1
|
Li H, Li S, Kanamori Y, Liu S, Moroishi T. Auranofin resensitizes ferroptosis-resistant lung cancer cells to ferroptosis inducers. Biochem Biophys Res Commun 2025; 770:151992. [PMID: 40373379 DOI: 10.1016/j.bbrc.2025.151992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/23/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Lung cancer, a major cause of cancer-related mortality, has limited therapeutic options, especially for advanced cases. Ferroptosis, an iron-dependent form of cell death, is a potential therapeutic strategy for this disease; however, resistance mechanisms in the tumor microenvironment impede its effectiveness. Therefore, in this study, we aimed to investigate the efficacy of sulfasalazine (SAS), a ferroptosis inducer, and auranofin (AUR), a Food and Drug Administration-approved anti-inflammatory agent, combination to counteract ferroptosis resistance in lung cancer. SAS induced ferroptosis in vitro; however, its efficacy in vivo was limited, possibly because of factors, such as nutrient deprivation and high cell density, in the microenvironment that suppressed the activities of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of ferroptosis resistance. Screening of 2483 drugs revealed AUR as a compound resensitizing the YAP/TAZ-deficient lung cancer cells to ferroptosis. Moreover, SAS and AUR combination significantly enhanced lipid peroxidation and reactive oxygen species accumulation, further driving ferroptosis in cells. This combination effectively inhibited tumor growth and enhanced survival in a murine lung cancer model. Overall, our findings suggest that AUR potentiates ferroptosis-based therapies, serving as an effective candidate to overcome ferroptosis resistance in lung cancer.
Collapse
Affiliation(s)
- Hao Li
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Shuran Li
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yohei Kanamori
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Saisai Liu
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Division of Cellular Dynamics, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Tokyo, 113-8510, Japan.
| |
Collapse
|
2
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Schmauch B, Cabeli V, Domingues OD, Le Douget JE, Hardy A, Belbahri R, Maussion C, Romagnoni A, Eckstein M, Fuchs F, Swalduz A, Lantuejoul S, Crochet H, Ghiringhelli F, Derangere V, Truntzer C, Pass H, Moreira AL, Chiriboga L, Zheng Y, Ozawa M, Howitt BE, Gevaert O, Girard N, Rexhepaj E, Valtingojer I, Debussche L, de Rinaldis E, Nestle F, Spanakis E, Fantin VR, Durand EY, Classe M, Von Loga K, Pronier E, Cesaroni M. Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients. iScience 2025; 28:111638. [PMID: 39868035 PMCID: PMC11758823 DOI: 10.1016/j.isci.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of YAP1 and TEAD-family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications. Therefore, identifying patients with a dysregulated Hippo pathway is key to enhancing treatment impact. Although recent studies have derived RNA-seq-based signatures, there remains a need for a reproducible and cost-effective method to measure the pathway activation. In recent years, deep learning applied to histology slides have emerged as an effective way to predict molecular information from a data modality available in clinical routine. Here, we trained models to predict YAP1/TEAD activity from H&E-stained histology slides in multiple cancers. The robustness of our approach was assessed in seven independent validation cohorts. Finally, we showed that histological markers of disease aggressiveness were associated with dysfunctional Hippo signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Markus Eckstein
- Bavarian Cancer Research Center (Bayerisches Zentrum für Krebsforschung, BZKF), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Florian Fuchs
- Bavarian Cancer Research Center (Bayerisches Zentrum für Krebsforschung, BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aurélie Swalduz
- Claude Bernard University Lyon I & Léon Bérard Cancer Center, Lyon, France
| | - Sylvie Lantuejoul
- Grenoble Alpes University and Léon Bérard Cancer Center, Lyon, France
| | | | | | - Valentin Derangere
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- University of Burgundy Franche-Comté, Dijon, France
| | - Caroline Truntzer
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- University of Burgundy Franche-Comté, Dijon, France
| | - Harvey Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, USA
| | - Andre L. Moreira
- Department of Pathology, NYU Langone New York University Langone Medical Center, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone New York University Langone Medical Center, New York, NY, USA
| | - Yuanning Zheng
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Michael Ozawa
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Brooke E. Howitt
- Department of Medicine & Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Department of Medicine & Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhou L, Zhang S, Wang L, Liu X, Yang X, Qiu L, Zhou Y, Huang Q, Meng Y, Lei X, Wen L, Han J. PCYT2 inhibits epithelial-mesenchymal transition in colorectal cancer by elevating YAP1 phosphorylation. JCI Insight 2024; 9:e178823. [PMID: 39531326 DOI: 10.1172/jci.insight.178823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic reprogramming is a common feature in tumor progression and metastasis. Like proteins, lipids can transduce signals through lipid-protein interactions. During tumor initiation and metastasis, dysregulation of the Hippo pathway plays a critical role. Specifically, the inhibition of YAP1 phosphorylation leads to the relocation of YAP1 to the nucleus to activate transcription of genes involved in metastasis. Although recent studies reveal the involvement of phosphatidylethanolamine (PE) synthesis enzyme phosphoethanolamine cytidylyltransferase 2 (PCYT2) in tumor chemoresistance, the effect of PCYT2 on tumor metastasis remains elusive. Here, we show that PCYT2 was significantly downregulated in metastatic colorectal cancer (CRC) and acted as a tumor metastasis suppressor. Mechanistically, PCYT2 increased the interaction between PEBP1 and YAP1-phosphatase PPP2R1A, thus disrupting PPP2R1A-YAP1 association. As a result, phosphorylated YAP1 levels were increased, leading to YAP1 degradation through the ubiquitin protease pathway. YAP1 reduction in the nucleus repressed the transcription of ZEB1 and SNAIL2, eventually resulting in metastasis suppression. Our work provides insight into the role of PE synthesis in regulating metastasis and presents PCYT2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Lian Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Lingli Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Ying Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Qing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Yang Meng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Linda Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| |
Collapse
|
5
|
Manjunath GK, Sharma S, Nashier D, Vasanthaiah S, Jha S, Bage S, Mitra T, Goyal P, Neerathilingam M, Kumar A. Breast cancer genomic analyses reveal genes, mutations, and signaling networks. Funct Integr Genomics 2024; 24:206. [PMID: 39496981 DOI: 10.1007/s10142-024-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and protein‒protein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Srihari Sharma
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Shruthi Vasanthaiah
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Spriha Jha
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Muniasamy Neerathilingam
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India.
| |
Collapse
|
6
|
Akrida I, Makrygianni M, Nikou S, Mulita F, Bravou V, Papadaki H. Hippo pathway effectors YAP, TAZ and TEAD are associated with EMT master regulators ZEB, Snail and with aggressive phenotype in phyllodes breast tumors. Pathol Res Pract 2024; 262:155551. [PMID: 39153238 DOI: 10.1016/j.prp.2024.155551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Phyllodes tumors (PTs) of the breast are uncommon fibroepithelial neoplasms that tend to recur locally and may have metastatic potential. Their pathogenesis is poorly understood. Hippo signaling pathway plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. Hippo signaling dysfunction has been implicated in cancer. Recent evidence suggests that there is cross-talk between the Hippo signaling key proteins YAP/TAZ and the epithelial-mesenchymal transition (EMT) master regulators Snail and ZEB. In this study we aimed to investigate the expression of Hippo signaling pathway components and EMT regulators in PTs, in relation to tumor grade. METHODS Expression of Hippo signaling effector proteins YAP, TAZ and their DNA binding partner TEAD was evaluated by immunohistochemistry in paraffin-embedded tissue specimens from 86 human phyllodes breast tumors (45 benign, 21 borderline, 20 malignant), in comparison with tumor grade and with the expression of EMT-related transcription factors ZEB and Snail. RESULTS Nuclear immunopositivity for YAP, TAZ and TEAD was detected in both stromal and epithelial cells in PTs and was significantly higher in high grade tumors. Interestingly, there was a significant correlation between the expression of YAP, TAZ, TEAD and the expression of ZEB and SNAIL. CONCLUSIONS Our results originally implicate Hippo signaling pathway in PTs pathogenesis and suggest that an interaction between Hippo signaling key components and EMT regulators may promote the malignant features of PTs.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece; Department of Surgery, University Hospital of Patras, Rion, Greece.
| | - Maria Makrygianni
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece
| | - Francesk Mulita
- Department of Surgery, University Hospital of Patras, Rion, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece
| |
Collapse
|
7
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
8
|
Taylor J, Dubois F, Bergot E, Levallet G. Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review). Int J Oncol 2024; 65:68. [PMID: 38785155 PMCID: PMC11155713 DOI: 10.3892/ijo.2024.5656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 05/25/2024] Open
Abstract
The prognosis for patients with non‑small cell lung cancer (NSCLC), a cancer type which represents 85% of all lung cancers, is poor with a 5‑year survival rate of 19%, mainly because NSCLC is diagnosed at an advanced and metastatic stage. Despite recent therapeutic advancements, ~50% of patients with NSCLC will develop brain metastases (BMs). Either surgical BM treatment alone for symptomatic patients and patients with single cerebral metastases, or in combination with stereotactic radiotherapy (RT) for patients who are not suitable for surgery or presenting with fewer than four cerebral lesions with a diameter range of 5‑30 mm, or whole‑brain RT for numerous or large BMs can be administered. However, radioresistance (RR) invariably prevents the action of RT. Several mechanisms of RR have been described including hypoxia, cellular stress, presence of cancer stem cells, dysregulation of apoptosis and/or autophagy, dysregulation of the cell cycle, changes in cellular metabolism, epithelial‑to‑mesenchymal transition, overexpression of programmed cell death‑ligand 1 and activation several signaling pathways; however, the role of the Hippo signaling pathway in RR is unclear. Dysregulation of the Hippo pathway in NSCLC confers metastatic properties, and inhibitors targeting this pathway are currently in development. It is therefore essential to evaluate the effect of inhibiting the Hippo pathway, particularly the effector yes‑associated protein‑1, on cerebral metastases originating from lung cancer.
Collapse
Affiliation(s)
- Jasmine Taylor
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
| | - Fatéméh Dubois
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pathology, and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| | - Emmanuel Bergot
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pneumology and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| | - Guénaëlle Levallet
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pathology, and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| |
Collapse
|
9
|
Ashrafi-Dehkordi E, Tahmasebi A, Zare H, Mazloomi SM. A Meta-analysis of Transcriptome Data to Investigate the Effect of Soy Isoflavones on Breast Cancer Cell. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3762. [PMID: 39220340 PMCID: PMC11364926 DOI: 10.30498/ijb.2024.407148.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/03/2024] [Indexed: 09/04/2024]
Abstract
Background Breast cancer ranks as the second highest cause of cancer-linked deaths in women, with varying rates between Western and Asian countries. The consumption of phytoestrogens can influence breast cancer occurrence. Objective To comprehend how soy isoflavones impact breast cancer cells, we conducted a meta-analysis, combining gene expression data from multiple studies. This approach aimed to identify crucial transcriptional characteristics driving breast cancer cell response to soy phytoestrogens. Materials and Methods The gene expression profiles obtained from the Gene Expression Omnibus and Array Express and were grouped into control and isoflavones exposure conditions. We performed a meta-analysis based on the effect size combination method to identify the differentially expressed genes (DEGs). In addition, we performed Gene Ontology (GO) enrichment analysis, pathway analysis, weighted gene co-expression network analysis (WGCNA) and recursive support vector machine (R-SVM) algorithm. Results Based on this meta-analysis, we identified 3,890 DEGs, of which 2,173 were up-regulated and 1,717 were down-regulated. For example, SGCG, PLK2, and TBC1D9 were the most highly down-regulated genes and EGR3, WISP2, and FKBP4 were the most highly expressed genes in the isoflavones exposure condition. The functional enrichment and pathway analysis were revealed "cell division" and "cell cycle" among the most enriched terms. Among the identified DEGs, 269 transcription factor (TF) genes belonged to 42 TF families, where the C2H2 ZF, bZIP, and bHLH were the most prominent families. We also employed the R-SVM for detecting the most important genes to classify samples into isoflavones exposure and control conditions. It identified a subset of 100 DEGs related to regulation of cell growth, response to estradiol, and intermediate ribonucleoside monophosphate in the purine (IMP) metabolic process. Moreover, the WGCNA separated the DEGs into five discrete modules strongly enriched for genes involved in cell division, DNA replication, embryonic digit morphogenesis, and cell-cell adhesion. Conclusion Our analysis provides evidence suggesting that isoflavone affects various mechanisms in cells, including pathways associated with NF-κB, Akt, MAPK, Wnt, Notch, p53, and AR pathways, which can lead to the induction of apoptosis, the alteration of the cell cycle, the inhibition of angiogenesis, and interference in the redox state of cells. These findings can shed light on the molecular mechanisms that underlie the response of breast cancer cells to isoflavones.
Collapse
Affiliation(s)
- Elham Ashrafi-Dehkordi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Tahmasebi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Institute, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Habil Zare
- Department of Computer Science, Texas State University, San Marcos, Texas, 78666, USA
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Seyed Mohammad Mazloomi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Balavaishnavi B, Kamaraj M, Nithya TG, Santhosh P, GokilaLakshmi S, Shaik MR. Regulation of hippo signaling mediated apoptosis by Rauvolfia tetraphylla in triple-negative breast cancer. Med Oncol 2024; 41:103. [PMID: 38553593 DOI: 10.1007/s12032-024-02341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
Rauvolfia tetraphylla is an essential medicinal plant that has been widely used in traditional medicine for various disease treatments. However, the tumor suppressor activity of R. tetraphylla and its phytocompounds were not explored against triple-negative breast cancer. The current research investigated the impact of R. tetraphylla methanolic extract (RTE) and its isolated compounds Ajmaline (RTC1) and Reserpine (RTC2) on triple-negative breast cancer cell line (MDA-MB-231) focusing on anti-proliferative effects. Our study imparts that RTE and RTC2 showed promising cytotoxic effects compared to RTC1. So further experiments have proceeded with RTE and RTC2, to evaluate its proliferation, migration, and apoptotic effect. The result shows around 80% of cells were observed in the G0/G1 phase in cell cycle analysis indicating the cell cycle inhibition and duel staining clearly showed the apoptotic effect. The migration of cells after the scratch was 60.45% observed in control and 90% in treated cells showing the inhibition of migration. ROS distribution was intense compared to control indicating the increased ROS stress in treated cells. Both RTE and RTC2-treated cells showed the potential to suppress proliferation and induce apoptotic change by upregulating BAX and MST-1 and suppressing Bcl2, LATS-1, and YAP, proving that deregulation of YAP resulting in the blockage of TEAD-YAP complex and inhibit proliferation. Therefore, R. tetraphylla extract and its isolated compounds were demonstrated to find its ability to act against MDA-MB-231 and these findings will help adjudicate it as a therapeutic drug against experimental triple-negative breast cancer.
Collapse
Affiliation(s)
- B Balavaishnavi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology- Ramapuram, Chennai, Tamil Nadu, 600089, India
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - T G Nithya
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - P Santhosh
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - S GokilaLakshmi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saudi University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
12
|
JOHARI BEHROOZ, PARVINZAD LEILAN MILAD, GHARBAVI MAHMOUD, MORTAZAVI YOUSEF, SHARAFI ALI, REZAEEJAM HAMED. Combinational therapy with Myc decoy oligodeoxynucleotides encapsulated in nanocarrier and X-irradiation on breast cancer cells. Oncol Res 2023; 32:309-323. [PMID: 38186581 PMCID: PMC10765119 DOI: 10.32604/or.2023.043576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024] Open
Abstract
The Myc gene is the essential oncogene in triple-negative breast cancer (TNBC). This study investigates the synergistic effects of combining Myc decoy oligodeoxynucleotides-encapsulated niosomes-selenium hybrid nanocarriers with X-irradiation exposure on the MDA-MB-468 cell line. Decoy and scramble ODNs for Myc transcription factor were designed and synthesized based on promoter sequences of the Bcl2 gene. The nanocarriers were synthesized by loading Myc ODNs and selenium into chitosan (Chi-Se-DEC), which was then encapsulated in niosome-nanocarriers (NISM@Chi-Se-DEC). FT-IR, DLS, FESEM, and hemolysis tests were applied to confirm its characterization and physicochemical properties. Moreover, cellular uptake, cellular toxicity, apoptosis, cell cycle, and scratch repair assays were performed to evaluate its anticancer effects on cancer cells. All anticancer assessments were repeated under X-ray irradiation conditions (fractionated 2Gy). Physicochemical characteristics of niosomes containing SeNPs and ODNs showed that it is synthesized appropriately. It revealed that the anticancer effect of NISM@Chi-Se-DEC can be significantly improved in combination with X-ray irradiation treatment. It can be concluded that NISM@Chi-Se-DEC nanocarriers have the potential as a therapeutic agent for cancer treatment, particularly in combination with radiation therapy and in-vivo experiments are necessary to confirm the efficacy of this nano-drug.
Collapse
Affiliation(s)
- BEHROOZ JOHARI
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - MILAD PARVINZAD LEILAN
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - MAHMOUD GHARBAVI
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - YOUSEF MORTAZAVI
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - ALI SHARAFI
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - HAMED REZAEEJAM
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Xu Y, Cai H, Xiong Y, Tang L, Li L, Zhang L, Shen Y, Yang Y, Lin L, Huang J. YAP/TAZ axis was involved in the effects of metformin on breast cancer. J Chemother 2023; 35:627-637. [PMID: 36656142 DOI: 10.1080/1120009x.2022.2162221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is malignant tumours in women. A large amount of data analysis shows that Metformin has been shown to play a significance role in reducing the risk of breast cancer, but the mechanism remains unclear. The hippo signalling pathway can be involved in the formation, metastasis and recurrence of breast cancer. When YAP/TAZ is activated, cells can overcome contact inhibition and enter a state of uncontrolled proliferation. Therefore, YAP/TAZ is considered a potential therapeutic target for breast cancer. Eighty breast cancer patients, forty cases of triple-negative and forty cases of HER-2+, were included in this study. In vitro and in vivo experiments were used to confirm the YAP/TAZ axis was involved in the effects of metformin on breast cancer. EMT plays an important role in breast cancer, including chemoresistance and tumour metastasis. Our results confirmed that YAP could modulate the activity of EMT, which in turn altered tumour resistance. Therefore, MET can inhibit EMT by reducing the expression of YAP, and finally achieve the therapeutic effect of breast cancer. Our findings support metformin as a novel YAP inhibitor and potentially as a novel breast cancer drug.
Collapse
Affiliation(s)
- Yu Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Hongke Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanfeng Xiong
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yi Shen
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jiayi Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
15
|
Han Q, Qiu S, Hu H, Li W, Dang X, Li X. The relationship between the Hippo signaling pathway and bone metastasis of breast cancer. Front Oncol 2023; 13:1188310. [PMID: 37256184 PMCID: PMC10225633 DOI: 10.3389/fonc.2023.1188310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Bone is the most common site of metastasis from breast cancer, which is the most prevalent cancer affecting women globally. Bone metastasis from breast cancer severely affects the quality of life of patients and increases mortality. The molecular mechanisms of metastasis, colonization, and proliferation of breast cancer cells in bone are complex and involve the interaction between breast cancer cells and the bone microenvironment. However, the precise mechanism is not clear at present. In recent years, the Hippo signaling pathway has attracted much attention due to its important role in regulating the expression of major effector molecules during tumor development. In particular, studies have found that the mutation and aberrant expression of the core components of the Hippo signaling pathway affect breast cancer cell migration and invasion, indicating that this pathway plays a role in bone metastasis, although the molecular mechanism of this pathway in breast cancer metastasis has not been fully elucidated. In this review, we discuss the function of the Hippo signaling pathway, introducing its role in breast cancer metastasis, especially bone metastasis of breast cancer, so as to lay a solid theoretical foundation for further research and for the development of effective targeted therapeutic agents.
Collapse
Affiliation(s)
- Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Shi Qiu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Huiwen Hu
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangguo Dang
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
16
|
Bu J, Zhang Y, Wu S, Li H, Sun L, Liu Y, Zhu X, Qiao X, Ma Q, Liu C, Niu N, Xue J, Chen G, Yang Y, Liu C. KK-LC-1 as a therapeutic target to eliminate ALDH + stem cells in triple negative breast cancer. Nat Commun 2023; 14:2602. [PMID: 37147285 PMCID: PMC10163259 DOI: 10.1038/s41467-023-38097-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023] Open
Abstract
Failure to achieve complete elimination of triple negative breast cancer (TNBC) stem cells after adjuvant therapy is associated with poor outcomes. Aldehyde dehydrogenase 1 (ALDH1) is a marker of breast cancer stem cells (BCSCs), and its enzymatic activity regulates tumor stemness. Identifying upstream targets to control ALDH+ cells may facilitate TNBC tumor suppression. Here, we show that KK-LC-1 determines the stemness of TNBC ALDH+ cells via binding with FAT1 and subsequently promoting its ubiquitination and degradation. This compromises the Hippo pathway and leads to nuclear translocation of YAP1 and ALDH1A1 transcription. These findings identify the KK-LC-1-FAT1-Hippo-ALDH1A1 pathway in TNBC ALDH+ cells as a therapeutic target. To reverse the malignancy due to KK-LC-1 expression, we employ a computational approach and discover Z839878730 (Z8) as an small-molecule inhibitor which may disrupt KK-LC-1 and FAT1 binding. We demonstrate that Z8 suppresses TNBC tumor growth via a mechanism that reactivates the Hippo pathway and decreases TNBC ALDH+ cell stemness and viability.
Collapse
Affiliation(s)
- Jiawen Bu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yixiao Zhang
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Sijin Wu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), International Biomedical Industrial Park (Phase II) 3F, 2 Hongliu Rd, Futian District, 16023, Shenzhen, China
| | - Haonan Li
- School of Bioengineering, Dalian University of Technology, 116023, Dalian, China
| | - Lisha Sun
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, Shenyang, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xudong Zhu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xinbo Qiao
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Qingtian Ma
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chao Liu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Nan Niu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Jinqi Xue
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Guanglei Chen
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yongliang Yang
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
- School of Bioengineering, Dalian University of Technology, 116023, Dalian, China.
| | - Caigang Liu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
17
|
Parambil ST, Thankayyan SKR, Antony GR, Littleflower AB, Augustine P, Somanathan T, Subhadradevi L. YAP transduction drives triple-negative breast cancer aggressiveness through modulating the EGFR‒AKT axis in patient-derived xenograft cells. Med Oncol 2023; 40:137. [PMID: 37014473 DOI: 10.1007/s12032-023-02007-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Aside from the high prevalence of incidents of breast cancer, the high grade of heterogeneity and the dearth of standard treatment guidelines make triple-negative breast cancer (TNBC) the most refractory subtype. Though still in its infancy, the Hippo pathway has been known to play a critical role in tumorigenesis. However, the molecular mechanics through which the pathway exploits the breast cancer (BC) cell vulnerability are largely unexplored. In this study, we observed a relatively higher expression of the Hippo effector, yes-associated protein (YAP), in TNBC patients compared to non-TNBC patients. Thus, we sought to investigate the contribution of Hippo signaling in TNBC by focusing particularly on transducers of the pathway. Impeding YAP transactivation by means of RNA interference or pharmacological inhibition was carried out, followed by evaluation of the subsequent biological changes at the molecular level. We successfully translated the observed data into a TNBC patient-derived xenograft cell line (PDXC). We discovered that nuclear translocation of YAP was associated with TNBC aggressive characteristics and activated the EGFR-AKT axis. Here, we explored the putative role of the Hippo transducer in enhancing cancer hostility and observed that YAP transduction drives proliferation, migration, and survival of TNBC by preventing cellular apoptosis through mediating EGFR activation. These observations suggest that YAP represents a major vulnerability in TNBC cells that may be exploited therapeutically.
Collapse
Affiliation(s)
- Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Santhosh Kumar R Thankayyan
- Division of Cancer Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, India
| | - Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Paul Augustine
- Division of Surgical Oncology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
18
|
Weidle UH, Birzele F. Triple-negative Breast Cancer: Identification of circRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2023; 20:117-131. [PMID: 36870692 PMCID: PMC9989670 DOI: 10.21873/cgp.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 03/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with insufficient options for therapy. In order to identify new targets and treatment modalities we searched the literature for circular RNAs (circRNAs) which mediate efficacy in TNBC-related in vivo preclinical models. In addition to 5 down-regulated circRNAs which modulate tumor-suppressive pathways, we identified 15 up-regulated circRNAs. Down- and up-regulated refers to expression in corresponding non-transformed cells and tissues. The up-regulated circRNAs comprise five transmembrane receptors and secreted proteins as targets, five transcription factors and transcription-associated targets, four cell-cycle related circRNAs and one involved in paclitaxel resistance. In this review article we discuss drug-discovery related aspects and modalities of therapeutic intervention. Down-regulated circRNAs can be reconstituted by re-expression of corresponding circRNAs in tumor cells or up-regulation of corresponding targets. Up-regulated circRNAs can be inhibited by small-interfering RNA (siRNA) or short hairpin RNA (shRNA)-based approaches or inhibition of the corresponding targets with small molecules or antibody-related moieties.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Development, Roche Innovation Center, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
19
|
Leonov S, Inyang O, Achkasov K, Bogdan E, Kontareva E, Chen Y, Fu Y, Osipov AN, Pustovalova M, Merkher Y. Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24054773. [PMID: 36902201 PMCID: PMC10003476 DOI: 10.3390/ijms24054773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The major cause (more than 90%) of all cancer-related deaths is metastasis, thus its prediction can critically affect the survival rate. Metastases are currently predicted by lymph-node status, tumor size, histopathology and genetic testing; however, all these are not infallible, and obtaining results may require weeks. The identification of new potential prognostic factors will be an important source of risk information for the practicing oncologist, potentially leading to enhanced patient care through the proactive optimization of treatment strategies. Recently, the new mechanobiology-related techniques, independent of genetics, based on the mechanical invasiveness of cancer cells (microfluidic, gel indentation assays, migration assays etc.), demonstrated a high success rate for the detection of tumor cell metastasis propensity. However, they are still far away from clinical implementation due to complexity. Hence, the exploration of novel markers related to the mechanobiological properties of tumor cells may have a direct impact on the prognosis of metastasis. Our concise review deepens our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incites further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit. It may open a new clinical dimension that will improve cancer prognosis and increase the effectiveness of tumor therapies.
Collapse
Affiliation(s)
- Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olumide Inyang
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Andreyan N. Osipov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
20
|
Huang X, Li S, Shi W, Wang Y, Wan X, He J, Xu Y, Zhang W, Shi X, Chen R, Xu L, Zha X, Wang J. A prospective, randomized clinical trial of emergency treatment of chemotherapy-induced neutropenia and febrile neutropenia by pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF). Br J Clin Pharmacol 2023; 89:372-379. [PMID: 36001055 DOI: 10.1111/bcp.15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS As one of the mainstays of breast cancer therapy, chemotherapy inevitably induces neutropenia. In this study, we explored the role of PEG-rhG-CSF (pegylated recombinant human granulocyte colony-stimulating factor) in the emergency treatment of chemotherapy-induced grades 3-4 neutropenia. METHODS A total of 100 patients with breast cancer were randomized (1:1) into the study. Fifty patients randomized to the experimental group were treated with PEG-rhG-CSF after grades 3-4 neutropenia following the first cycle of chemotherapy, while 50 patients randomized to the control group received a daily injection of rhG-CSF (recombinant human granulocyte colony-stimulating factor). The primary endpoint was the recovery time of grades 3-4 neutropenia. RESULTS Compared with patients in the control group, the mean ± SD recovery time of grades 3-4 neutropenia and febrile neutropenia (FN) was significantly shorter for patients in the experimental group (grades 3-4, P = .000; grade 4, P = .000; FN, P = .038). There is no significant difference in the incidence of FN for the two groups. In the experimental group, the duration of grades 3-4 neutropenia in patients aged <60 years and ≥60 years was 2.15 and 3.20 days, respectively (P = .037). Adverse events (AEs) of any grade were reported in 37 (75.5%) and 28 (59.6%) patients from the two groups, respectively. No grade ≥3 AEs were reported. CONCLUSION This study supported that the PEG-rhG-CSF was more effective and convenient than rhG-CSF for treating grades 3-4 neutropenia and FN in patients with breast cancer and had manageable toxicity.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuo Li
- Department of Burn and Plastic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wenjie Shi
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Wang
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Wan
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinzhi He
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinggang Xu
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Zhang
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqing Shi
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Chen
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Xu
- Department of Clinical Nutrition, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Zha
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jue Wang
- Department of Breast Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
The role of exosomes in the molecular mechanisms of metastasis: Focusing on EMT and cancer stem cells. Life Sci 2022; 310:121103. [DOI: 10.1016/j.lfs.2022.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
22
|
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022; 86:107-121. [PMID: 35931301 DOI: 10.1016/j.semcancer.2022.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/27/2023]
Abstract
Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
23
|
Vasudevan J, Jiang K, Fernandez J, Lim CT. Extracellular matrix mechanobiology in cancer cell migration. Acta Biomater 2022; 163:351-364. [PMID: 36243367 DOI: 10.1016/j.actbio.2022.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/01/2022]
Abstract
The extracellular matrix (ECM) is pivotal in modulating tumor progression. Besides chemically stimulating tumor cells, it also offers physical support that orchestrates the sequence of events in the metastatic cascade upon dynamically modulating cell mechanosensation. Understanding this translation between matrix biophysical cues and intracellular signaling has led to rapid growth in the interdisciplinary field of cancer mechanobiology in the last decade. Substantial efforts have been made to develop novel in vitro tumor mimicking platforms to visualize and quantify the mechanical forces within the tissue that dictate tumor cell invasion and metastatic growth. This review highlights recent findings on tumor matrix biophysical cues such as fibrillar arrangement, crosslinking density, confinement, rigidity, topography, and non-linear mechanics and their implications on tumor cell behavior. We also emphasize how perturbations in these cues alter cellular mechanisms of mechanotransduction, consequently enhancing malignancy. Finally, we elucidate engineering techniques to individually emulate the mechanical properties of tumors that could help serve as toolkits for developing and testing ECM-targeted therapeutics on novel bioengineered tumor platforms. STATEMENT OF SIGNIFICANCE: Disrupted ECM mechanics is a driving force for transitioning incipient cells to life-threatening malignant variants. Understanding these ECM changes can be crucial as they may aid in developing several efficacious drugs that not only focus on inducing cytotoxic effects but also target specific matrix mechanical cues that support and enhance tumor invasiveness. Designing and implementing an optimal tumor mimic can allow us to predictively map biophysical cue-modulated cell behaviors and facilitate the design of improved lab-grown tumor models with accurately controlled structural features. This review focuses on the abnormal changes within the ECM during tumorigenesis and its implications on tumor cell-matrix mechanoreciprocity. Additionally, it accentuates engineering approaches to produce ECM features of varying levels of complexity which is critical for improving the efficiency of current engineered tumor tissue models.
Collapse
|
24
|
Yousefi H, Delavar MR, Piroozian F, Baghi M, Nguyen K, Cheng T, Vittori C, Worthylake D, Alahari SK. Hippo signaling pathway: A comprehensive gene expression profile analysis in breast cancer. Biomed Pharmacother 2022; 151:113144. [PMID: 35623167 DOI: 10.1016/j.biopha.2022.113144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women and a major public health concern. The Hippo pathway is an evolutionarily conserved signaling pathway that serves as a key regulator for a wide variety of biological processes. Hippo signaling has been shown to have both oncogenic and tumor-suppressive functions in various cancers. Core components of the Hippo pathway consist of various kinases and downstream effectors such as YAP/TAZ. In the current report, differential expression of Hippo pathway elements as well as the correlation of Hippo pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, receptor status, and methylation status, has been investigated in BC using METABRIC and TCGA datasets. In this review, we note deregulation of several Hippo signaling elements in BC patients. Moreover, we see examples of negative correlations between methylation of Hippo genes and mRNA expression. The expression of Hippo genes significantly varies between different receptor subgroups. Because of the clear associations between mRNA expression and methylation status, DNA methylation may be one of the mechanisms that regulate the Hippo pathway in BC cells. Differential expression of Hippo genes among various BC molecular subtypes suggests that Hippo signaling may function differently in different subtypes of BC. Our data also highlights an interesting link between Hippo components' transcription and ER negativity in BC. In conclusion, substantial deregulation of Hippo signaling components suggests an important role of these genes in breast cancer.
Collapse
Affiliation(s)
- Hassan Yousefi
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Masoud Baghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Thomas Cheng
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Cecilia Vittori
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - David Worthylake
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA
| | - Suresh K Alahari
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA.
| |
Collapse
|
25
|
Zhang J, Tong Y, Lu X, Dong F, Ma X, Yin S, He Y, Liu Y, Liu Q, Fan D. A derivant of ginsenoside CK and its inhibitory effect on hepatocellular carcinoma. Life Sci 2022; 304:120698. [PMID: 35690105 DOI: 10.1016/j.lfs.2022.120698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Epidemiological studies have shown that hepatocellular carcinoma (HCC) is a main cause of tumor death worldwide. Accumulating data indicate that ginsenoside CK is an effective compound for preventing HCC growth and development. However, improvement of pharmaceutical effect of the ginsenoside CK is still needed. In our study, we performed acetylation of ginsenoside CK (CK-3) and investigated the antitumor effects of the derivative in vitro and in vivo. The cytotoxicity analysis revealed that compared with CK, CK-3 could inhibit the proliferation of multiple tumor cell lines at a lower concentration. Treating with CK-3 on HCC cells arrested cell cycle in G2/M phase and induced cell apoptosis through AO/EB staining, TUNEL analysis and flow cytometry. Meanwhile, CK-3 significantly inhibited tumor growth in an HCC xenograft model and showed no side effect on the function of the main organs. Mechanistically, whole transcriptome analysis revealed that the antitumor effect of CK-3 was involved in the Hippo signaling pathway. The immunoblotting and immunofluorescence results illustrated that CK-3 directly facilitated the phosphorylation of YAP1 and decreased the expression of the main transcription factor TEAD2 in HCC cell lines and tumor tissue sections. Collectively, our results demostrate the formation of a new derivative of ginsenoside CK and its regulatory mechanism in HCC, which could activate the Hippo-YAP1-TEAD2 signaling pathway to regulate HCC progression. This research could provide a new direction for traditional Chinese medicine in the therapy of tumors.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yangliu Tong
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xun Lu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Fangming Dong
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Shiyu Yin
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Ying He
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Yonghong Liu
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
26
|
Breast Cancer Prognosis Prediction and Immune Pathway Molecular Analysis Based on Mitochondria-Related Genes. Genet Res (Camb) 2022; 2022:2249909. [PMID: 35707265 PMCID: PMC9174003 DOI: 10.1155/2022/2249909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondria play an important role in breast cancer (BRCA). We aimed to build a prognostic model based on mitochondria-related genes. Method Univariate Cox regression analysis, random forest, and the LASSO method were performed in sequence on pretreated TCGA BRCA datasets to screen out genes from a Gene Set Enrichment Analysis, Gene Ontology: biological process gene set to build a prognosis risk score model. Survival analyses and ROC curves were performed to verify the model by using the GSE103091 dataset. The BRCA datasets were equally divided into high- and low-risk score groups. Comparisons between clinical features and immune infiltration related to different risk scores and gene mutation analysis and drug sensitivity prediction were performed for different groups. Result Four genes, MRPL36, FEZ1, BMF, and AFG1L, were screened to construct our risk score model in which the higher the risk score, the poorer the prognosis. Univariate and multivariate analyses showed that the risk score was significantly associated with age, M stage, and N stage. The gene mutation probability in the high-risk score group was significantly higher than that in the low-risk score group. Patients with higher risk scores were more likely to die. Drug sensitivity prediction in different groups indicated that PF-562271 and AS601245 might be new inhibitors of BRCA. Conclusion We developed a new workable risk score model based on mitochondria-related genes for BRCA prognosis and identified new targets and drugs for BRCA research.
Collapse
|
27
|
WISP2/CCN5 Suppresses Vasculogenic Mimicry through Inhibition of YAP/TAZ Signaling in Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14061487. [PMID: 35326638 PMCID: PMC8945957 DOI: 10.3390/cancers14061487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer is the most frequent malignancy in women worldwide. Advanced breast cancer with distant organ metastases is considered incurable with currently available therapies. The vasculogenic mimicry (VM) process is associated with an invasive and metastatic cancer phenotype and a poor prognosis for human breast cancer patients. Our aim was to study the effect of WISP2, a matricellular protein, on VM. We found that WISP2 inhibits VM through inhibition of CYR61 protein expression and YAP-TAZ signaling. Our finding may open promising candidates for blocking VM in breast cancer. Abstract Vasculogenic mimicry (VM) formed by aggressive tumor cells to create vascular networks connected with the endothelial cells, plays an important role in breast cancer progression. WISP2 has been considered as a tumor suppressor protein; however, the relationship between WISP2 and VM formation remains unclear. We used the in vitro tube formation assay and in vivo immunohistochemical analysis in a mouse model, and human breast tumors were used to evaluate the effect of WISP2 on VM formation. Here we report that WISP2 acts as a potent inhibitor of VM formation in breast cancer. Enforced expression of WISP2 decreased network formation while knockdown of WISP2 increased VM. Mechanistically, WISP2 increased retention of oncogenic activators YAP/TAZ in cytoplasm, leading to decreased expression of the angiogenic factor CYR61. Studies using an in vivo mouse model and human breast tumors confirmed the in vitro cell lines data. In conclusion, our results indicate that WISP2 may play a critical role in VM and highlight the critical role of WISP2 as a tumor suppressor.
Collapse
|
28
|
Li F, Feng Y, Jiang Q, Zhang J, Wu F, Li Q, Jing X, Wang X, Huang C. Pan-cancer analysis, cell and animal experiments revealing TEAD4 as a tumor promoter in ccRCC. Life Sci 2022; 293:120327. [DOI: 10.1016/j.lfs.2022.120327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/29/2022]
|
29
|
Kaur S, Najm MZ, Khan MA, Akhter N, Shingatgeri VM, Sikenis M, Sadaf , Aloliqi AA. Drug-Resistant Breast Cancer: Dwelling the Hippo Pathway to Manage the Treatment. BREAST CANCER: TARGETS AND THERAPY 2021; 13:691-700. [PMID: 34938116 PMCID: PMC8685960 DOI: 10.2147/bctt.s343329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022]
Abstract
Breast cancer can be categorized as a commonly occurring cancer among women with a high mortality rate. Due to the repetitive treatment cycles, it has been noted that the patients develop resistance towards the chemotherapeutic drugs and remain unresponsive towards them. Therefore, many researchers are studying various signaling pathways involved in drug resistance for cancer treatment to overcome the obstacle. Hippo signaling is a widely studied pathway involved in tumor progression and controlling cell proliferation. Hence, understanding the aspects of the gene involved Hippo pathway would provide an insight into the mechanism behind the resistance and result in the development of new treatments. Here, we review the Hippo signaling pathway in humans and how the expression of different components leads to the regulation of resistance against some of the common chemo-drugs used in breast cancer treatment. The article will also discuss the chemotherapeutics that became ineffective due to the resistance and the mechanism following the process.
Collapse
|
30
|
Hanna A, Balko JM. Breast cancer resistance mechanisms: challenges to immunotherapy. Breast Cancer Res Treat 2021; 190:5-17. [PMID: 34322780 PMCID: PMC8560575 DOI: 10.1007/s10549-021-06337-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/18/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE The clinical implementation of immunotherapy has profoundly transformed cancer treatment. Targeting the immune system to mount anti-tumor responses can elicit a systemically durable response. Employing immune checkpoint blockade (ICB) has suppressed tumor growth and vastly improved patient overall and progression-free survival in several cancer types, most notably melanoma and non-small cell lung carcinoma. Despite widescale clinical success, ICB response is heterogeneously efficacious across tumor types. Many cancers, including breast cancer, are frequently refractory to ICB. In this review, we will discuss the challenges facing immunotherapy success and address the underlying mechanisms responsible for primary and acquired breast cancer resistance to immunotherapy. FINDINGS Even in initially ICB-responsive tumors, many acquire resistance due to tumor-specific alterations, loss of tumor-specific antigens, and extrinsic mechanisms that reshape the immune landscape within the tumor microenvironment (TME). The tumor immune interaction circumvents the benefits of immunotherapy; tumors rewire the tumor-suppressive functions of activated immune cells within their stroma to propagate tumor growth and progression. CONCLUSIONS The breast cancer immune TME is complex and the mechanisms driving resistance to ICB are multifaceted. Continued study in both preclinical models and clinical trials should help elucidate these mechanisms so they can be targeted to benefit more breast cancer patients.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin M Balko
- Department of Medicine, Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
31
|
Liu M, Wang L, Xia X, Wu Y, Zhu C, Duan M, Wei X, Hu J, Lei L. Regulated lytic cell death in breast cancer. Cell Biol Int 2021; 46:12-33. [PMID: 34549863 DOI: 10.1002/cbin.11705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/18/2021] [Indexed: 01/17/2023]
Abstract
Breast cancer (BC) is a very common cancer among women and one of the primary causes of death in women worldwide. Because BC has different molecular subtypes, the challenges associated with targeted therapy have increased significantly, and the identification of new therapeutic targets has become increasingly urgent. Blocking apoptosis and inhibiting cell death are important characteristics of malignant tumours, including BC. Under adverse conditions, including exposure to antitumour therapy, inhibition of cell death programmes can promote cancerous transformation and the survival of cancer cells. Therefore, inducing cell death in cancer cells is fundamentally important and provides new opportunities for potential therapeutic interventions. Lytic forms of cell death, primarily pyroptosis, necroptosis and ferroptosis, are different from apoptosis owing to their characteristic lysis, that is, the production of cellular components, to guide beneficial immune responses, and the application of lytic cell death (LCD) in the field of tumour therapy has attracted considerable interest from researchers. The latest clinical research results confirm that lytic death signalling cascades involve the BC cell immune response and resistance to therapies used in clinical practice. In this review, we discuss the current knowledge regarding the various forms of LCD, placing a special emphasis on signalling pathways and their implications in BC, which may facilitate the development of novel and optimal strategies for the clinical treatment of BC.
Collapse
Affiliation(s)
- Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lirong Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Chunling Zhu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Duan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
32
|
Yan L, Li H, An W, Wei W, Zhang X, Wang L. Mex-3 RNA binding MEX3A promotes the proliferation and migration of breast cancer cells via regulating RhoA/ROCK1/LIMK1 signaling pathway. Bioengineered 2021; 12:5850-5858. [PMID: 34486491 PMCID: PMC8806898 DOI: 10.1080/21655979.2021.1964155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has been known as cancer with high mortality rates. It has been studied that MEX3A (Mex-3 RNA Binding Family Member A) is involved in carcinogenesis by accelerating cancer proliferation and migration. Therefore, this research aimed to study how MEX3A regulates the biological behaviors of breast cancer. Firstly, we used GEPIA and KM-plotter databases to evaluate MEX3A expression in human breast cancer tissue compared to adjacent normal tissue. Immunohistochemistry was employed to assess MEX3A protein expression in clinical specimens. MEX3A mRNA expression level was assessed through quantitative real-time PCR (RT-qPCR). Western blotting was used to detect protein expression. Moreover, Cell Count Kit-8 (CCK-8) assay, wound healing assay and transwell invasion assay were used to determine the proliferation, migration and invasion of breast cancer cells, respectively. Our study found that MEX3A expression level was much higher in human breast cancer tissues as compared to adjacent normal tissues. Similarly, breast cancer cell lines showed higher expression of MEX3A as compared to the normal breast cells. This higher expression of MEX3A was linked with the poor survival of breast cancer. Moreover, we found that overexpression of MEX3A stimulated proliferation and migration in the breast cancer cells. However, inhibition of MEX3A significantly reduced the proliferation and migration of breast cancer cells. In addition, we determined that MEX3A could activate RhoA/ROCK1/LIMK1 signaling in the breast cancer cells. Overall, our study concluded that MEX3A promotes its migration and proliferation in breast cancer cells via modulating RhoA/ROCK1/LIMK1 signaling pathway.
Collapse
Affiliation(s)
- Li Yan
- Department Of Pathology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Hongjing Li
- Department Of Pathology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Wenbo An
- Department Of Radiology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Wei Wei
- Department Of Oncology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Xiaolei Zhang
- Department Of Oncology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Linlin Wang
- Department Of Pathology, Dongying People's Hospital, Dongying City, Shandong Province, China
| |
Collapse
|
33
|
Wang M, Dai M, Wang D, Tang T, Xiong F, Xiang B, Zhou M, Li X, Li Y, Xiong W, Li G, Zeng Z, Guo C. The long noncoding RNA AATBC promotes breast cancer migration and invasion by interacting with YBX1 and activating the YAP1/Hippo signaling pathway. Cancer Lett 2021; 512:60-72. [PMID: 33951538 DOI: 10.1016/j.canlet.2021.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown. In this study, the lncRNA apoptosis-associated transcript in bladder cancer (AATBC) was found to be significantly highly expressed in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer metastasis. Further studies revealed that AATBC activated the YAP1/Hippo signaling pathway through the AATBC-YBX1-MST1 axis. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of "AATBC-YAP1" may bring a new dawn to the treatment of breast cancer.
Collapse
Affiliation(s)
- Maonan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manli Dai
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ting Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center Baylor College of Medicine, Houston, TX, USA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S, Koul HK. Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett 2021; 507:112-123. [PMID: 33737002 PMCID: PMC10370464 DOI: 10.1016/j.canlet.2021.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Hippo pathway is a master regulator of development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size control. Hippo pathway relays signals from different extracellular and intracellular events to regulate cell behavior and functions. Hippo pathway is conserved from Protista to eukaryotes. Deregulation of the Hippo pathway is associated with numerous cancers. Alteration of the Hippo pathway results in cell invasion, migration, disease progression, and therapy resistance in cancers. However, the function of the various components of the mammalian Hippo pathway is yet to be elucidated in detail especially concerning tumor biology. In the present review, we focused on the Hippo pathway in different model organisms, its regulation and deregulation, and possible therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Suman Mohajan
- Department of Biochemistry and Molecular Biology, LSUHSC, Shreveport, USA
| | - Praveen Kumar Jaiswal
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Mousa Vatanmakarian
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | | | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Sweaty Koul
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Urology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA.
| |
Collapse
|
35
|
Gibault F, Sturbaut M, Coevoet M, Pugnière M, Burtscher A, Allemand F, Melnyk P, Hong W, Rubin BP, Pobbati AV, Guichou JF, Cotelle P, Bailly F. Design, Synthesis and Evaluation of a Series of 1,5-Diaryl-1,2,3-triazole-4-carbohydrazones as Inhibitors of the YAP-TAZ/TEAD Complex. ChemMedChem 2021; 16:2823-2844. [PMID: 34032019 DOI: 10.1002/cmdc.202100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/02/2023]
Abstract
Starting from our previously reported hit, a series of 1,5-diaryl-1,2,3-triazole-4-carbohydrazones were synthesized and evaluated as inhibitors of the YAP/TAZ-TEAD complex. Their binding to hTEAD2 was confirmed by nanodifferential scanning fluorimetry, and some of the compounds were also found to moderately disrupt the YAP-TEAD interaction, as assessed by a fluorescence polarization assay. A TEAD luciferase gene reporter assay performed in HEK293T cells and RTqPCR measurements in MDA-MB231 cells showed that these compounds inhibit YAP/TAZ-TEAD activity to cells in the micromolar range. In spite of the cytotoxic effects displayed by some of the compounds of this series, they are still good starting points and can be suitably modified into an effective and viable YAP-TEAD disruptor in the future.
Collapse
Affiliation(s)
- Floriane Gibault
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| | - Manon Sturbaut
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| | - Mathilde Coevoet
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 208 rue des Apothicaires, 34298, Montpellier Cedex 5, France
| | - Ashley Burtscher
- Robert J. Tomsich Pathology and Laboratory Medicine Institute and Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, OH 44195, USA
| | - Frédéric Allemand
- University of Montpellier CNRS UMR5048, INSERM U1054 Centre de Biologie Structurale, 29 rue de Navacelles, 34090, Montpellier, France
| | - Patricia Melnyk
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A(✶)STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute and Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Robert J. Tomsich Pathology and Laboratory Medicine Institute and Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, OH 44195, USA
| | - Jean-François Guichou
- University of Montpellier CNRS UMR5048, INSERM U1054 Centre de Biologie Structurale, 29 rue de Navacelles, 34090, Montpellier, France
| | - Philippe Cotelle
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France.,Ecole Centrale Lille, 59000, Lille, France
| | - Fabrice Bailly
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| |
Collapse
|
36
|
Canu V, Donzelli S, Sacconi A, Lo Sardo F, Pulito C, Bossel N, Di Benedetto A, Muti P, Botti C, Domany E, Bicciato S, Strano S, Yarden Y, Blandino G. Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death Differ 2021; 28:1493-1511. [PMID: 33230261 PMCID: PMC8166963 DOI: 10.1038/s41418-020-00677-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Sperm-associated antigen 5 (SPAG5) is an important driver of the cell mitotic spindle required for chromosome segregation and progression into anaphase. SPAG5 has been identified as an important proliferation marker and chemotherapy-sensitivity predictor, especially in estrogen receptor-negative breast cancer subtypes. Here, we report that SPAG5 is a direct target of miR-10b-3p, and its aberrantly high expression associates with poor disease-free survival in two large cohorts of breast cancer patients. SPAG5 depletion strongly impaired cancer cell cycle progression, proliferation, and migration. Interestingly, high expression of SPAG5 pairs with a YAP/TAZ-activated signature in breast cancer patients. Reassuringly, the depletion of YAP, TAZ, and TEAD strongly reduced SPAG5 expression and diminished its oncogenic effects. YAP, TAZ coactivators, and TEAD transcription factors are key components of the Hippo signaling pathway involved in tumor initiation, progression, and metastasis. Furthermore, we report that SPAG5 is a direct transcriptional target of TEAD/YAP/TAZ, and pharmacological targeting of YAP and TAZ severely reduces SPAG5 expression. Collectively, our data uncover an oncogenic feedback loop, comprising miR-10b-3p, SPAG5, and YAP/TAZ/TEAD, which fuels the aberrant proliferation of breast cancer.
Collapse
Affiliation(s)
- Valeria Canu
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- grid.417520.50000 0004 1760 5276Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Noa Bossel
- grid.13992.300000 0004 0604 7563Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Anna Di Benedetto
- grid.417520.50000 0004 1760 5276Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- grid.4708.b0000 0004 1757 2822Department of Biomedical Science and Oral Health, University of Milan, Milan, 20122 Italy
| | - Claudio Botti
- grid.417520.50000 0004 1760 5276Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Eytan Domany
- grid.13992.300000 0004 0604 7563Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Silvio Bicciato
- grid.7548.e0000000121697570Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sabrina Strano
- grid.417520.50000 0004 1760 5276SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Giovanni Blandino
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
37
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation. J Immunol Res 2021; 2021:6668573. [PMID: 33506060 PMCID: PMC7808819 DOI: 10.1155/2021/6668573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common neoplasm diagnosed in women around the world. Checkpoint inhibitors, targeting the programmed death receptor-1 or ligand-1 (PD-1/PD-L1) axis, have dramatically changed the outcome of cancer treatment. These therapies have been recently considered as alternatives for treatment of breast cancers, in particular those with the triple-negative phenotype (TNBC). A further understanding of the regulatory mechanisms of PD-L1 expression is required to increase the benefit of PD-L1/PD-1 checkpoint immunotherapy in breast cancer patients. In this review, we will compile the most recent studies evaluating PD-1/PD-L1 checkpoint inhibitors in breast cancer. We review factors that determine the therapeutic success of PD-1/PD-L1 immunotherapies in this pathology. In particular, we focus on pathways that interconnect the epithelial-mesenchymal transition (EMT) with regulation of PD-L1 expression. We also discuss the relationship between cellular metabolic pathways and PD-L1 expression that are involved in the promotion of resistance in TNBC.
Collapse
|
39
|
Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal 2020; 78:109858. [PMID: 33253912 DOI: 10.1016/j.cellsig.2020.109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Samji
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| | - Manoj K Rajendran
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Vidya P Warrier
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Akshayaa Ganesh
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Karunagaran Devarajan
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
40
|
Orlandella FM, De Stefano AE, Iervolino PLC, Buono P, Soricelli A, Salvatore G. Dissecting the molecular pathways involved in the effects of physical activity on breast cancers cells: A narrative review. Life Sci 2020; 265:118790. [PMID: 33220294 DOI: 10.1016/j.lfs.2020.118790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Epidemiologic evidence suggests that obesity and sedentary are modifiable factors strongly associated with breast cancer risk worldwide. Since breast cancer represents the most frequent malignant neoplasm and the second cause of cancer-related deaths in women worldwide, an insight into the molecular mechanisms clarifying the effects of physical activity in breast cancer cells could have important implication for changing this cancer burden. In this narrative Review article, we summarize the current knowledge, regarding the effects of adapted physical activity program, focusing on the cellular signaling pathways activated and on the molecular markers involved in breast cancer. Regular exercise training in breast cancer patients has been shown to positively affect tumor-growth and survival rate. Indeed, emerging work demonstrates that regular exercise is able to affect multiple cancer hallmarks influencing the development and progression of cancer. In conclusion, changes in the circulating insulin, adipokines and estrogen levels, inflammation and oxidative stress could represent some of the possible biological mechanisms through which exercise may influence breast cancer development and recurrence.
Collapse
Affiliation(s)
| | - Anna Elisa De Stefano
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Paola Lucia Chiara Iervolino
- CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; Dipartimento di Scienze Biomediche Avanzate, Università "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Andrea Soricelli
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy
| | - Giuliana Salvatore
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
41
|
Rafique O, Mir AH. Weighted dimensionality reduction and robust Gaussian mixture model based cancer patient subtyping from gene expression data. J Biomed Inform 2020; 112:103620. [PMID: 33188907 DOI: 10.1016/j.jbi.2020.103620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The heterogeneous nature of cancer necessitates subtyping of cancer patients into distinct and well separated subgroups. However, computational issues arise because gene expression data is noisy and contains outliers apart from being high dimensional. As such, an attempt to subtype cancer patients from gene expression data leads to highly overlapping Kaplan-Meier (KM) survival plots and thus clear distinction among the discovered subtypes becomes difficult. Here we attempt to achieve a greater separation among the subtypes through a robust clustering pipeline. METHODS We propose a robust framework to achieve a better separation among the discovered subtypes. Our framework is based on dimensionality reduction of a weighted gene expression matrix using t-distributed Stochastic Neighbor Embedding (t-SNE) and a robust Gaussian mixture model based clustering approach. Every gene is weighted according to the median absolute deviation (MAD) of the gene before dimensionality reduction. The results are quantified by measuring the minimum pairwise separation among the KM plots and minimum hazard ratio among the subtypes. We also introduce a novel method, called cumulative survival separation, to quantify the separation among the discovered subtypes. RESULTS To validate the proposed methodology we obtained five cancer gene expression datasets from The Cancer Genome Atlas (TCGA) and comparisons with Consensus Clustering (CC), Consensus non-negative matrix factorization (CNMF), fast density-aware spectral clustering (Spectrum) and Neighborhood based Multi-Omics clustering (NEMO) methodologies show that the proposed method is able to achieve a greater separation compared to the aforementioned methods in literature. For instance, the minimum pairwise life expectancy difference (in days) between the discovered subtypes for GBM is 61 days for the proposed methodology with MAD scores, whereas it is approximately 33, 19, 49 and 33 days only for CC, Spectrum, Nemo and CNMF respectively. Comparisons are also shown for the proposed framework with and without using the MAD scores and it is observed that MAD score significantly improves the subtype separation. Hazard ratio analysis also shows that the proposed methodology performs better. Furthermore, pathway over-representation analyses were carried to identify relevant genetic pathways which can be possible targets for treatment. CONCLUSION The results suggest that the use of median absolute deviation and a robust clustering methodology are helpful in achieving greater separation among the subtypes with better statistical and clinical significance.
Collapse
Affiliation(s)
- Omar Rafique
- Machine Learning Lab, Department of Electronics and Communication Engineering, National Institute of Technology, Srinagar, JK, India.
| | - A H Mir
- Machine Learning Lab, Department of Electronics and Communication Engineering, National Institute of Technology, Srinagar, JK, India
| |
Collapse
|
42
|
Zhao W, Wang M, Cai M, Zhang C, Qiu Y, Wang X, Zhang T, Zhou H, Wang J, Zhao W, Shao R. Transcriptional co-activators YAP/TAZ: Potential therapeutic targets for metastatic breast cancer. Biomed Pharmacother 2020; 133:110956. [PMID: 33189066 DOI: 10.1016/j.biopha.2020.110956] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. Although routine and targeted therapies have improved the survival rate, there are still considerable challenges in the treatment of breast cancer. Metastasis is the leading cause of death in patients diagnosed with breast cancer. Yes-associated protein (YAP) and/or PDZ binding motif (TAZ) are usually abnormally activated in breast cancer leading to a variety of effects on tumour promotion, such as epithelial-mesenchymal transition, cancer stem cell production and drug-resistance. The abnormal activation of YAP/TAZ can affect metastasis-related processes and promote cancer progression and metastasis by interacting with some metastasis-related factors and pathways. In this article, we summarise the evidence that YAP/TAZ regulates breast cancer metastasis, its post-translational modification mechanisms, and the latest advances in the treatment of YAP/TAZ-related breast cancer metastasis, besides providing a new strategy of YAP/TAZ-based treatment of human breast cancer.
Collapse
Affiliation(s)
- Wenxia Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Mengyan Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Meilian Cai
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Conghui Zhang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Yuhan Qiu
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xiaowei Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Tianshu Zhang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Huimin Zhou
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Junxia Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Rongguang Shao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
43
|
Kong Y, Yu T. forgeNet: a graph deep neural network model using tree-based ensemble classifiers for feature graph construction. Bioinformatics 2020; 36:3507-3515. [PMID: 32163118 DOI: 10.1093/bioinformatics/btaa164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/07/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION A unique challenge in predictive model building for omics data has been the small number of samples (n) versus the large amount of features (p). This 'n≪p' property brings difficulties for disease outcome classification using deep learning techniques. Sparse learning by incorporating known functional relationships between the biological units, such as the graph-embedded deep feedforward network (GEDFN) model, has been a solution to this issue. However, such methods require an existing feature graph, and potential mis-specification of the feature graph can be harmful on classification and feature selection. RESULTS To address this limitation and develop a robust classification model without relying on external knowledge, we propose a forest graph-embedded deep feedforward network (forgeNet) model, to integrate the GEDFN architecture with a forest feature graph extractor, so that the feature graph can be learned in a supervised manner and specifically constructed for a given prediction task. To validate the method's capability, we experimented the forgeNet model with both synthetic and real datasets. The resulting high classification accuracy suggests that the method is a valuable addition to sparse deep learning models for omics data. AVAILABILITY AND IMPLEMENTATION The method is available at https://github.com/yunchuankong/forgeNet. CONTACT tianwei.yu@emory.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yunchuan Kong
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
44
|
Chen M, Huang B, Zhu L, Chen K, Liu M, Zhong C. Structural and Functional Overview of TEAD4 in Cancer Biology. Onco Targets Ther 2020; 13:9865-9874. [PMID: 33116572 PMCID: PMC7547805 DOI: 10.2147/ott.s266649] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
TEA domain transcription factor 4 (TEAD4) is an important member of the TEAD family. As a downstream effector of the Hippo pathway, TEAD4 has essential roles in cell proliferation, cell survival, tissue regeneration, and stem cell maintenance. TEAD4 contains a TEA DNA binding domain that binds the promoters of target genes and a Yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) binding domain that associates with transcriptional cofactors. TEAD4 coordinates with YAP, TAZ, VGLL, and other transcription factors to regulate different cellular processes in cancer via its transcriptional output. Moreover, TEAD4 undergoes post-translational modifications and subcellular translocations, and both processes have been shown to shed new insights on how TEAD transcriptional activity can be modified. In summary, TEAD4 has important roles in cancer, including epithelial-mesenchymal transition (EMT), metastasis, cancer stem cell dynamics, and chemotherapeutic drug resistance, suggesting that TEAD4 may be a promising prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Mu Chen
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Bingsong Huang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Kui Chen
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, People’s Republic of China
| |
Collapse
|
45
|
Gray M, Turnbull AK, Meehan J, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. Comparative Analysis of the Development of Acquired Radioresistance in Canine and Human Mammary Cancer Cell Lines. Front Vet Sci 2020; 7:439. [PMID: 32851022 PMCID: PMC7396503 DOI: 10.3389/fvets.2020.00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Research using in vitro canine mammary cancer cell lines and naturally-occurring canine mammary tumors are not only fundamental models used to advance the understanding of cancer in veterinary patients, but are also regarded as excellent translational models of human breast cancer. Human breast cancer is commonly treated with radiotherapy; however, tumor response depends on both innate radiosensitivity and on tumor repopulation by cells that develop radioresistance. Comparative canine and human studies investigating the mechanisms of radioresistance may lead to novel cancer treatments that benefit both species. In this study, we developed a canine mammary cancer (REM-134) radioresistant (RR) cell line and investigated the cellular mechanisms related to the development of acquired radioresistance. We performed a comparative analysis of this resistant model with our previously developed human breast cancer radioresistant cell lines (MCF-7 RR, ZR-751 RR, and MDA-MB-231 RR), characterizing inherent differences through genetic, molecular, and cell biology approaches. RR cells demonstrated enhanced invasion/migration capabilities, with phenotypic evidence suggestive of epithelial-to-mesenchymal transition. Similarities were identified between the REM-134 RR, MCF-7 RR, and ZR-751 RR cell lines in relation to the pattern of expression of both epithelial and mesenchymal genes, in addition to WNT, PI3K, and MAPK pathway activation. Following the development of radioresistance, transcriptomic data indicated that parental MCF-7 and ZR-751 cell lines changed from a luminal A classification to basal/HER2-overexpressing (MCF-7 RR) and normal-like/HER2-overexpressing (ZR-751 RR). These radioresistant subtypes were similar to the REM-134 and REM-134 RR cell lines, which were classified as HER2-overexpressing. To our knowledge, our study is the first to generate a canine mammary cancer RR cell line model and provide a comparative genetic and phenotypic analysis of the mechanisms of acquired radioresistance between canine and human cancer cell lines. We demonstrate that the cellular processes that occur with the development of acquired radioresistance are similar between the human and canine cell lines; our results therefore suggest that the canine model is appropriate to study both human and canine radioresistant mammary cancers, and that treatment strategies used in human medicine may also be applicable to veterinary patients.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
46
|
Mohammadi S, Arefnezhad R, Danaii S, Yousefi M. New insights into the core Hippo signaling and biological macromolecules interactions in the biology of solid tumors. Biofactors 2020; 46:514-530. [PMID: 32445262 DOI: 10.1002/biof.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
As an evolutionarily conserved pathway, Hippo signaling pathway impacts different pathology and physiology processes such as wound healing, tissue repair/size and regeneration. When some components of Hippo signaling dysregulated, it affects cancer cells proliferation. Moreover, the relation Hippo pathway with other signaling including Wnt, TGFβ, Notch, and EGFR signaling leaves effect on the proliferation of cancer cells. Utilizing a number of therapeutic approaches, such as siRNAs and long noncoding RNA (lncRNA) to prevent cancer cells through the targeting of Hippo pathways, can provide new insights into cancer target therapy. The purpose of present review, first of all, is to demonstrate the importance of Hippo signaling and its relation with other signaling pathways in cancer. It also tries to demonstrate targeting Hippo signaling progress in cancer therapy.
Collapse
Affiliation(s)
- Solmaz Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Depatment of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Li D, Hu X, Yu S, Deng S, Yan M, Sun F, Song J, Tang L. Silence of lncRNA MIAT-mediated inhibition of DLG3 promoter methylation suppresses breast cancer progression via the Hippo signaling pathway. Cell Signal 2020; 73:109697. [PMID: 32593652 DOI: 10.1016/j.cellsig.2020.109697] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
As the foremost common female malignancy, breast cancer (BC) poses a significant public health stumbling block. Although treatment protocols have improved over the years, the overall prognosis of BC remains unsatisfactory. Extensive investigations have taken place into long non coding RNAs (lncRNAs) pertaining to their involvement in carcinogenesis. The current study in connection with bioinformatics tools aimed to identify the myocardial infarction associated transcript (MIAT) as a BC-related differentially expressed lncRNA in an attempt to elucidate the effect of MIAT in BC cells. MIAT was initially overexpressed while DLG3 was down-regulated in BC. BC cells were subsequently treated with si-MIAT or/and si-DLG3, after which the expressions of DLG3 and the Hippo signaling pathway-related proteins were evaluated to analyze their regulatory mechanism in BC, which indicated that MIAT inhibition up-regulated DLG3 and activated the Hippo signaling pathway to suppress proliferation and promote apoptosis of BC cells. MS-PCR and RIP assays demonstrated that MIAT bound to the methylation proteins DNMT1, DNMT3A and DNMT3B, promoted the methylation of CpG islands in DLG3 promoter and inhibited the DLG3 expression. Moreover, our data suggested that DLG3 could bind to MST2 and regulate LAST1, which prevented the nuclear translocation of YAP. The in vitro results were further verified via the in vivo findings. Taken together, the central findings of our study demonstrate that MIAT silencing inhibits BC progression by means of up-regulating DLG3 via activation of the Hippo signaling pathway, highlighting a novel potential therapeutic target for the treatment of the BC.
Collapse
Affiliation(s)
- Dezhi Li
- Department of Oncology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China.
| | - Xingsheng Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sijia Yu
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China
| | - Shishan Deng
- Department of Anatomy, School of Basic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Min Yan
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China
| | - Fengfei Sun
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China; Department of Respiration, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Junmei Song
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China
| | - Lina Tang
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China
| |
Collapse
|
48
|
Kyriazoglou A, Liontos M, Zakopoulou R, Kaparelou M, Tsiara A, Papatheodoridi AM, Georgakopoulou R, Zagouri F. The Role of the Hippo Pathway in Breast Cancer Carcinogenesis, Prognosis, and Treatment: A Systematic Review. Breast Care (Basel) 2020; 16:6-15. [PMID: 33716627 DOI: 10.1159/000507538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background The Hippo pathway is a developmental pathway recently discovered in Drosophila melanogaster; in mammals it normally controls organ development and wound healing. Hippo signaling is deregulated in breast cancer (BC). MST1/2 and LATS1/2 kinases are the upstream molecular elements of Hippo signaling which phosphorylate and regulate the two effectors of Hippo signaling, YAP1 and TAZ cotranscriptional activators. The two molecular effectors of the Hippo pathway facilitate their activity through TEAD transcription factors. Several molecular pathways with known oncogenic functions cross-talk with the Hippo pathway. Methods A systematic review studying the correlation of the Hippo pathway with BC tumorigenesis, prognosis, and treatment was performed. Results Recent literature highlights the critical role of Hippo signaling in a wide spectrum of biological mechanisms in BC. Discussion The Hippo pathway has a crucial position in BC molecular biology, cellular behavior, and response to treatment. Targeting the Hippo pathway could potentially improve the prognosis and outcome of BC patients.
Collapse
Affiliation(s)
| | - Michalis Liontos
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Maria Kaparelou
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Anna Tsiara
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | | | | | - Flora Zagouri
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| |
Collapse
|
49
|
Sun HL, Men JR, Liu HY, Liu MY, Zhang HS. FOXM1 facilitates breast cancer cell stemness and migration in YAP1-dependent manner. Arch Biochem Biophys 2020; 685:108349. [DOI: 10.1016/j.abb.2020.108349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
|
50
|
Fan S, Price T, Huang W, Plue M, Warren J, Sundaramoorthy P, Paul B, Feinberg D, MacIver N, Chao N, Sipkins D, Kang Y. PINK1-Dependent Mitophagy Regulates the Migration and Homing of Multiple Myeloma Cells via the MOB1B-Mediated Hippo-YAP/TAZ Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900860. [PMID: 32154065 PMCID: PMC7055555 DOI: 10.1002/advs.201900860] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/23/2019] [Indexed: 05/07/2023]
Abstract
The roles of mitochondrial dysfunction in carcinogenesis remain largely unknown. The effects of PTEN-induced putative kinase 1 (PINK1)-dependent mitophagy on the pathogenesis of multiple myeloma (MM) are determined. The levels of the PINK1-dependent mitophagy markers PINK1 and parkin RBR E3 ubiquitin protein ligase (PARK2) in CD138+ plasma cells are reduced in patients with MM and correlate with clinical outcomes in myeloma patients. Moreover, the induction of PINK1-dependent mitophagy with carbonylcyanide-m-chlorophenylhydrazone (CCCP) or salinomycin, or overexpression of PINK1 leads to inhibition of transwell migration, suppression of myeloma cell homing to calvarium, and decreased osteolytic bone lesions. Furthermore, genetic deletion of pink1 accelerates myeloma development in a spontaneous X-box binding protein-1 spliced isoform (XBP-1s) transgenic myeloma mouse model and in VK*MYC transplantable myeloma recipient mice. Additionally, treatment with salinomycin shows significant antimyeloma activities in vivo in murine myeloma xenograft models. Finally, the effects of PINK1-dependent mitophagy on myeloma pathogenesis are driven by the activation of the Mps one binder kinase activator (MOB1B)-mediated Hippo pathway and the subsequent downregulation of Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) expression. These data provide direct evidence that PINK1-dependent mitophagy plays a critical role in the pathogenesis of MM and is a potential therapeutic target.
Collapse
Affiliation(s)
- Shengjun Fan
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Trevor Price
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Michelle Plue
- Shared Materials Instrumentation FacilityPratt School of EngineeringDuke UniversityDurhamNC27708USA
| | | | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Barry Paul
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Daniel Feinberg
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | | | - Nelson Chao
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Dorothy Sipkins
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| |
Collapse
|