1
|
Zhao M, Chen Q, Chen X, Gong S, Wang M, Zhao S, Wang S, Du W, Xu Y, Peng L, Yao Y. Tripartite motif-containing 32 regulated by miR-6236-p5 inhibited silica-induced apoptosis of alveolar macrophages. Toxicology 2025; 511:154042. [PMID: 39742911 DOI: 10.1016/j.tox.2024.154042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Apoptosis of alveolar macrophages (AMs) induced by silica is one of the crucial driving factors of silicosis inflammation and fibrosis. However, the mechanism of silica-induced AMs apoptosis remains unclear. In this study, transcriptome sequencing identified 11 differentially expressed (DE)-mRNAs enriched in the regulation of apoptotic signaling pathways in AMs treated with 250 μg/mL silica for 24 h, of which tripartite motif-containing 32 (Trim32) was the most significant and down-regulated. The decreased Trim32 promoted AMs apoptosis, while Trim32 overexpression inhibited the apoptosis of AMs induced by silica at 250 μg/mL for 24 h. MiR-6236-p5 was then identified by MiRNA sequencing as the most significant DE-miRNA potentially regulating Trim32 expression, and the interaction between miR-6236-p5 and Trim32 3'-UTR was confirmed by dual luciferase reporter gene assay. Treated with 100 nM miR-6236-p5 inhibitor increased the expression of Trim32 and inhibited the apoptosis of AMs induced by silica at 250 μg/mL for 24 h, while miR-6236-p5 mimic promoted the apoptosis of silica-induced AMs. In conclusion, this study identified Trim32 regulated by miR-6236-p5 played an important role in silica-induced AMs apoptosis based on RNA sequencing, which provided a novel clue for exploring the mechanism of silica-induced AMs apoptosis.
Collapse
Affiliation(s)
- Manyu Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China; Laboratory of Precision Therapeutics, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China
| | - Xuxi Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China
| | - Shuyu Gong
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China
| | - Mengzhu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China
| | - Shanshan Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China
| | - Sihan Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China
| | - Wen Du
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yunyi Xu
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China
| | - Lijun Peng
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuqin Yao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Hou Y, Jiang L, Liu J, Wang D, Luo H. The Role of MIEF2 in Cisplatin Sensitivity in KIRP Patients: Insights from Four-gene Mitochondrial Fusion RNA Markers. Technol Cancer Res Treat 2024; 23:15330338241299467. [PMID: 39639566 PMCID: PMC11622309 DOI: 10.1177/15330338241299467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Mitochondrial fusion is vital for cellular function and has been increasingly linked to cancer development. Kidney renal papillary cell carcinoma (KIRP), the second most common renal cell carcinoma, presents diverse prognostic outcomes. Identifying novel biomarkers is critical for improving prognosis and treatment response in KIRP. OBJECTIVE This study aims to explore the gene expression associated with mitochondrial fusion and establish a novel gene signature model to predict KIRP prognosis and cisplatin sensitivity. METHODS We analyzed RNA sequencing data and clinical records of 285 KIRP patients from The Cancer Genome Atlas (TCGA). LASSO regression identified four key mitochondrial fusion-related genes (BNIP3, GDAP1, MIEF2, PRKN). Multivariate Cox regression evaluated their association with overall survival. Risk stratification was developed based on gene expression. We assessed immunotherapy responses using checkpoint inhibitor scores, tumor mutation burden, TIDE scores, and tumor microenvironment characteristics. Cisplatin sensitivity was evaluated via correlation analysis of gene expression levels and half-maximal inhibitory concentration (IC50). In vitro loss- and gain-of-function experiments in KIRP cell lines (Caki-2, ACHN) assessed MIEF2's role in cisplatin sensitivity. RESULTS The gene signature successfully stratified patients into high- and low-risk groups, with significant survival differences. The area under the ROC curve (AUC) for the risk model was 0.782. MIEF2 was notably associated with cisplatin sensitivity, confirmed through functional experiments. Patients in the high-risk group exhibited lower MIEF2 expression and increased cisplatin sensitivity.
Collapse
Affiliation(s)
- Yusong Hou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong, China
| | - Longyang Jiang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Liu
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongli Luo
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Yang X, Ma H, Zhang M, Wang R, Li X. TRIM32 promotes oral squamous cell carcinoma progression by enhancing FBP2 ubiquitination and degradation. Biochem Biophys Res Commun 2023; 678:165-172. [PMID: 37640002 DOI: 10.1016/j.bbrc.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
The aberrant expression of TRIM32, an E3 ubiquitin ligase, has been identified in multiple malignant cancer types. Nevertheless, the functional roles and detailed mechanisms of TRIM32 in oral squamous cell carcinoma (OSCC) remain to be elucidated. Here, we investigated TRIM32 expression and its functional role in OSCC. TRIM32 expression was consistently elevated in OSCC tissues, particularly in samples from patients with advanced clinical grades. Functionally, silencing TRIM32 dampened OSCC cell growth, migration and invasion. Additionally, a xenograft tumor model suggested that TRIM32 knockdown suppressed in vivo OSCC tumor growth and lung metastasis formation. Mechanistically, we discovered that TRIM32 directly bound to the FBP2 protein via mass spectrometry and co-immunoprecipitation. TRIM32 could interact with FBP2 and accelerates its degradation, eventually enhancing glycolysis in OSCC cell lines. Importantly, rescue assays demonstrated that FBP2 silencing could at least partially offset the tumor-suppressive and aerobic glycolysis inhibition effect induced by TRIM32 knockdown. Thus, our findings demonstrate that TRIM32 plays a crucial role in promoting tumor growth and enhancing glycolysis through FBP2 inhibition. Given OSCC is associated with increased glycolysis levels, our study suggests potential therapeutic targets for OSCC treatment.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Stomatology, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China; Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan, 250399, Shandong, China.
| | - Haifeng Ma
- Department of Stomatology, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China.
| | - Min Zhang
- Department of Stomatology, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China.
| | - Renzhong Wang
- Department of Otolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua Road, Jinan, 250011, Shandong, China.
| | - Xiaoyu Li
- Department of Otolaryngology, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China.
| |
Collapse
|
5
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
6
|
Xu X, Qi J, Yang J, Pan T, Han H, Yang M, Han Y. Up-Regulation of TRIM32 Associated With the Poor Prognosis of Acute Myeloid Leukemia by Integrated Bioinformatics Analysis With External Validation. Front Oncol 2022; 12:848395. [PMID: 35756612 PMCID: PMC9213666 DOI: 10.3389/fonc.2022.848395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a malignant and molecularly heterogeneous disease. It is essential to clarify the molecular mechanisms of AML and develop targeted treatment strategies to improve patient prognosis. Methods AML mRNA expression data and survival status were extracted from TCGA and GEO databases (GSE37642, GSE76009, GSE16432, GSE12417, GSE71014). Weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis were performed. Functional enrichment analysis and protein-protein interaction (PPI) network were used to screen out hub genes. In addition, we validated the expression levels of hub genes as well as the prognostic value and externally validated TRIM32 with clinical data from our center. AML cell lines transfected with TRIM32 shRNA were also established to detect the proliferation in vitro. Results A total of 2192 AML patients from TCGA and GEO datasets were included in this study and 20 differentially co-expressed genes were screened by WGCNA and differential gene expression analysis methods. These genes were mainly enriched in phospholipid metabolic processes (biological processes, BP), secretory granule membranes (cellular components, CC), and protein serine/threonine kinase activity (molecular functions, MF). In addition, the protein-protein interaction (PPI) network contains 15 nodes and 15 edges and 10 hub genes (TLE1, GLI2, HDAC9, MICALL2, DOCK1, PDPN, RAB27B, SIX3, TRIM32 and TBX1) were identified. The expression of 10 central genes, except TLE1, was associated with survival status in AML patients (p<0.05). High expression of TRIM32 was tightly associated with poor relapse-free survival (RFS) and overall survival (OS) in AML patients, which was verified in the bone marrow samples from our center. In vitro, knockdown of TRIM32 can inhibit the proliferation of AML cell lines. Conclusion TRIM32 was associated with the progression and prognosis of AML patients and could be a potential therapeutic target and biomarker for AML in the future.
Collapse
Affiliation(s)
- Xiaoyan Xu
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiaqian Qi
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jingyi Yang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Tingting Pan
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Haohao Han
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Meng Yang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Shi X, Du Y, Li S, Wu H. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. Int J Mol Sci 2022; 23:3639. [PMID: 35408996 PMCID: PMC8998487 DOI: 10.3390/ijms23073639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian 116024, China; (X.S.); (Y.D.); (S.L.)
| |
Collapse
|
8
|
Interferon regulatory factor-1 regulates cisplatin-induced apoptosis and autophagy in A549 lung cancer cells. Med Oncol 2022; 39:38. [PMID: 35092496 PMCID: PMC8800914 DOI: 10.1007/s12032-021-01638-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022]
Abstract
This study aimed to investigate the expression and function of interferon regulatory factor-1 (IRF-1) in non-small cell lung cancer (NSCLC). IRF-1 expression and its prognostic value were investigated through bioinformatic analysis. The protein expression levels of IRF-1, cleaved caspase 3, and LC3-I/II were analyzed by western blotting. A lentiviral vector was used to overexpress or knockdown IRF-1 in vitro. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed by JC-1 and DCFH-DA staining, respectively. ATP, SOD, MDA, cell viability, LDH release, and caspase 3 activity were evaluated using commercial kits. Compared to the levels in normal tissues, IRF-1 expression was significantly lower in lung cancer tissues and was a prognostic factor for NSCLC. Cisplatin treatment-induced IRF-1 activation, ROS production, ATP depletion, SOD consumption, and MDA accumulation in A549 lung cancer cells. IRF-1 overexpression promoted mitochondrial depolarization, oxidative stress, and apoptotic cell death and inhibited autophagy in A549 cells, and these effects could be reversed by IRF-1 knockdown. These data suggest that IRF-1 regulates apoptosis, autophagy and oxidative stress, which might be served as a potential target for increasing chemotherapy sensitivity of lung cancer.
Collapse
|
9
|
Chen Z, Tian L, Wang L, Ma X, Lei F, Chen X, Fu R. TRIM32 Inhibition Attenuates Apoptosis, Oxidative Stress, and Inflammatory Injury in Podocytes Induced by High Glucose by Modulating the Akt/GSK-3β/Nrf2 Pathway. Inflammation 2021; 45:992-1006. [PMID: 34783942 DOI: 10.1007/s10753-021-01597-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022]
Abstract
Hyperglycemia-induced oxidative stress in podocytes exerts a major role in the pathological process of diabetic nephropathy. Tripartite motif-containing protein 32 (TRIM32) has been reported to be a key protein in the modulation of cellular apoptosis and oxidative stress under various pathological processes. However, whether TRIM32 participates in the regulation of high glucose (HG)-induced injury in podocytes has not been investigated. This work aimed to assess the possible role of TRIM32 in mediating HG-induced apoptosis, oxidative stress, and inflammatory response in podocytes in vitro. Our results showed a marked increase in TRIM32 expression in HG-exposed podocytes and the glomeruli of diabetic mice. Loss-of-function experiments showed that TRIM32 knockdown improves the viability of HG-stimulated podocytes and suppresses HG-induced apoptosis, oxidative stress, and inflammatory responses in podocytes. Further investigation revealed that TRIM32 inhibition enhances the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, which is associated with the modulation of the Akt/glycogen synthase kinase-3β (GSK-3β) axis in podocytes following HG exposure. However, Akt suppression abrogated the TRIM32 knockdown-mediated activation of Nrf2 in HG-exposed podocytes. Nrf2 knockdown also markedly abolished the protective effects induced by TRIM32 inhibition o in HG-exposed podocytes. In summary, this work demonstrated that TRIM32 inhibition protects podocytes from HG-induced injury by potentiating Nrf2 signaling through modulation of Akt/GSK-3β signaling. The findings reveal the potential role of TRIM32 in mediating podocyte injury during the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Lifang Tian
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Li Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Xiaotao Ma
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Fuqian Lei
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Xianghui Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
10
|
Bawa S, Piccirillo R, Geisbrecht ER. TRIM32: A Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis. Biomolecules 2021; 11:biom11030408. [PMID: 33802079 PMCID: PMC7999776 DOI: 10.3390/biom11030408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human tripartite motif family of proteins 32 (TRIM32) is a ubiquitous multifunctional protein that has demonstrated roles in differentiation, muscle physiology and regeneration, and tumor suppression. Mutations in TRIM32 result in two clinically diverse diseases. A mutation in the B-box domain gives rise to Bardet–Biedl syndrome (BBS), a disease whose clinical presentation shares no muscle pathology, while mutations in the NHL (NCL-1, HT2A, LIN-41) repeats of TRIM32 causes limb-girdle muscular dystrophy type 2H (LGMD2H). TRIM32 also functions as a tumor suppressor, but paradoxically is overexpressed in certain types of cancer. Recent evidence supports a role for TRIM32 in glycolytic-mediated cell growth, thus providing a possible mechanism for TRIM32 in the accumulation of cellular biomass during regeneration and tumorigenesis, including in vitro and in vivo approaches, to understand the broad spectrum of TRIM32 functions. A special emphasis is placed on the utility of the Drosophila model, a unique system to study glycolysis and anabolic pathways that contribute to the growth and homeostasis of both normal and tumor tissues.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
| | - Rosanna Piccirillo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
- Correspondence: ; Tel.: +1-(785)-532-3105
| |
Collapse
|
11
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
12
|
Prajapati P, Gohel D, Shinde A, Roy M, Singh K, Singh R. TRIM32 regulates mitochondrial mediated ROS levels and sensitizes the oxidative stress induced cell death. Cell Signal 2020; 76:109777. [PMID: 32918979 DOI: 10.1016/j.cellsig.2020.109777] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that ubiquitin mediated post translational modification is a critical regulatory process involved in diverse cellular pathways including cell death. During ubiquitination, E3 ligases recognize target proteins and determine the topology of ubiquitin chains. Recruitment of E3 ligases to targets proteins under stress conditions including oxidative stress and their implication in cell death have not been systemically explored. In the present study, we characterized the role of TRIM32 as an E3 ligase in regulation of oxidative stress induced cell death. TRIM32 is ubiquitously expressed in cell lines of different origin and form cytoplasmic speckle like structures that transiently interact with mitochondria under oxidative stress conditions. The ectopic expression of TRIM32 sensitizes cell death induced by oxidative stress whereas TRIM32 knockdown shows a protective effect. The turnover of TRIM32 is enhanced during oxidative stress and its expression induces ROS generation, loss of mitochondrial transmembrane potential and decrease in complex-I activity. The pro-apoptotic effect was rescued by pan-caspase inhibitor or antioxidant treatment. E3 ligase activity of TRIM32 is essential for oxidative stress induced apoptotic cell death. Furthermore, TRIM32 decreases X-linked inhibitor of apoptosis (XIAP) level and overexpression of XIAP rescued cells from TRIM32 mediated oxidative stress and cell death. Overall, the results of this study provide the first evidence supporting the role of TRIM32 in regulating oxidative stress induced cell death, which has implications in numerous pathological conditions including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Paresh Prajapati
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India; Spinal Cord and Brain Injury Research Center, Department of Pathology and Laboratory Medicine, University of Kentucky, 800 S. Limestone, Lexington, KY 40536, USA; Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Kritarth Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India.
| |
Collapse
|
13
|
Liu J, Zhang C, Wang X, Hu W, Feng Z. Tumor suppressor p53 cross-talks with TRIM family proteins. Genes Dis 2020; 8:463-474. [PMID: 34179310 PMCID: PMC8209353 DOI: 10.1016/j.gendis.2020.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
p53 is a key tumor suppressor. As a transcription factor, p53 accumulates in cells in response to various stress signals and selectively transcribes its target genes to regulate a wide variety of cellular stress responses to exert its function in tumor suppression. In addition to tumor suppression, p53 is also involved in many other physiological and pathological processes, e.g. anti-infection, immune response, development, reproduction, neurodegeneration and aging. To maintain its proper function, p53 is under tight and delicate regulation through different mechanisms, particularly the posttranslational modifications. The tripartite motif (TRIM) family proteins are a large group of proteins characterized by the RING, B-Box and coiled-coil (RBCC) domains at the N-terminus. TRIM proteins play important roles in regulation of many fundamental biological processes, including cell proliferation and death, DNA repair, transcription, and immune response. Alterations of TRIM proteins have been linked to many diseases including cancer, infectious diseases, developmental disorders, and neurodegeneration. Interestingly, recent studies have revealed that many TRIM proteins are involved in the regulation of p53, and at the same time, many TRIM proteins are also regulated by p53. Here, we review the cross-talk between p53 and TRIM proteins, and its impact upon cellular biological processes as well as cancer and other diseases.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Xue Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| |
Collapse
|
14
|
Valletti A, Marzano F, Pesole G, Sbisà E, Tullo A. Targeting Chemoresistant Tumors: Could TRIM Proteins-p53 Axis Be a Possible Answer? Int J Mol Sci 2019; 20:ijms20071776. [PMID: 30974870 PMCID: PMC6479553 DOI: 10.3390/ijms20071776] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Chemosensitivity is a crucial feature for all tumours so that they can be successfully treated, but the huge heterogeneity of these diseases, to be intended both inter- and intra-tumour, makes it a hard-to-win battle. Indeed, this genotypic and phenotypic variety, together with the adaptability of tumours, results in a plethora of chemoresistance acquisition mechanisms strongly affecting the effectiveness of treatments at different levels. Tripartite motif (TRIM) proteins are shown to be involved in some of these mechanisms thanks to their E3-ubiquitin ligase activity, but also to other activities they can exert in several cellular pathways. Undoubtedly, the ability to regulate the stability and activity of the p53 tumour suppressor protein, shared by many of the TRIMs, represents the preeminent link between this protein family and chemoresistance. Indeed, they can modulate p53 degradation, localization and subset of transactivated target genes, shifting the cellular response towards a cytoprotective or cytotoxic reaction to whatever damage induced by therapy, sometimes in a cellular-dependent way. The involvement in other chemoresistance acquisition mechanisms, independent by p53, is known, affecting pivotal processes like PI3K/Akt/NF-κB signalling transduction or Wnt/beta catenin pathway, to name a few. Hence, the inhibition or the enhancement of TRIM proteins functionality could be worth investigating to better understand chemoresistance and as a strategy to increase effectiveness of anticancer therapies.
Collapse
Affiliation(s)
- Alessio Valletti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro"-Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council-CNR, Via Amendola 122/O, 70126 Bari, Italy.
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council-CNR, Via Amendola 122/O, 70126 Bari, Italy.
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy.
| | - Elisabetta Sbisà
- Institute of Biomedical Technologies, National Research Council-CNR, Via Amendola 122/d, 70126 Bari, Italy.
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council-CNR, Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|