined via the Alamar blue assay. The side effect indexes (SEIs) were calculated as the ratio of IC50 values of drugs on cancer cells and IC50 values of drugs on DFs, and on ADSCs. The stability of the anti-tumor assay was investigated when carried out on DFs and ADSCs from different passages. The results showed that the IC50 values, as well as SEI values, were not significantly different between using DFs or ADSCs as normal cell controls when DFs and ADSCs were at passage 3. However, for DFs at passage 6 to 12, the IC50 values of doxorubicin were significantly different between DFs and ADSCs. The IC50 values of doxorubicin on DFs were strongly reduced due to the senescence of DFs, while the values were more constant in ADSCs. The SEI values of doxorubicin on DFs, compared to HepG2 and MCF-7 cells, were also changed during passage 3 to 12 of the DFs. However, these values were only slightly changed for ADSCs from the 3rd to 12th passages. ADSCs can replace DFs as a normal cell control for anti-tumor activity screening.
Collapse
Affiliation(s)
- Phuc Van Pham
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Sinh Truong Nguyen
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Nhan Lu-Chinh Phan
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Nghia Minh Do
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Phuc Hong Vo
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| |
Collapse
|