1
|
Merve A, Ayşenur B, Dogukan DE, Gül Ö. The impact of triadimenol on male fertility: An in vitro study and molecular docking examination. Reprod Toxicol 2025; 132:108861. [PMID: 39954825 DOI: 10.1016/j.reprotox.2025.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Triadimenol, a triazole fungicide, induces various adverse effects including neurotoxicity, hepatotoxicity, and developmental/reproductive toxicity in non-target organisms. Occupational exposure generally occurs in male agricultural workers. Investigating the effects of triadimenol on three different testicular cell lines would be valuable in elucidating the mechanisms underlying male reproductive issues or infertility. This preliminary study examines the potential toxic effects of triadimenol exposure in Leydig (TM3), Sertoli (TM4), and mouse-derived Spermatogonia (GC-1) cell lines, which are representative of the male reproductive system in vitro. The median inhibitory concentration (IC50) values of triadimenol were found to be 121.35 μM, 332.1 μM, and 349.49 μM in TM3, TM4, and GC-1 cells, respectively. The exposure doses were determined to range from 0 to 100 µM in TM3 cell line and 0-300 µM in TM4 and GC-1 cell lines. Reactive oxygen species (ROS) production, reduced glutathione (GSH) content, malondialdehyde (MDA) and protein carbonyl levels, and genotoxicity were examined. TM3 cell line was more resistant to oxidative damage than the other cell lines, while TM4 cell line was found to be more sensitive in terms of protein carbonyl formation. Triadimenol damaged DNA in TM3 cell line (≥16.93), TM4 cell line (≥9.18), and GC-1 cell line (≥3.28). Additionally, the docking score of triadimenol on the active site of steroid 5-α-reductase 2 (5αR2), which converts testosterone to 5α-dihydrotestosterone, was not close. The results emphasised that the toxicity of triadimenol was cell-specific. Overall, triadimenol disrupted male fertility by affecting spermatogenesis, testosterone production, germ cell support, and sperm quality.
Collapse
Affiliation(s)
- Arici Merve
- Istinye University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey; Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey.
| | - Bilgehan Ayşenur
- University of Health Science, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey; Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey
| | - Dincel Efe Dogukan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Özhan Gül
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey
| |
Collapse
|
2
|
Ye X, Chen L. Protective role of autophagy in triptolide-induced apoptosis of TM3 Leydig cells. J Transl Int Med 2023; 11:265-274. [PMID: 37662886 PMCID: PMC10474888 DOI: 10.2478/jtim-2021-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives Triptolide (TP) is known to impair testicular development and spermatogenesis in mammals, but the mechanism of the side effects still needs to be investigated. The aim of the research is to confirm whether TP can cause autophagy in TM3 Leydig cells and the potential molecular pathway in vitro. Methods TM3 Leydig cells are used to investigate the molecular pathway through Western blot, detection of apoptosis, transmission electron microscopy for autophagosomes and so on. Results The data show that TP treatment resulted in the decreasing of the viability of TM3 cells due to the increased apoptosis. Treated with TP, the formation of autophagosomes, the decrease in P62, and the increase in the conversion of LC3-I to LC3-II suggested the induction of autophagy. The induction of autophagy has accompanied the activation of the mTOR/P70S6K signal pathway. The viability of the TM3 cells was further inhibited when they were co-treated with autophagy inhibitor, chloroquine (CQ). Conclusion All these data suggest that autophagy plays a very important role in antagonizing TM3 cell apoptosis during the TP exposure.
Collapse
Affiliation(s)
- Xiaoyun Ye
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| |
Collapse
|
3
|
Zhang X, Han Z, Li Z, Wang T. Midazolam impedes lung carcinoma cell proliferation and migration via EGFR/MEK/ERK signaling pathway. Open Med (Wars) 2023; 18:20230730. [PMID: 37305523 PMCID: PMC10251164 DOI: 10.1515/med-2023-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a dominating type of lung cancer with high morbidity and mortality. Midazolam has been reported to promote cell apoptosis in NSCLC, but the molecular mechanism of midazolam remains to be further explored. In the current work, cell viability, proliferation, migration, and apoptosis rates of NSCLC cells treated with midazolam were measured using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays, transwell, and flow cytometry assay, respectively, to evaluate the malignant behaviors. Western blot was applied to access EGFR/MEK/ERK pathway-related protein levels. The results demonstrated midazolam significantly declined the viability of NSCLC cells. Furthermore, midazolam restrained cell proliferation and migration and contributed to cell apoptosis in NSCLC. Midazolam exerted suppressive function to EGFR pathway during NSCLC development. Moreover, the activation of EGFR/MEK/ERK pathway abrogated the effects of midazolam on NSCLC cell proliferation, apoptosis, and migration. Taken together, midazolam exhibited anti-tumor effects hallmarked by EGFR pathway inhibition, providing a novel insight into the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiangchao Zhang
- Department of Anesthesiology, Shengyang Chest Hospital, Shenyang City, Liaoning 110044, China
| | - Zhe Han
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang City, Liaoning 110015, China
| | - Zhengjun Li
- Department of Thoracic Surgery, Shengyang Chest Hospital, Shenyang City, Liaoning 110044, China
| | - Tao Wang
- Department of Anesthesiology, Shengyang Chest Hospital, No. 11 Beihai Street, Dadong District, Shenyang City, Liaoning 110044, China
| |
Collapse
|
4
|
Anticancer Effects of Midazolam on Lung and Breast Cancers by Inhibiting Cell Proliferation and Epithelial-Mesenchymal Transition. Life (Basel) 2021; 11:life11121396. [PMID: 34947927 PMCID: PMC8703822 DOI: 10.3390/life11121396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/15/2023] Open
Abstract
Despite improvements in cancer treatments resulting in higher survival rates, the proliferation and metastasis of tumors still raise new questions in cancer therapy. Therefore, new drugs and strategies are still needed. Midazolam (MDZ) is a common sedative drug acting through the γ-aminobutyric acid receptor in the central nervous system and also binds to the peripheral benzodiazepine receptor (PBR) in peripheral tissues. Previous studies have shown that MDZ inhibits cancer cell proliferation but increases cancer cell apoptosis through different mechanisms. In this study, we investigated the possible anticancer mechanisms of MDZ on different cancer cell types. MDZ inhibited transforming growth factor β (TGF-β)-induced cancer cell proliferation of both A549 and MCF-7 cells. MDZ also inhibited TGF-β-induced cell migration, invasion, epithelial-mesenchymal-transition, and Smad phosphorylation in both cancer cell lines. Inhibition of PBR by PK11195 rescued the MDZ-inhibited cell proliferation, suggesting that MDZ worked through PBR to inhibit TGF-β pathway. Furthermore, MDZ inhibited proliferation, migration, invasion and levels of mesenchymal proteins in MDA-MD-231 triple-negative breast cancer cells. Together, MDZ inhibits cancer cell proliferation both in epithelial and mesenchymal types and EMT, indicating an important role for MDZ as a candidate to treat lung and breast cancers.
Collapse
|
5
|
Remimazolam reduces sepsis-associated acute liver injury by activation of peripheral benzodiazepine receptors and p38 inhibition of macrophages. Int Immunopharmacol 2021; 101:108331. [PMID: 34810122 DOI: 10.1016/j.intimp.2021.108331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Remimazolam is a novel ester-type benzodiazepine with ultrafast onset of sedation effect and fast recovery of consciousness. It has potential advantages in the sedation of sepsis-associated acute liver injury (SALI) patients. However, the effect and mechanism of remimazo lam on inflammation in the liver have not yet been elucidated. This study investigated the anti-inflammatory effects and mechanisms of remimazolam on SALI both in vivo and in vitro. METHODS Lipopolysaccharide (LPS) plus galactosamine treated rat model and LPS-challenged RAW264.7 cells model were constructed to simulate SALI. Next, the models were used to explore the efficacy of remimazolam treatment on SALI. Benzodiazepine receptor inhibitor, PK11195, was also employed. Hepatic injury was assessed by quantifying levels of transaminases, examining liver pathology, and calculating the number of inflammatory cells in the liver. Inflammatory response was evaluated by determining levels of pro-inflammatory cytokines and chemokines in blood, as well as p38 phosphorylation (p-p38) in the liver. RESULTS SALIrat models showed significant liver damage as manifested by increased levels of transaminases, proinflammatory cytokines, chemokines, and p-38. Remimazolam treatment reduced the liver injury and pathological changes, suppressed pro-inflammatory reactions, and elevated p-p38. The protective effect of remimazolam on liver injury was significantly blocked by PK11195. In LPS-stimulated RAW264.7 cells, it was found that treatment with remimazolam reduced the inflammatory response in LPS-treated cells in a time-dependent manner and decreased the level of p-p38. These results suggest that PK11195 can block remimazolam-induced inhibition of proinflammatory cytokine release and p-38 phosphorylation. CONCLUSIONS This study shows that remimazolam can attenuate inflammatory response in SALI, which may be associated with activation of peripheral benzodiazepine receptors and inhibition of p38 phosphorylation in macrophages.
Collapse
|
6
|
Xie P, Zhu JG, Liu Y, Liu TW, Xu YG, Gong DQ. Effect of Akt activation on apoptosis-related gene expression in the crop tissues of male and female pigeons (Columba livia). Poult Sci 2021; 100:101392. [PMID: 34425554 PMCID: PMC8383011 DOI: 10.1016/j.psj.2021.101392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/05/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
The current study investigated whether the expression of apoptosis genes in the pigeon crops was affected by the Akt signaling pathway during crop milk formation. First, 78 pairs of adult White King pigeons were randomly assigned to 7 groups, and the expression of apoptosis-related genes and Akt signaling pathway-related proteins in the crop tissues during different breeding stages were examined. The results showed that the mRNA levels of Bak, caspase-3, caspase-6, and caspase-9 in female crops all increased and reached their highest levels at d 17 of incubation (I17). In male crops, the levels of caspase-3 and caspase-9 gene expression peaked at d 1 of chick rearing (R1). The lowest level of Bcl-2 gene expression in females was observed at I17. The expression ratios of p-Akt (Ser473)/Akt and p-Akt (Thr308)/Akt in male crops decreased to their minimum at R1, while it was observed at d 7 of chick rearing (R7) in females. Second, 36 pairs of adult pigeons were divided into 3 groups and were subjected to SC79 injections with dosages of 0, 0.02, or 0.04 mg/kg bodyweight. The SC79 injections resulted in a considerable decrease in growth performance of pigeon squabs. In male crops, the expression ratios of p-Akt (Ser473)/Akt and p-Akt (Thr308)/Akt were significantly elevated in the 0.02 mg/kg SC79 group, while in female crops, they were higher in the 0.04 mg/kg SC79 group (P < 0.05). The SC79 injection inhibited the gene expression of Bak in female crops, but enhanced the gene expression of Bcl-2 in both male and female crops. In the 0.04 mg/kg SC79 group, a 50.7 to 75.7% decrease was observed in the expression of caspase-3, caspase-6, and caspase-9 in male and female pigeon crops. Expression of the caspase-8 gene and total Akt protein in pigeon crops was not changed in different breeding stages or after SC79 injection. In conclusion, the expression of genes related to mitochondria-dependent apoptosis can be regulated by the Akt signaling pathway, which may play a potential role in pigeon milk formation.
Collapse
Affiliation(s)
- P Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology, Huaiyin Normal University, Huaian 223300, China.
| | - J G Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - T W Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology, Huaiyin Normal University, Huaian 223300, China
| | - Y G Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology, Huaiyin Normal University, Huaian 223300, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Chen S, Yang S, Wang M, Chen J, Huang S, Wei Z, Cheng Z, Wang H, Long M, Li P. Curcumin inhibits zearalenone-induced apoptosis and oxidative stress in Leydig cells via modulation of the PTEN/Nrf2/Bip signaling pathway. Food Chem Toxicol 2020; 141:111385. [DOI: 10.1016/j.fct.2020.111385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/29/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
|
8
|
Kang FC, Chen YC, Wang SC, So EC, Huang BM. Propofol induces apoptosis by activating caspases and the MAPK pathways, and inhibiting the Akt pathway in TM3 mouse Leydig stem/progenitor cells. Int J Mol Med 2020; 46:439-448. [PMID: 32319554 DOI: 10.3892/ijmm.2020.4584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/06/2020] [Indexed: 11/05/2022] Open
Abstract
Propofol is an anesthetic agent moderating GABA receptors in the nervous system. A number of studies have demonstrated that propofol exerts a negative effect on neural stem cell development in the neonatal mouse hippocampus. However, to the best of our knowledge, there is no study available to date illustrating whether neonatal exposure to propofol affects Leydig stem/progenitor cell development for normal male reproductive development and functions, and the regulatory mechanism remains elusive. In the present study, TM3 cells, a mouse Leydig stem/progenitor cell line, was treated with propofol. The data illustrated that propofol significantly reduced TM3 cell viability. TM3 subG1 phase cell numbers were significantly increased by propofol assayed by flow cytometric analysis. Annexin V/PI double staining assay of the TM3 Leydig cells also demonstrated that propofol increased TM3 cell apoptosis. In addition, cleaved caspase‑8, ‑9 and ‑3 and/or poly(ADP‑ribose) polymerase (PARP) were significantly activated by propofol in the TM3 cells. Furthermore, the expression levels of phospho‑JNK, phospho‑ERK1/2 and phospho‑p38 were activated by propofol in the TM3 cells, indicating that propofol induced apoptosis through the mitogen‑activated protein kinase (MAPK) pathway. Additionally, propofol diminished the phosphorylation of Akt to increase the apoptosis of TM3 cells. On the whole, the findings of the present study demonstrate that propofol induces TM3 cell apoptosis by activating caspases and MAPK pathways, as well as by inhibiting the Akt pathway in TM3 cells. These findings illustrate that propofol affects the viability of Leydig stem/progenitor cells possibly related to the development of the male reproductive system.
Collapse
Affiliation(s)
- Fu-Chi Kang
- Department of Anesthesia, Chi Mei Medical Center, Chiali, Tainan 71004, Taiwan, R.O.C
| | - Yun-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Shu-Chun Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| |
Collapse
|
9
|
Mu YF, Chen YH, Chang MM, Chen YC, Huang BM. Arsenic compounds induce apoptosis through caspase pathway activation in MA-10 Leydig tumor cells. Oncol Lett 2019; 18:944-954. [PMID: 31289573 DOI: 10.3892/ol.2019.10386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
The incidence of testicular cancer is increasing worldwide. Leydig cell tumors represent one type of sex cord-stromal testis malignancy, which tend to respond unfavorably to chemotherapies. Identifying more efficient treatment strategies is therefore crucial for patients. The present study aimed to investigate the apoptotic effects of arsenic compounds and their underlying mechanisms. The results indicated that sodium arsenite and dimethylarsenic acid induced apoptosis of the murine Leydig tumor cell line, MA-10. These apoptotic effects were characterized morphologically by membrane blebbing and cell detachment assays, biochemically using a cell viability assay, and cytologically by flow cytometry analysis. Western blotting demonstrated that caspases-3, -8 and -9, and poly(ADP-ribose) polymerase protein levels were increased compared with untreated MA-10 cells; however, the caspase inhibitor, Z-VAD-fmk, reversed these effects. In conclusion, the present study has shown that sodium arsenite and dimethylarsenic acid may activate the intrinsic and extrinsic caspase pathways, and induce MA-10 cell apoptosis. These results suggest that sodium arsenite and dimethylarsenic acid may represent novel approaches to treat clinically unmanageable forms of testicular cancer.
Collapse
Affiliation(s)
- Yi-Fen Mu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|