1
|
Zhou Q, Zhang ZY, Ang XJ, Hu C, Ouyang J. Construction of five microRNAs prognostic markers and a prognostic model for clear cell renal cell carcinoma. Transl Cancer Res 2022; 10:2337-2353. [PMID: 35116550 PMCID: PMC8797919 DOI: 10.21037/tcr-21-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Background To determine the role of miRNA in the progression and outcome of renal clear cell carcinoma (ccRCC), establish a model for predicting outcome in patients with ccRCC and verify it using a Cox regression model. The miRNA target genes were predicted to understand their biological functions. Methods The microRNAs of 71 normal tissues and 545 tumor tissues were downloaded from TCGA (https://tcga-data.nci.nih.gov/tcga/). We also downloaded 537 clinical materials from this website. The miRNA difference analysis was carried out. A prognostic model was constructed using differential miRNA. The model was verified using Cox survival analysis, receiver operator characteristic (ROC), and independent predictive analysis. Results MiR-130b-3p, miR-365b-3p, miR-149-5p, miR-155-5p, and miR-144-5p can be used as independent prognostic indicators. We also analyzed the related functions of the target gene and found that target genes of miRNAs are involved in the signal pathways of some tumors, including cholesterol metabolism, HIF-1 signal pathway, focus adhesion, the Rap1 signal pathway, and hepatitis C. Conclusions The prognostic model constructed using five miRNAs is an independent and accurate factor. These miRNAs target genes are involved in regulating a variety of tumorigenesis and signal pathways. Therefore, we have reason to believe that the regulation of signal pathways by miRNA may play a critical role in the occurrence, development, and outcome of ccRCC, provide a new therapeutic target for ccRCC, and improve outcomes.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-Yu Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Jie Ang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Can Hu
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Liu Y, Hu X, Hu L, Xu C, Liang X. Let-7i-5p enhances cell proliferation, migration and invasion of ccRCC by targeting HABP4. BMC Urol 2021; 21:49. [PMID: 33775245 PMCID: PMC8005230 DOI: 10.1186/s12894-021-00820-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers. The present study aimed to explore the effects and potential mechanisms of let-7i-5p in ccRCC cells. METHODS Using bioinformatics analyses, we investigated the expression of let-7i-5p in The Cancer Genome Atlas (TCGA) database and predicted biological functions and possible target genes of let-7i-5p in ccRCC cells. Cell proliferation assay, wound healing assay and transwell invasion assay were conducted to characterize the effects of let-7i-5p in ccRCC cells. To verify the interactions between let-7i-5p and HABP4, dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and western blotting were conducted. Rescue experiments were used to investigate the relationship between let-7i-5p and HABP4. RESULTS TCGA data analysis revealed that ccRCC tissues had significantly increased let-7i-5p expression, which was robustly associated with poor overall survival. Further verification showed that ccRCC cell proliferation, migration and invasion were inhibited by let-7i-5p inhibitor but enhanced by let-7i-5p mimics. Subsequently, HABP4 was predicted to be the target gene of let-7i-5p. TCGA data showed that ccRCC tissues had decreased expression of HABP4 and that HABP4 expression was negatively correlated with let-7i-5p. Further verification showed that downregulation of HABP4 expression promoted cell proliferation, migration and invasion. The dual-luciferase reporter gene assay suggested that the let-7i-5p/HABP4 axis was responsible for the development of ccRCC. CONCLUSION Our results provide evidence that let-7i-5p functions as a tumor promoter in ccRCC and facilitates cell proliferation, migration and invasion by targeting HABP4. These results clarify the pathogenesis of ccRCC and offer a potential target for its treatment.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xing Hu
- Department of General Practice, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Liang Hu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Changjing Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xuemei Liang
- Department of Geriatric Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Huang ZG, Sun Y, Chen G, Dang YW, Lu HP, He J, Cheng JW, He ML, Li SH. MiRNA-145-5p expression and prospective molecular mechanisms in the metastasis of prostate cancer. IET Syst Biol 2021; 15:1-13. [PMID: 33527765 PMCID: PMC8675798 DOI: 10.1049/syb2.12011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The clinicopathological implication and prospective molecular mechanisms of miRNA-145-5p in the metastasis of prostate cancer (PCa) stand unclear. Herein, it is found that miRNA-145-5p expression was remarkably reduced in 131 cases of metastatic PCa than 1371 cases of localised ones, as the standardised mean differences (SMD) was -1.26 and the area under the curve (AUC) was 0.86, based on miRNA-chip and miRNA-sequencing datasets. The potential targets of miRNA-145-5p in metastatic PCa (n = 414) was achieved from the intersection of miRNA-145-5p transfected metastatic PCa cell line data, differential expression of metastatic PCa upregulated genes and online prediction databases. TOP2A was screened as one of the target hub genes by PPI network analysis, which was adversely related to miRNA-145-5p expression in both metastatic PCa (r = -0.504) and primary PCa (r = -0.281). Gene-chip and RNA-sequencing datasets, as well as IHC performed on clinical PCa samples, showed consistent upregulated expression of TOP2A mRNA and protein in PCa compared with non-PCa. The expression of TOP2A mRNA was also significantly higher in metastatic than localised PCa with the SMD being 1.72 and the AUC of sROC being 0.91. In summary, miRNA-145-5p may participate in PCa metastasis by binding TOP2A and be useful as a biomarker for the detection of metastatic PCa.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ji-Wen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Mao-Lin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
4
|
Guo Q, Ni P, Dai Y, Hu J, Yao Y. Long-Chain Noncoding RNA ADAMTS9-AS2 Regulates Proliferation, Migration, and Apoptosis in Bladder Cancer Cells Through Regulating miR-182-5p. J Interferon Cytokine Res 2021; 41:60-71. [PMID: 33621133 DOI: 10.1089/jir.2020.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The long-chain noncoding RNA ADAMTS9-AS2 functions as a tumor suppressor gene in many cancers. However, the underlying mechanism remains to be fully elucidated in bladder cancer (BC). ADAMTS9-AS2 exhibited a lower expression level in BC samples and cell lines. In addition, overexpression of ADAMTS9-AS2 obviously suppressed proliferation and migration, and induced apoptosis of T24 cells, while transfection with the ADAMTS9-AS2 inhibitor had opposite results in 5637 cells. Furthermore, miR-182-5p was the target microRNA of ADAMTS9-AS2 and was negatively correlated with ADAMTS9-AS2 expression. Upregulation of miR-182-5p reversed the effects of ADAMTS9-AS2 overexpression on biological function in T24 cells. ADAMTS9-AS2 was a tumor suppressor that inhibited BC cell proliferation and induced cellular apoptosis by targeting miR-182-5p, and it could be a promising target for BC treatment.
Collapse
Affiliation(s)
- Qing Guo
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Pinghua Ni
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Yi Dai
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Jianming Hu
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Yizhe Yao
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| |
Collapse
|
5
|
Labib Salem M, Zidan AAA, Ezz El-Din El-Naggar R, Attia Saad M, El-Shanshory M, Bakry U, Zidan M. Myeloid-derived suppressor cells and regulatory T cells share common immunoregulatory pathways-related microRNAs that are dysregulated by acute lymphoblastic leukemia and chemotherapy. Hum Immunol 2021; 82:36-45. [PMID: 33162185 DOI: 10.1016/j.humimm.2020.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Relapse remains a critical challenge in children with acute lymphoblastic leukemia (ALL). The emergence of immunoregulatory cells, including myeloid-derived suppressor cells (MDSCs), and T regulatory (Treg) cells, has been considered one potential mechanism of relapse in children with ALL. AIM This study aimed to address the microRNAs (miRNAs) related to MDSCs and Treg cells and to explore their targeted immunoregulatory pathways. METHODS Affymetrix microarray was used for global miRNA profiling in B-ALL pediatric patients before, during, and after induction of chemotherapy. Bioinformatics analysis was performed on MDSCs and Treg cells-related dysregulated miRNAs, and miR-Pathway analysis was performed to explore their targeted immunoregulatory pathways. RESULTS 516 miRNAs were dysregulated in ALL patients as compared to the healthy donor. Among them, 13 miRNAs and 8 miRNAs related to MDSCs and Treg cells, respectively, were common in all patients. Besides, 12 miRNAs were shared between MDSCs and Treg cells; 4 of them were common in all patients. Four immune-related pathways; TNF, TGF-β, FoxO, and Hippo were found implicated. CONCLUSION Our pilot study concluded certain miRNAs related to MDSCs and Treg cells, these miRNAs were linked to immunoregulatory pathways. Our results open avenues for testing those miRNA as molecular biomarkers for the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt.
| | - Abdel-Aziz A Zidan
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt; Department of Zoology, Faculty of Science, Damanhur University, Damanhur, Egypt
| | - Randa Ezz El-Din El-Naggar
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Attia Saad
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt; Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed El-Shanshory
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt; Department of Pediatric, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Usama Bakry
- Genomics Research Program, 57357 Children Cancer Hospital, Cairo, Egypt
| | - Mona Zidan
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Immunology Research Program, 57357 Children Cancer Hospital, Cairo, Egypt
| |
Collapse
|
6
|
Zou W, Hu X, Wang D, Jiang L. Prognostic Value of MiRNAs in Patients with Laryngeal Cancer: A Systematic Review and Meta-Analysis. Curr Cancer Drug Targets 2020; 20:802-810. [PMID: 32767932 DOI: 10.2174/1568009620666200806094709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Many studies have explored the relationship between the expression level of miRNAs and the prognosis of patients with laryngeal cancer (LC). However, the prognostic value of miRNA in LC patients has not been comprehensively evaluated. METHODS PubMed, Web of Science, Embase, and Cochrane Database of Systematic Reviews were extensively searched for all studies published before the end of February 2020 that investigated the correlation between miRNA expression level and clinical prognosis in patients with LC. RESULTS Twenty-one studies involving 1784 patients were included in our meta-analysis. The survival endpoints of OS and DFS were 1.69 (95% CI 1.45-1.98; p < 0.05) and 3.62 (95% CI 2.34-5.62; p < 0.05), respectively. Both OS and DFS results were statistically significant. Subgroup analyses were performed by evaluating the effects of miR-196b, miR-375, and miR-21 on OS and the effects of miR-34c-5p on DFS. The results obtained for miR-196b and miR-34c-5p were statistically significant. CONCLUSION The results indicate that miRNAs, as prognostic biomarkers for LC, play an important role in clinical value. In particular, miR-196b and miR-34c-5p have the potential to be used as prognostic biomarkers. However, further large-scale cohort studies based on these miRNAs are urgently needed to validate their clinical value and help determine the direction of future clinical work in the area.
Collapse
Affiliation(s)
- Wujun Zou
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoyan Hu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Dingting Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liang Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
7
|
Han X, Du C, Chen Y, Zhong X, Wang F, Wang J, Liu C, Li M, Chen S, Li B. Overexpression of miR-939-3p predicts poor prognosis and promotes progression in lung cancer. Cancer Biomark 2020; 25:325-332. [PMID: 31322549 DOI: 10.3233/cbm-190271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung cancer is the main cancer-related deaths worldwide. In this study, we explored the clinical prognostic significance and functional role of miR-939-3p in lung cancer. METHODS We analyzed the expression of miR-939-3p in lung cancer tissues and cells by qRT-PCR. The prognostic significance of miR-939-3p was investigated using the Kaplan-Meier survival and Cox regression analyses. The CCK-8 assay was used to determine the role of miR-939-3p in cell proliferation. Transwell assays were used to determine the effects of miR-939-3p on cell migration and invasion abilities. RESULTS The expression of miR-939-3p was upregulated in cancer tissues and cell lines compared with adjacent normal tissues and normal cells, respectively. The upregulated miR-939-3p was significantly associated with lymph node metastasis, TNM stage and poor prognosis of lung cancer patients. After the transfection of miR-939 mimic, overexpression of miR-939-3p promoted lung cancer cell proliferation, migration, and invasion. CONCLUSION These findings suggested that miR-939-3p acts as an oncogene and promotes cell proliferation, migration, and invasion in lung cancer. miR-939-3p may be a potential independent prognostic biomarker in lung cancer.
Collapse
Affiliation(s)
- Xia Han
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China.,Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
| | - Chunjuan Du
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
| | - Yinghai Chen
- Tinajin 120 Emeroency Center, Tianjin 300070, China
| | - Xiaofei Zhong
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Juan Wang
- Department of Emergency, Dongying People's Hospital, Dongying, Shandong 257091, China
| | - Changmin Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Mianli Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Shaoshui Chen
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
| |
Collapse
|
8
|
Huang Y, Xiao W, Jiang X, Li H. MicroRNA-935 acts as a prognostic marker and promotes cell proliferation, migration, and invasion in colorectal cancer. Cancer Biomark 2019; 26:229-237. [PMID: 31524145 DOI: 10.3233/cbm-190183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ying Huang
- Department of Oncology, Shengli Oilfield Central Hospital, Shandong, China
| | - Wenfeng Xiao
- Department of Magnetic Rsonance Emination, Shengli Oilfield Central Hospital, Shandong, China
| | - Xiuli Jiang
- Xunshan Street Health Center, Rongcheng, Weihai, Shandong, China
| | - Honglei Li
- Department of Medical, Shengli Oilfield Central Hospital, Shandong, China
| |
Collapse
|
9
|
Li Y, Chen F, Chu J, Wu C, Li Y, Li H, Ma H. miR-148-3p Inhibits Growth of Glioblastoma Targeting DNA Methyltransferase-1 (DNMT1). Oncol Res 2019; 27:911-921. [PMID: 30982493 PMCID: PMC7848282 DOI: 10.3727/096504019x15516966905337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To date, miR-148-3p and DNMT1–recombinant human runt-related transcription factor 3 (RUNX3) axis have been linked to cell proliferation, migration, and invasion; however, their roles and relationships in human glioblastoma multiforme (GBM) are still not clear. Here we found that the expression of miR-148-3p in glioma tissues was decreased compared with adjacent nontumor tissues and correlated with WHO grade, tumor size, and prognosis as well as DNMT1 and RUNX3 expressions. Compared with NHA cells, the expression of miR-148-3p in U87 and U251 cells was also downregulated and accompanied with upregulation of DNMT1 and hypermethylation level of RUNX3 promoter region. miR-148-3p overexpression induced apoptosis and cell cycle arrest of U87 and U251 cells, and affected cell migration and invasion. miR-148-3p mimics effectively suppressed the expression of DNMT1 and methylation of RUNX3 promoter, finally upregulating RUNX3 expression. Mechanistically, the 3′-untranslated region (3′-UTR) of DNMT1 was a direct target of miR-148-3p. Overexpression of miR-148-3p or inhibition of DNMT1 induced the expression of E-cadherin and reduced the expressions of N-cadherin, vimentin, MMP-2, and MMP-9. In conclusion, miR-148-3p directly repressed the expression of DNMT1 and inhibited proliferation, migration, and invasion by regulating DNMT1–RUNX3 axis and the epithelial–mesenchymal transition in GBM. Our findings provide a new foundation for treatment of patients with GBM.
Collapse
Affiliation(s)
- Yongtao Li
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P.R. China
| | - Fanyu Chen
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P.R. China
| | - Jiancheng Chu
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P.R. China
| | - Chao Wu
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P.R. China
| | - Yuan Li
- School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Heng Li
- School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Hongxin Ma
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P.R. China
| |
Collapse
|
10
|
Zhang L, Zhou H, Wei G. miR-506 regulates cell proliferation and apoptosis by affecting RhoA/ROCK signaling pathway in hepatocellular carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1163-1173. [PMID: 31933931 PMCID: PMC6947048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/26/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), is the third leading cause of cancer-related death. MicroRNA-506 (miR-506) has been reported to exhibit abnormal expression in HCC; however, the role of miR-506 in HCC and the molecular mechanisms underlying miR-506 in HCC remain unclarified. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was performed to detect the expression of miR-506 and Rho associated coiled-coil containing protein kinase 2 (ROCK2). Cell proliferation and apoptosis were evaluated by MTT assay and flow cytometry, respectively. Bioinformatics analysis and luciferase reporter assays were performed to identify the regulation between miR-506 and ROCK2. Western blot assay was performed to detect the expression of ROCK2, RhoA, and Ras-related C3 botulinum toxin substrate 1 (Rac1). The tumor growth in vivo was evaluated in a HCC xenograft mice model. RESULTS The mRNA levels of ROCK2 were significantly upregulated, while miR-506 levels were significantly downregulated in HCC tissues and cells. The expression of ROCK2 was negatively correlated with miR-506 in HCC tissues. In vitro, upregulation of miR-506 inhibited proliferation and induced apoptosis, and downregulation of miR-506 promoted proliferation and blocked apoptosis in HepG2 and Hep3B cells. ROCK2 was a target gene of miR-506 and miR-506 regulated the expression of ROCK2 in HepG2 and Hep3B cells. Furthermore, downregulation of miR-506 partially attenuated the tumor-suppressive effect of ROCK2 knockout on HepG2 and Hep3B cells, and upregulation of miR-506 partially attenuated the oncogenic effect of ROCK2 overexpression on HepG2 and Hep3B cells; Overexpression of ROCK2 increased and ROCK2 knockdown decreased the expression of Rac1, which were attenuated by upregulation of miR-506 or downregulation of miR-506, respectively. In addition, ROCK2 overexpression or knockdown hadno significant effect on RhoA expression. In vivo, upregulation of miR-506 suppressed tumor growth, while downregulation of miR-506 promoted tumor growth. CONCLUSION miR-506 was involved in cell proliferation and apoptosis by affecting RhoA/ROCK signaling pathway in HCC cells. Our results provide a novel mechanism of miR-506-mediated suppressive effects on HCC tumorigenesis.
Collapse
Affiliation(s)
- Linfei Zhang
- Department of Hepatobiliary Pancreatic Surgery, Renmin Hospital, Hubei University of MedicineShiyan 442000, Hubei, PR China
| | - Huadong Zhou
- Department of Hepatobiliary Pancreatic Surgery, Renmin Hospital, Hubei University of MedicineShiyan 442000, Hubei, PR China
| | - Gang Wei
- Department of Gastroenterology, Renmin Hospital, Hubei University of MedicineShiyan 442000, Hubei, PR China
| |
Collapse
|