1
|
Noruzi S, Mohammadi R, Jamialahmadi K. CRISPR/Cas9 system: a novel approach to overcome chemotherapy and radiotherapy resistance in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3373-3408. [PMID: 39560750 DOI: 10.1007/s00210-024-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/20/2024]
Abstract
Cancer presents a global health challenge with rising incidence and mortality. Despite treatment advances in cancer therapy, radiotherapy and chemotherapy remained the most common treatments for all types of cancers. However, resistance phenotype in cancer cells leads to unsatisfactory results in the efficiency of therapeutic strategies. Therefore, researchers strive to propose effective solutions to overcome treatment failure, which requires a deep knowledge of treatment-resistant mechanisms. The progression and occurrence of tumors can be attributed to gene mutation. Over the past decade, the emergence of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) genome editing has revolutionized cancer research. This versatile technology enables cancer modeling, manipulation of specific DNA sequences, and genome-wide screening. CRISPR/Cas9 is an effective tool for identifying radio- and chemoresistance genes and offering potential adjunctive treatments to overcome tumor recurrence after chemo- and radiotherapy. This article aims to explain the potential of the CRISPR/Cas9 system in improving the effectiveness of chemo- and radiotherapy and ultimately overcoming treatment failure.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Bai X, Li J, Guo X, Huang Y, Xu X, Tan A, Jia Y, Sun Q, Guo X, Chen J, Kang J. LncRNA MALAT1 promotes Erastin-induced ferroptosis in the HBV-infected diffuse large B-cell lymphoma. Cell Death Dis 2024; 15:819. [PMID: 39532842 PMCID: PMC11557927 DOI: 10.1038/s41419-024-07209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In a retrospective analysis of clinical data from 587 DLBCL (diffuse large B-cell lymphoma) patients in China, 13.8% of cases were associated with HBV (hepatitis B virus) infection, leading to distinct clinical features and poorer prognosis. Moreover, HBV infection has a more pronounced impact on the survival of the GCB (germinal center B-cell-like) type DLBCL patients compared to the ABC (activated B-cell-like) type. In this study, we found that the expression of LncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was downregulated in the HBV-infected GCB-type DLBCL patients, and the HBV core protein (HBX) directly inhibited the MALAT1 expression in DLBCL cells. Notably, the overexpression of HBX could attenuate the Erastin-induced ferroptosis in the GCB-type DLBCLs, while MALAT1 re-expression restored sensitivity in the HBX-overexpressing DLBCLs in vitro and in vivo. Mechanistically, MALAT1 competitively hindered SFPQ (splicing factor proline and glutamine-rich) from effectively splicing the pre-mRNA of SLC7A11 (solute carrier family 7 member 11), due to a shared TTGGTCT motif, which impeded the SLC7A11 pre-mRNA maturation and hence diminished its negative regulation on ferroptosis. Together, our study identified HBX's role in inhibiting MALAT1 expression, promoting SFPQ-mediated splicing of SLC7A11 pre-mRNA, and reducing the GCB-type DLBCL sensitivity to Erastin-induced ferroptosis. Combined with the recent studies that ferroptosis may be involved in the occurrence and development of DLBCL, these findings explain our clinical data analysis that DLBCL patients with low expression of MALAT1 have poorer prognosis and shorter overall survival, and provide a valuable therapeutic target for the HBV-infected GCB-type DLBCL patients.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Ferroptosis/genetics
- Ferroptosis/drug effects
- Animals
- Hepatitis B virus/genetics
- Cell Line, Tumor
- Male
- Mice
- Hepatitis B/complications
- Hepatitis B/genetics
- Female
- Viral Regulatory and Accessory Proteins
- Gene Expression Regulation, Neoplastic/drug effects
- Middle Aged
- Trans-Activators/metabolism
- Trans-Activators/genetics
- Mice, Nude
Collapse
Affiliation(s)
- Xiaofei Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xuecong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yinghui Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xu Xu
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ailing Tan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yisha Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Luo X, Wei Q, Jiang X, Chen N, Zuo X, Zhao H, Liu Y, Liu X, Xie L, Yang Y, Liu T, Yi P, Xu J. CSTF3 contributes to platinum resistance in ovarian cancer through alternative polyadenylation of lncRNA NEAT1 and generating the short isoform NEAT1_1. Cell Death Dis 2024; 15:432. [PMID: 38898019 PMCID: PMC11187223 DOI: 10.1038/s41419-024-06816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Platinum-based chemotherapy is the standard postoperative adjuvant treatment for ovarian cancer (OC). Despite the initial response to chemotherapy, 85% of advanced OC patients will have recurrent disease. Relapsed disease and platinum resistance are the major causes of death in OC patients. In this study, we compared the global regulation of alternative polyadenylation (APA) in platinum-resistant and platinum-sensitive tissues of OC patients by analyzing a set of single-cell RNA sequencing (scRNA-seq) data from public databases and found that platinum-resistant patients exhibited global 3' untranslated region (UTR) shortening due to the different usage of polyadenylation sites (PASs). The APA regulator CSTF3 was the most significantly upregulated gene in epithelial cells of platinum-resistant OC. CSTF3 knockdown increased the sensitivity of OC cells to platinum. The lncRNA NEAT1 has two isoforms, short (NEAT1_1) and long (NEAT1_2) transcript, because of the APA processing in 3'UTR. We found that CSTF3 knockdown reduced the usage of NEAT1 proximal PAS to lengthen the transcript and facilitate the expression of NEAT1_2. Downregulation of the expression of NEAT1 (NEAT1_1/_2), but not only NEAT1_2, also increased the sensitivity of OC cells to platinum. Overexpressed NEAT1_1 reversed the platinum resistance of OC cells after knocking down CSTF3 expression. Furthermore, downregulated expression of CSTF3 and NEAT1_1, rather than NEAT1_2, was positively correlated with inactivation of the PI3K/AKT/mTOR pathway in OC cells. Together, our findings revealed a novel mechanism of APA regulation in platinum-resistant OC. CSTF3 directly bound downstream of the NEAT1 proximal PAS to generate the short isoform NEAT1_1 and was conducive to platinum resistance, which provides a potential biomarker and therapeutic strategy for platinum-resistant OC patients.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglv Wei
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ningxuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinzhao Zuo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Zhao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yujiao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingcui Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Hashem M, Mohandesi Khosroshahi E, Aliahmady M, Ghanei M, Soofi Rezaie Y, alsadat Jafari Y, rezaei F, Khodaparast eskadehi R, Kia Kojoori K, jamshidian F, Nabavi N, Rashidi M, Hasani Sadi F, Taheriazam A, Entezari M. Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism. Noncoding RNA Res 2024; 9:560-582. [PMID: 38515791 PMCID: PMC10955558 DOI: 10.1016/j.ncrna.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.
Collapse
Affiliation(s)
- Mehrdad Hashem
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmady
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morvarid Ghanei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - faranak jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Webster NJG, Kumar D, Wu P. Dysregulation of RNA splicing in early non-alcoholic fatty liver disease through hepatocellular carcinoma. Sci Rep 2024; 14:2500. [PMID: 38291075 PMCID: PMC10828381 DOI: 10.1038/s41598-024-52237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
While changes in RNA splicing have been extensively studied in hepatocellular carcinoma (HCC), no studies have systematically investigated changes in RNA splicing during earlier liver disease. Mouse studies have shown that disruption of RNA splicing can trigger liver disease and we have shown that the splicing factor SRSF3 is decreased in the diseased human liver, so we profiled RNA splicing in liver samples from twenty-nine individuals with no-history of liver disease or varying degrees of non-alcoholic fatty liver disease (NAFLD). We compared our results with three publicly available transcriptome datasets that we re-analyzed for splicing events (SEs). We found many changes in SEs occurred during early liver disease, with fewer events occurring with the onset of inflammation and fibrosis. Many of these early SEs were enriched for SRSF3-dependent events and were associated with SRSF3 binding sites. Mapping the early and late changes to gene ontologies and pathways showed that the genes harboring these early SEs were involved in normal liver metabolism, whereas those harboring late SEs were involved in inflammation, fibrosis and proliferation. We compared the SEs with HCC data from the TCGA and observed that many of these early disease SEs are found in HCC samples and, furthermore, are correlated with disease survival. Changes in splicing factor expression are also observed, which may be associated with distinct subsets of the SEs. The maintenance of these SEs through the multi-year oncogenic process suggests that they may be causative. Understanding the role of these splice variants in metabolic liver disease progression may shed light on the triggers of liver disease progression and the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nicholas J G Webster
- Jennifer Moreno VA Medical Center, San Diego, CA, 92161, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California, San Diego, CA, 92093, USA.
| | - Deepak Kumar
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Panyisha Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
6
|
Eun JW, Cheong JY, Jeong JY, Kim HS. A New Understanding of Long Non-Coding RNA in Hepatocellular Carcinoma-From m 6A Modification to Blood Biomarkers. Cells 2023; 12:2272. [PMID: 37759495 PMCID: PMC10528438 DOI: 10.3390/cells12182272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
With recent advancements in biological research, long non-coding RNAs (lncRNAs) with lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular phenotypic modulation. Despite initial skepticism due to their low sequence conservation and expression levels, their significance in various biological processes has become increasingly apparent. We provided an overview of lncRNAs and discussed their defining features and modes of operation. We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC tumor microenvironment is emphasized, illustrating their potential as key modulators of disease dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research are also discussed, emphasizing their potential in advancing liver cancer research.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jee-Yeong Jeong
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
- Institute for Medical Science, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Hyung Seok Kim
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
| |
Collapse
|
7
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
8
|
Li Y, Nie J, Deng C, Li H. P-15 promotes chondrocyte proliferation in osteoarthritis by regulating SFPQ to target the Akt-RUNX2 axis. J Orthop Surg Res 2023; 18:199. [PMID: 36915153 PMCID: PMC10012506 DOI: 10.1186/s13018-023-03658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND The disruption of chondrocyte proliferation and differentiation is a critical event during the process of joint injury in osteoarthritis (OA). P-15 peptides could bind to integrin receptors on various precursor cells, promote cell adhesion, release growth factors, and promote the differentiation of osteoblast precursor cells. However, the role of P-15 in OA, particularly in chondrocyte proliferation, is not fully understood. METHODS The activity of SFPQ and RUNX2 in the bone tissue of patients with osteoarthritis was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). Interleukin-1β (IL-1β) inducer was performed to establish an in vitro model of OA. Cell proliferation was measured by CCK-8 assay. The expressions of COL2a1, ACAN, COMP, SOX9, and BMP2 related to cartilage differentiation were detected using qRT-PCR. In addition, the expression levels of SFPQ, AKT, p-AKT, and RUNX2 were detected using Western blotting. RESULTS The results showed that the expression of SFPQ was significantly decreased and the expression of RUNX2 was significantly increased in osteoarthritis cartilage tissue. P-15 peptide reversed IL-1β-induced cell proliferation obstruction and alleviated chondrocyte damage. Furthermore, P-15 polypeptide increased the expression levels of cartilage differentiation genes COL2a1, ACAN, and BMP2, while decreasing the expression of COMP and SOX9 in an inverse dose-dependent manner. Then specific interfering RNA proved that P-15 maintains chondrocyte stability and is associated with the SFPQ gene. Finally, we confirmed that P-15 inhibited the Akt-RUNX2 pathway, which is regulated in the expression of SFPQ. CONCLUSIONS P-15 can mitigate chondrocyte damage and osteoarthritis progression by inhibiting cell death and modulating SFPQ-Akt-RUNX2 pathway, offering an opportunity to develop new strategies for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yuanli Li
- Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| | - Junlan Nie
- Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Changgong Deng
- Anatomy Teaching and Research Section, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Hong Li
- Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| |
Collapse
|
9
|
Wei X, Hu W, Mao K. A methylomics-associated nomogram predicts the overall survival risk of stage III to IV ovarian cancer. Medicine (Baltimore) 2023; 102:e32766. [PMID: 36749233 PMCID: PMC9901957 DOI: 10.1097/md.0000000000032766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
Accumulating studies demonstrated that DNA methylation may be potential prognostic hallmarks of various cancers. However, few studies have focused on the power of DNA methylation for prognostic prediction in patients with stage III to IV ovarian cancer (OC). Therefore, constructing a methylomics-related indicator to predict overall survival (OS) of stage III to IV OC was urgently required. A total of 520 OC patients with 485,577 DNA methylation sites from TCGA database were selected to develop a robust DNA methylation signature. The 520 patients were clustered into a training group (70%, n = 364 samples) and an internal validation group (30%, n = 156). The training group was used for digging a prognostic predictor based on univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO) as well as multivariate Cox regression analysis. The internal and external validation group (ICGC OV-AU project) were used for validating the predictive robustness of the predictor based on receiver operating characteristic (ROC) analysis and Kaplan-Meier survival analysis. We identified a 21-DNA methylation signature-based classifier for stage III-IV OC patients' OS. According to ROC analysis in the internal validation, external validation and entire TCGA set, we proved the high power of the 21-DNA methylation signature for predicting OS (area under the curve [AUC] at 1, 3, 5 years in internal validation set (0.782, 0.739, 0.777, respectively), external validation set (0.828, 0.760, 0.741, respectively), entire TCGA set (0.741, 0.748, 0.781, respectively). Besides, a nomogram was developed via methylation risk score as well as a few clinical variables, and the result showed a high ability of the predictive nomogram. In summary, we used integrated bioinformatics approaches to successfully identified a DNA methylation-associated nomogram, which can predict effectively the OS of patients with stage III to IV OC.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Gynaecology, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Wencheng Hu
- Department of Gynaecology, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Kexi Mao
- Department of Emergency, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| |
Collapse
|
10
|
Rothzerg E, Feng W, Song D, Li H, Wei Q, Fox A, Wood D, Xu J, Liu Y. Single-Cell Transcriptome Analysis Reveals Paraspeckles Expression in Osteosarcoma Tissues. Cancer Inform 2022; 21:11769351221140101. [PMID: 36507075 PMCID: PMC9730017 DOI: 10.1177/11769351221140101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/30/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear paraspeckles are subnuclear bodies contracted by nuclear-enriched abundant transcript 1 (NEAT1) long non-coding RNA, localised in the interchromatin space of mammalian cell nuclei. Paraspeckles have been critically involved in tumour progression, metastasis and chemoresistance. To this date, there are limited findings to suggest that paraspeckles, NEAT1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) directly or indirectly play roles in osteosarcoma progression. Herein, we analysed NEAT1, paraspeckle proteins (SFPQ, PSPC1 and NONO) and hnRNP members (HNRNPK, HNRNPM, HNRNPR and HNRNPD) gene expression in 6 osteosarcoma tumour tissues using the single-cell RNA-sequencing method. The normalised data highlighted that the paraspeckles transcripts were highly abundant in osteoblastic OS cells, except NEAT1, which was highly expressed in myeloid cell 1 and 2 subpopulations.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Wenyu Feng
- Department of Orthopaedics, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hengyuan Li
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Qingjun Wei
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Archa Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Jiake Xu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China,Yun Liu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| |
Collapse
|
11
|
RBM10 regulates alternative splicing of lncRNA Neat1 to inhibit the invasion and metastasis of NSCLC. Cancer Cell Int 2022; 22:338. [PMCID: PMC9636673 DOI: 10.1186/s12935-022-02758-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Non-small cell lung cancer (NSCLC) accounts for more than 85% of the total cases with lung cancer. NSCLC is characterized by easy metastasis, which often spreads to bones, brains and livers. RNA-binding motif protein 10 (RBM10) is an alternative splicing (AS) regulator frequently mutated in NSCLC. We found that there were multiple peak binding sites between RBM10 and long non-coding RNA nuclear enriched abundant transcript 1 (LncRNA Neat1) by crosslinking-immunprecipitation and high-throughput sequencing (Clip-Seq). LncRNA Neat1 plays an indispensable role in promoting cancer in a variety of tumors and produces two splicing variants: Neat1_1 and Neat1_2. This study aims to explore the mechanism of RBM10 and LncRNA Neat1 in invasion and metastasis of NSCLC.
Methods
Through histological and cytological experiments, we assessed the expression level of RBM10 protein expression. The interaction between RBM10 and Neat1 was evaluated via Clip-Seq and RNA immunoprecipitation assay. The effect of RBM10 on Neat1 and its splicing variants was identified by RT-qPCR. The effect of RBM10 and Neat1 on invasive and metastasis phenotypes of NSCLC was analyzed using transwell invasion assay and scratch test. Additionally, downstream signaling pathway of RBM10 were identified by immunofluorescence and western blot.
Results
RBM10 exhibited low levels of expression in NSCLC tissues and cells. RBM10 inhibited the invasion and metastasis of NSCLC and recruited Neat1 and Neat1_2. Overexpression of RBM10 simultaneously inhibited Neat1 and Neat1_2, and promoted the expression of Neat1_1. On the other hand, silencing RBM10 promoted Neat1 and Neat1_2, and inhibited the expression of Neat1_1. From this, we concluded that RBM10 regulated AS of Neat1, and the tumor-promoting effect of Neat1 was mainly attributed to Neat1_2. RBM10 had a negative correlation with Neat1_2. In addition, RBM10 upregulated the expression of PTEN and downregulated the phosphorylation of PI3K/AKT/mTOR through Neat1_2, which ultimately inhibited the invasion and metastasis of NSCLC.
Conclusion
The RBM10 regulated AS of Neat1 to cause the imbalance of Neat1_1 and Neat1_2, and RBM10 suppressed the activation of the PTEN/PI3K/AKT/mTOR signal by downregulating Neat1_2, finally affected the invasion and metastasis of NSCLC.
Collapse
|
12
|
He X, Yao Q, Fan D, You Y, Lian W, Zhou Z, Duan L. Combination of levofloxacin and cisplatin enhances anticancer efficacy via co-regulation of eight cancer-associated genes. Discov Oncol 2022; 13:76. [PMID: 35984577 PMCID: PMC9391551 DOI: 10.1007/s12672-022-00541-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 04/17/2023] Open
Abstract
Chemosensitizer or combined chemotherapy can sensitize cancer cells to therapy and minimize drug resistance. We reveal that levofloxacin has broad-spectrum anticancer activity. Here we report that combination of levofloxacin and cisplatin further enhanced cytotoxicity in cancer cells by further promotion of apoptosis. Levofloxacin concentration-dependently promoted the inhibition of clone formation in cancer cells treated by cisplatin, and their combination further suppressed the tumor growth in mice. Levofloxacin and cisplatin co-regulated genes in directions supporting the enhancement of anticancer efficacy, of which, THBS1, TNFAIP3, LAPTM5, PI3 and IL24 were further upregulated, NCOA5, SRSF6 and SFPQ were further downregulated. Out of the 24 apoptotic pathways significantly enriched in the combination group, TNFAIP3, THBS1, SRSF6 and SFPQ overlapped in 14, 13, 3 and 1 pathway respectively. Jak-STAT/Cytokine-cytokine receptor interaction pathway network and extrinsic apoptotic signaling pathway were significantly enriched in levofloxacin group, cisplatin group and combination group. Jak-STAT/Cytokine-cytokine receptor interaction/Focal adhesion/EMC-receptor interaction pathway network was significantly enriched in the combination group, and IL24 and THBS1 were the overlapped genes. In conclusion, enhancement of anticancer efficacy in combination group was associated with the further regulation of THBS1, TNFAIP3, LAPTM5, PI3, IL24 and NCOA5, SFPQ, SRSF6. Targeting of Jak-STAT/Cytokine-cytokine receptor interaction/Focal adhesion/EMC-receptor interaction pathway network was correlated to the enhancement. With additional benefit to cancer patients for treatment or prophylaxis of an infectious syndrome, levofloxacin can benefit cancer chemotherapy no matter it is used independently or used with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiaoqiong He
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China.
| | - Qian Yao
- Institute of Yunnan Tumor, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan Province, People's Republic of China
| | - Dan Fan
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Yutong You
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Wenjing Lian
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Zhangping Zhou
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Ling Duan
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| |
Collapse
|
13
|
Tong X, Tang R, Xu J, Wang W, Zhao Y, Yu X, Shi S. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Yang L, Yang J, Jacobson B, Gilbertsen A, Smith K, Higgins L, Guerrero C, Xia H, Henke CA, Lin J. SFPQ Promotes Lung Cancer Malignancy via Regulation of CD44 v6 Expression. Front Oncol 2022; 12:862250. [PMID: 35707369 PMCID: PMC9190464 DOI: 10.3389/fonc.2022.862250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minneapolis, Minneapolis, MN, United States.,The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - LeeAnn Higgins
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Candace Guerrero
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.,The Immunotherapy Research Laboratory, Department of Otolaryngology, Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Zhu L, Wang F, Fan W, Jin Z, Teng C, Zhang J. lncRNA NEAT1 promotes the Taxol resistance of breast cancer via sponging the miR-23a-3p-FOXA1 axis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1198-1206. [PMID: 34327529 DOI: 10.1093/abbs/gmab098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Paclitaxel (Taxol) is a widely applied chemotherapeutic agent against breast cancer. Although Taxol therapy has achieved improvements recently, development of chemoresistance of breast cancer patients is a major obstacle, leading to therapeutic failure. Long non-coding RNAs (lncRNAs) play pivotal roles in tumorigenesis and progresses of breast cancer. However, the biological roles and molecular targets of lncRNA NEAT1 in Taxol-resistant breast cancer remain unclear. Here, we report that NEAT1 is significantly upregulated in breast tumors and cell lines. In addition, silencing NEAT1 effectively sensitizes breast cancer cells to Taxol. Bioinformatical analysis and luciferase assay demonstrated that miR-23a-3p could be sponged and downregulated by NEAT1. We demonstrated that miR-23a-3p was downregulated and functioned as a tumor suppressor in breast cancer. Furthermore, in the established Taxol-resistant MDA-MB-231 breast cancer cell line, we detected significantly increased NEAT1 expression and downregulated miR-23a-3p expression. Importantly, FOXA1 was identified and validated as a direct target of miR-23a-3p in breast cancer cells. Rescue experiments demonstrated that the restoration of miR-23a-3p in NEAT1-overexpressing Taxol-resistant breast cancer cells successfully overcame the NEAT1-promoted Taxol resistance. Taken together, our results revealed the clinical roles and molecular mechanisms for the NEAT1-mediated chemoresistance, providing new insights into the development of non-coding RNA-based therapeutic strategies for enhancing the anti-cancer effects of traditional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan 250014, China
| | - Fengchun Wang
- Department of Vascular Surgery, The Second Hospital of Shandong University, Jinan 250014, China
| | - Wenhui Fan
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan 250014, China
| | - Zhi Jin
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan 250014, China
| | - Chao Teng
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan 250014, China
| | - Jianxin Zhang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan 250014, China
| |
Collapse
|
16
|
Ramos A, Sadeghi S, Tabatabaeian H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int J Mol Sci 2021; 22:9451. [PMID: 34502361 PMCID: PMC8430957 DOI: 10.3390/ijms22179451] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
With nearly 10 million deaths, cancer is the leading cause of mortality worldwide. Along with major key parameters that control cancer treatment management, such as diagnosis, resistance to the classical and new chemotherapeutic reagents continues to be a significant problem. Intrinsic or acquired chemoresistance leads to cancer recurrence in many cases that eventually causes failure in the successful treatment and death of cancer patients. Various determinants, including tumor heterogeneity and tumor microenvironment, could cause chemoresistance through a diverse range of mechanisms. In this review, we summarize the key determinants and the underlying mechanisms by which chemoresistance appears. We then describe which strategies have been implemented and studied to combat such a lethal phenomenon in the management of cancer treatment, with emphasis on the need to improve the early diagnosis of cancer complemented by combination therapy.
Collapse
Affiliation(s)
- Alisha Ramos
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Samira Sadeghi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
17
|
Bi O, Anene CA, Nsengimana J, Shelton M, Roberts W, Newton-Bishop J, Boyne JR. SFPQ promotes an oncogenic transcriptomic state in melanoma. Oncogene 2021; 40:5192-5203. [PMID: 34218270 PMCID: PMC8376646 DOI: 10.1038/s41388-021-01912-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
The multifunctional protein, splicing factor, proline- and glutamine-rich (SFPQ) has been implicated in numerous cancers often due to interaction with coding and non-coding RNAs, however, its role in melanoma remains unclear. We report that knockdown of SFPQ expression in melanoma cells decelerates several cancer-associated cell phenotypes, including cell growth, migration, epithelial to mesenchymal transition, apoptosis, and glycolysis. RIP-seq analysis revealed that the SFPQ-RNA interactome is reprogrammed in melanoma cells and specifically enriched with key melanoma-associated coding and long non-coding transcripts, including SOX10, AMIGO2 and LINC00511 and in most cases SFPQ is required for the efficient expression of these genes. Functional analysis of two SFPQ-enriched lncRNA, LINC00511 and LINC01234, demonstrated that these genes independently contribute to the melanoma phenotype and a more detailed analysis of LINC00511 indicated that this occurs in part via modulation of the miR-625-5p/PKM2 axis. Importantly, analysis of a large clinical cohort revealed that elevated expression of SFPQ in primary melanoma tumours may have utility as a prognostic biomarker. Together, these data suggest that SFPQ is an important driver of melanoma, likely due to SFPQ-RNA interactions promoting the expression of numerous oncogenic transcripts.
Collapse
Affiliation(s)
- O Bi
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - C A Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - J Nsengimana
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - M Shelton
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - W Roberts
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, UK
| | | | - J R Boyne
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| |
Collapse
|
18
|
Mo C, Huang B, Zhuang J, Jiang S, Guo S, Mao X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin Transl Med 2021; 11:e493. [PMID: 34459124 PMCID: PMC8351523 DOI: 10.1002/ctm2.493] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) patients commonly present with osteoblastic-type bone metastasis. Exosomes derived from tumor cells possess biological significance and can mediate intercellular communication in the tumor microenvironment. Long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) is also implicated in the stability in tumorigenesis and the development of PCa, but the underlying mechanism remains elusive. Hence, the current study set out to investigate the physiological mechanisms by which exosomes-encapsulated NEAT1 affects the progression of PCa. First, after isolation, we found PCa cell-derived exosomes induced the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Besides, NEAT1 in PCa cells could be transferred into hBMSCs via exosomes. Further gain- and loss-of-function experimentation revealed that NEAT1 acted as a competing endogenous RNA (ceRNA) of microRNA (miR)-205-5p to upregulate the runt-related transcription factor 2 (RUNX2) levels. Moreover, NEAT1 could promote the RUNX2 expression via the splicing factor proline- and glutamine-rich (SFPQ)/polypyrimidine tract-binding protein 2 (PTBP2) axis. Functional assays uncovered that NEAT1 shuttled by PCa-exosomes facilitated the activity of alkaline phosphatase (ALP) and mineralization of extracellular matrix, and continuously upregulated the levels of RUNX2, ALP, alpha-1 type 1 collagen, and osteocalcin by regulating RUNX2, to induce the osteogenic differentiation of hBMSCs. Furthermore, in vivo experimentation confirmed that upregulated NEAT1 induced osteogenesis. Collectively, our findings indicated that PCa-derived exosomes-loaded NEAT1 upregulated RUNX2 to facilitate the osteogenesis of hBMSCs by competitively binding to miR-205-5p via the SFPQ/PTBP2 axis, therefore providing a potential therapeutic target to treat osteogenesis of hBMSCs in PCa. PCa cells secrete exosomes containing NEAT1, and NEAT1 exerts effects on osteogenic differentiation of hBMSCs in PCa. NEAT1 shuttled by PCa-derived exosomes could be transferred into hBMSCs, where NEAT1 exerted inductive properties in osteogenic differentiation of hBMSCs through the upregulation of RUNX2 by competitively binding to miR-205-5p and regulating SFPQ/PTBP2 in vitro and in vivo.
Collapse
Affiliation(s)
- Chengqiang Mo
- Department of Urologythe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Bin Huang
- Department of Urologythe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Jintao Zhuang
- Department of UrologyThe Eastern Hospital of the First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Shuangjian Jiang
- Department of Urologythe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| | - Shengjie Guo
- Department of UrologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Xiaopeng Mao
- Department of Urologythe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPR China
| |
Collapse
|
19
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
20
|
Bu FT, Wang A, Zhu Y, You HM, Zhang YF, Meng XM, Huang C, Li J. LncRNA NEAT1: Shedding light on mechanisms and opportunities in liver diseases. Liver Int 2020; 40:2612-2626. [PMID: 32745314 DOI: 10.1111/liv.14629] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
With advances in genome and transcriptome research technology, the function and mechanism of lncRNAs in physiological and pathological states have been gradually revealed. Nuclear Enriched Abundant Transcript 1 (NEAT1, a long non-coding RNA), a vital component of paraspeckles, plays an indispensable role in the formation and integrity of paraspeckles. Throughout the research history, NEAT1 is mostly aberrantly upregulated in various cancers, and high expression of NEAT1 often contributes to poor prognosis of patients. Notably, the role and mechanism of NEAT1 in liver diseases have been increasingly reported. NEAT1 accelerates the progression of non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma, while exerting a protective role in the pathogenesis of acute-on-chronic liver failure by inhibiting the inflammatory response. In this review, we will elaborate on relevant studies on the different casting of NEAT1 in liver diseases, especially focusing on its regulatory mechanisms and new opportunities for alcoholic liver disease.
Collapse
Affiliation(s)
- Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong-Mei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Pellarin I, Belletti B, Baldassarre G. RNA splicing alteration in the response to platinum chemotherapy in ovarian cancer: A possible biomarker and therapeutic target. Med Res Rev 2020; 41:586-615. [PMID: 33058230 DOI: 10.1002/med.21741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
Since its discovery, alternative splicing has been recognized as a powerful way for a cell to amplify the genetic information and for a living organism to adapt, evolve, and survive. We now know that a very high number of genes are regulated by alternative splicing and that alterations of splicing have been observed in different types of human diseases, including cancer. Here, we review the accumulating knowledge that links the regulation of alternative splicing to the response to chemotherapy, focusing our attention on ovarian cancer and platinum-based treatments. Moreover, we discuss how expanding information could be exploited to identify new possible biomarkers of platinum response, to better select patients, and/or to design new therapies able to overcome platinum resistance.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
22
|
Long noncoding RNA nuclear-enriched abundant transcript 1 regulates proliferation and apoptosis of neuroblastoma cells treated by cisplatin by targeting miR-326 through Janus kinase/signal transducer and activator of transcription 3 pathway. Neuroreport 2020; 31:1189-1198. [PMID: 33044324 DOI: 10.1097/wnr.0000000000001538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is a common malignancy and frequently affects children, leading to a low survival rate. Long noncoding RNAs (lncRNAs) are reported to be closely related to cancer progression. The purpose of this study was to explore a novel mechanism of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in neuroblastoma. NEAT1 was upregulated in neuroblastoma cell lines (IMR32 and SK-N-SH). Overexpression of NEAT1 increased proliferation inhibited by cisplatin and decreased apoptosis promoted by cisplatin. MicroRNA-326 (miR-326) was a target of NEAT1 and miR-326 reintroduction abolished the effects of NEAT1 overexpression on cell proliferation and apoptosis. Moreover, NEAT1 overexpression activated Janus kinase/signal transducer and activator of transcription 3 (JAK1/STAT3) signaling pathway through absorbing miR-326. Besides, NEAT1 overexpression promoted tumor growth in vivo through stimulating the expression of p-JAK1 and p-STAT3 but inhibiting miR-326 expression. NEAT1 accelerated proliferation and weakened apoptosis of neuroblastoma cells treated by cisplatin by targeting miR-326 through activating JAK1/STAT3 signaling pathway, suggesting that NEAT1 was a potential biomarker against neuroblastoma.
Collapse
|
23
|
Guo P, Chen S, Li D, Zhang J, Luo J, Zhang A, Yu D, Bloom MS, Chen L, Chen W. SFPQ is involved in regulating arsenic-induced oxidative stress by interacting with the miRNA-induced silencing complexes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114160. [PMID: 32066060 DOI: 10.1016/j.envpol.2020.114160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Arsenic exposure contributed to the development of human diseases. Arsenic exerted multiple organ toxicities mainly by triggering oxidative stress. However, the signaling pathway underlying oxidative stress is unclear. We previously found that the expression of SFPQ, a splicing factor, was positively associated with urinary arsenic concentration in an arsenic-exposed population, suggesting an oxidative stress regulatory role for SFPQ. To test this hypothesis, we established cell models of oxidative stress in human hepatocyte cells (L02) treated with NaAsO2. Reactive oxygen species (ROS) synthesis displayed a time- and dose-dependent increase with NaAsO2 treatment. SFPQ suppression resulted in a 36%-53% decrease in ROS generation, leading to enhanced cellular damage determined by 8-OHdG, comet tail moment, and micronucleus analysis. Particularly, SFPQ deficiency attenuated expression of the oxidase genes DUOX1, DUOX2, NCF2, and NOX2. A fluorescent-based RNA electrophoretic mobility shift assay (FREMSA) and dual-luciferase reporter system revealed that miR-92b-5p targeted DUOX2 mRNA degradation. An RNA immunoprecipitation assay showed an interaction between SFPQ and miR-92b-5p of the miRNA-induced silencing complex (miRISC). Notably, NaAsO2 treatment diminished the interaction between SFPQ and miR92b-5p, accompanied by decreased binding between miR-92b-5p and 3'-UTR of DUOX2. However, SFPQ deficiency suppressed the dissociation of miR-92b-5p from 3'-UTR of DUOX2, indicating that miR-92b-5p regulated the SFPQ-dependent DUOX2 expression. Taken together, we reveal that SFPQ responds to arsenic-induced oxidative stress by interacting with the miRISC. These findings offer new insight into the potential role of SFPQ in regulating cellular stress response.
Collapse
Affiliation(s)
- Ping Guo
- The Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- The Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- The Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinmiao Zhang
- The Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Michael S Bloom
- Departments of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Liping Chen
- The Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wen Chen
- The Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Zhang D, Duan Y, Wang Z, Lin J. Systematic profiling of a novel prognostic alternative splicing signature in hepatocellular carcinoma. Oncol Rep 2019; 42:2450-2472. [PMID: 31578577 PMCID: PMC6826324 DOI: 10.3892/or.2019.7342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing (AS) is a pervasive and vital mechanism involved in the progression of cancer by expanding genomic encoding capacity and increasing protein complexity. However, the systematic analysis of AS in hepatocellular carcinoma (HCC) is lacking and urgently required. In the present study, genome‑wide AS events with corresponding clinical information were profiled in 290 patients with HCC from the Cancer Genome Atlas and SpliceSeq software. Functional enrichment analyses revealed the pivotal biological process of AS regulation. Univariate Cox regression analyses were performed, followed by stepwise forward multivariate analysis to develop the prognostic signatures. Spearman's correlation analyses were also used to construct potential regulatory network between the AS events and aberrant splicing factors. A total of 34,163 AS events were detected, among which 1,805 AS events from 1,314 parent genes were significantly associated with the overall survival (OS) of patients with HCC, and their parent genes serve crucial roles in HCC‑related oncogenic processes, including the p53 signaling pathway, AMPK signaling pathway and HIF‑1 signaling pathway. A prognostic AS signature was established that was found to be an independent prognostic factor for OS in stratified cohorts, harboring a noteworthy ability to distinguish between the distinct prognoses of patients with HCC (high‑risk vs. low‑risk, 827 vs. 3,125 days, P<2e‑16). Time‑dependent receiver‑-operator characteristic curves confirmed its robustness and clinical efficacy, with the area under the curves maintained >0.9 for short‑term and long‑term prognosis prediction. The splicing correlation network suggested a trend in the interactions between splicing factors and prognostic AS events, further revealing the underlying mechanism of AS in the oncogenesis of HCC. In conclusion, the present study provides a comprehensive portrait of global splicing alterations involved in the progression and HCC in addition to valuable prognostic factors for patients, which may represent as underappreciated hallmark and provide novel clues of therapeutic targets in HCC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yi Duan
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhe Wang
- Department of Gastrointestinal Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jie Lin
- Department of General Surgery (VIP Ward), Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
25
|
Ghafouri-Fard S, Taheri M. Nuclear Enriched Abundant Transcript 1 (NEAT1): A long non-coding RNA with diverse functions in tumorigenesis. Biomed Pharmacother 2019; 111:51-59. [DOI: 10.1016/j.biopha.2018.12.070] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
|
26
|
Zhao W, Li W, Jin X, Niu T, Cao Y, Zhou P, Zheng M. Silencing long non-coding RNA NEAT1 enhances the suppression of cell growth, invasion, and apoptosis of bladder cancer cells under cisplatin chemotherapy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:549-558. [PMID: 31933859 PMCID: PMC6945077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/18/2018] [Indexed: 06/10/2023]
Abstract
It has been proven that NEAT1 as a long non-coding RNA (lncRNA) is highly expressed in bladder cancer (BC). Nevertheless, the oncogenic roles of NEAT1 in BC remain largely unknown. In the present study, we observed that the RNA level of NEAT1.1, one RNA variant of NEAT1, was reduced in cisplatin-sensitive T24 cells compared to cisplatin-resistant T24 (T24R) cells after both treated with cisplatin modulated through Wnt/β-catenin signaling pathway using RNA-seq. Furthermore, NEAT1.1 was knocked down within T24R cells and caused a phenotype of the compromised cell growth, invasion and enhanced apoptosis upon cisplatin treatment compared to untreated T24R cells. Finally, c-MYC, OCT4 and p53 were determined to contribute to the transcriptional regulation of NEAT1.1 under cisplatin using ChIP assay. Taken together, our results suggest that NEAT1.1 blocking can promote the effect of cisplatin for BC treatment.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Urology, Taizhou People’s HospitalTaizhou, Jiangsu, P. R. China
| | - Wenqi Li
- Department of Quality Control, Taizhou People’s HospitalTaizhou, Jiangsu, P. R. China
| | - Xin Jin
- Department of Urology, Taizhou People’s HospitalTaizhou, Jiangsu, P. R. China
| | - Tianli Niu
- Department of Urology, Taizhou People’s HospitalTaizhou, Jiangsu, P. R. China
| | - Yuanfei Cao
- Department of Urology, Taizhou People’s HospitalTaizhou, Jiangsu, P. R. China
| | - Peng Zhou
- Department of Urology, Taizhou People’s HospitalTaizhou, Jiangsu, P. R. China
| | - Minghua Zheng
- Department of Urology, Taizhou People’s HospitalTaizhou, Jiangsu, P. R. China
| |
Collapse
|