1
|
Yan P, Ke B, Fang X. Bioinformatics reveals the pathophysiological relationship between diabetic nephropathy and periodontitis in the context of aging. Heliyon 2024; 10:e24872. [PMID: 38304805 PMCID: PMC10830875 DOI: 10.1016/j.heliyon.2024.e24872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Periodontitis (PD) is a microbially-induced chronic inflammatory disease that is thought to have a bidirectional relationship with diabetes mellitus. DN and PD are recognized as models associated with accelerated aging. This study is divided into two parts, the first of which explores the bidirectional causal relationship through Mendelian randomization (MR). The second part aims to investigate the relationship between PD and DN in terms of potential crosstalk genes, aging-related genes, biological pathways, and processes using bioinformatic methods. MR analysis showed no evidence to support a causal relationship between DN and PD (P = 0.34) or PD and DN (P = 0.77). Using the GEO database, we screened 83 crosstalk genes overlapping in two diseases. Twelve paired genes identified by Pearson correlation and the four hub genes in the key cluster were jointly evaluated as key crosstalk-aging genes. Using support vector machine recursive feature elimination (SVM-RFE) and maximal clique centrality (MCC) algorithms, feature selection established five genes as the key crosstalk-aging genes. Based on five key genes, an ANN diagnostic model with reliable diagnosis of two diseases was developed. Gene enrichment analysis indicates that AGE-RAGE pathway signaling, the complement system, and multiple immune inflammatory pathways may be involved in common features of both diseases. Immune infiltration analysis reveals that most immune cells are differentially expressed in PD and DN, with dendritic cells and T cells assuming vital roles in both diseases. Overall, although there is no causal link, CSF1R, CXCL6, VCAM1, JUN and IL1B may be potential crosstalk-aging genes linking PD and DN. The common pathways and markers explored in this study could contribute to a deeper understanding of the common pathogenesis of both diseases in the context of aging and provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Peng Yan
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Quan ZH, Xu FP, Huang Z, Chen RH, Xu QW, Lin L. LncRNA MYLK antisense RNA 1 activates cell division cycle 42/Neutal Wiskott-Aldrich syndrome protein pathway via microRNA-101-5p to accelerate epithelial-to-mesenchymal transition of colon cancer cells. Kaohsiung J Med Sci 2024; 40:11-22. [PMID: 37950620 DOI: 10.1002/kjm2.12773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/13/2023] Open
Abstract
Long noncoding RNA MYLK antisense RNA 1 (MYLK-AS1) is the crux in multiple diseases. Therefore, the purpose of this study was to investigate the possible mechanism of MYLK-AS1. A total of 62 colon cancer (CC) specimens and paired adjacent normal tissues were collected, and the expression of MYLK-AS1, microRNA (miR)-101-5p/cell division cycle 42 (CDC42) was detected. CC cell lines were transfected with MYLK-AS1, miR-101-5p, CDC42-related plasmids, and the biological functions and markers of epithelial-mesenchymal transition (EMT) were analyzed. The binding relationship between MYLK-AS1, miR-101-5p, and CDC42 was evaluated. In CC tissues and cell lines, MYLK-AS1 and CDC42 were highly expressed, and miR-101-5p was lowly expressed. Inhibition of MYLK-AS1 or upregulation of miR-101-5p can inhibit CC cell growth and EMT. miR-101-5p inhibited CDC42/N-wasp axis activation in CC cells by targeting CDC42. Knockdown of CDC42 or upregulation of miR-101-5p partially reversed the effects caused by upregulation of MYLK-AS1. MYLK-AS1, which is significantly upregulated in CC, may be a molecular sponge for miR-101-5p, and MYLK-AS1 promotes the activation of the CDC42/N-wasp axis in CC cells by targeting CDC42 through miR-101-5p, which in turn promotes tumor development. MYLK-AS1 may be a potential biomarker and target for CC therapy.
Collapse
Affiliation(s)
- Zhen-Hao Quan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fei-Peng Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhe Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ri-Hong Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qing-Wen Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Lin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Thapa R, Afzal O, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Arora P, Singh SK, Dua K. From LncRNA to metastasis: The MALAT1-EMT axis in cancer progression. Pathol Res Pract 2024; 253:154959. [PMID: 38029713 DOI: 10.1016/j.prp.2023.154959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Cancer is a complex disease that causes abnormal genetic changes and unchecked cellular growth. It also causes a disruption in the normal regulatory processes that leads to the creation of malignant tissue. The complex interplay of genetic, environmental, and epigenetic variables influences its etiology. Long non-coding RNAs (LncRNAs) have emerged as pivotal contributors within the intricate landscape of cancer biology, orchestrating an array of multifaceted cellular processes that substantiate the processes of carcinogenesis and metastasis. Metastasis is a crucial driver of cancer mortality. Among these, MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) has drawn a lot of interest for its function in encouraging metastasis via controlling the Epithelial-Mesenchymal Transition (EMT) procedure. MALAT1 exerts a pivotal influence on the process of EMT, thereby promoting metastasis to distant organs. The mechanistic underpinning of this phenomenon involves the orchestration of an intricate regulatory network encompassing transcription factors, signalling cascades, and genes intricately associated with the EMT process by MALAT1. Its crucial function in transforming tumor cells into an aggressive phenotype is highlighted by its capacity to influence the expression of essential EMT effectors such as N-cadherin, E-cadherin, and Snail. An understanding of the MALAT1-EMT axis provides potential therapeutic approaches for cancer intervention. Targeting MALAT1 or its downstream EMT effectors may reduce the spread of metastatic disease and improve the effectiveness of already available therapies. Understanding the MALAT1-EMT axis holds significant clinical implications. Therefore, directing attention towards MALAT1 or its downstream mediators could present innovative therapeutic strategies for mitigating metastasis and improving patient prognosis. This study highlights the importance of MALAT1 in cancer biology and its potential for cutting back on metastatic disease with novel treatment strategies.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Poonam Arora
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
4
|
Dai CL, Yang HX, Liu QP, Rahman K, Zhang H. CXCL6: A potential therapeutic target for inflammation and cancer. Clin Exp Med 2023; 23:4413-4427. [PMID: 37612429 DOI: 10.1007/s10238-023-01152-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Xu J, Wang J, Chen M, Chao B, He J, Bai Y, Luo X, Liu H, Xie L, Tao Y, Qi H, Luo X. miR-101-5p suppresses trophoblast cell migration and invasion via modulating the DUSP6-ERK1/2 axis in preeclampsia. J Assist Reprod Genet 2023; 40:1597-1610. [PMID: 37300650 PMCID: PMC10352218 DOI: 10.1007/s10815-023-02846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.
Collapse
Affiliation(s)
- Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Miaomiao Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Bingdi Chao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaofang Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongli Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Lumei Xie
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
- Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Molczyk C, Singh RK. CXCR1: A Cancer Stem Cell Marker and Therapeutic Target in Solid Tumors. Biomedicines 2023; 11:biomedicines11020576. [PMID: 36831112 PMCID: PMC9953306 DOI: 10.3390/biomedicines11020576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Therapy resistance is a significant concern while treating malignant disease. Accumulating evidence suggests that a subset of cancer cells potentiates tumor survival, therapy resistance, and relapse. Several different pathways regulate these purported cancer stem cells (CSCs). Evidence shows that the inflammatory tumor microenvironment plays a crucial role in maintaining the cancer stem cell pool. Typically, in the case of the tumor microenvironment, inflammatory pathways can be utilized by the tumor to aid in tumor progression; one such pathway is the CXCR1/2 pathway. The CXCR1 and CXCR2 receptors are intricately related, with CXCR1 binding two ligands that also bind CXCR2. They have the same downstream pathways but potentially separate roles in the tumor microenvironment. CXCR1 is becoming more well known for its role as a cancer stem cell identifier and therapeutic target. This review elucidates the role of the CXCR1 axis as a CSC marker in several solid tumors and discusses the utility of CXCR1 as a therapeutic target.
Collapse
|
9
|
Huang C, Wang M, Zhao WY, Shen YY, Zhuang C, Ni B, Yang LX, Lu L, Li XQ, Tu L, Cao H. Long noncoding RNA SPRY4-IT1 acts as a miR-101-5p sponge to promote gastrointestinal stromal tumor progression by inhibiting ZEB1. Am J Transl Res 2023; 15:1026-1040. [PMID: 36915750 PMCID: PMC10006756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/20/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Research on long noncoding RNAs (lncRNAs) has been conducted in different areas of oncology. Currently, the biological significance of lncRNAs and their regulatory features in gastrointestinal stromal tumors (GIST) remain largely unknown. We have previously identified SPRY4-IT1 overexpression in GIST through lncRNA sequencing of GIST tissues. Coincidentally, SPRY4-IT1 is an intron of the SPRY4 gene, and SPRY4 is specifically highly expressed in GIST. Thus the aim of the present study was to investigate the role of lncRNA SPRY4-IT1 in GIST pathogenesis. METHODS Herein, we screened for SPRY4-IT1 and analyzed its possible phenotypes using Gene set enrichment analysis (GSEA). The phenotypes of GIST were verified using CCK-8, colony formation, and wound-healing assays. The ceRNA mechanism was determined by the location of lncRNA SPRY4-IT1, and its relationship to the Ago2 protein. The SPRY4-IT1/miR-101-5p/ZEB1 axis was predicted using online software and sequencing. Luciferase and pull-down assays were performed for verification. Pathway-associated and phenotype-associated proteins were detected by western blotting. RESULTS Sequencing analysis revealed 117 differentially expressed lncRNAs in GIST and normal gastric tissue samples. Accordingly, SPRY4-IT1 was screened out and its phenotype was predicted by GSEA. Mechanistically, SPRY4-IT1 was identified as a competing endogenous RNA (ceRNA) that downregulated miR-101-5p and upregulated ZEB1, which activated extracellular signal-regulated kinase (ERK) signaling to stimulate GIST proliferation, invasion, and epithelial-mesenchymal transition. Although this effect was regulated by a negative feedback loop through SPRY4, it was still controlled by SPRY4-IT1. CONCLUSIONS In GIST, we revealed a ceRNA mechanism by which SPRY4-IT1 modulates ZEB1 by sponging miR-101-5p, eventually driving tumor cell proliferation, migration, and epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Ming Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Wen-Yi Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Yan-Ying Shen
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Chun Zhuang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Lin-Xi Yang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Lu Lu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Xiao-Qi Li
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Lin Tu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, P. R. China
| |
Collapse
|
10
|
Liu N, Yang C, Gao A, Sun M, Lv D. MiR-101: An Important Regulator of Gene Expression and Tumor Ecosystem. Cancers (Basel) 2022; 14:cancers14235861. [PMID: 36497343 PMCID: PMC9739992 DOI: 10.3390/cancers14235861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
MiRNAs are small single-stranded non-coding RNAs. MiRNA contributes to the transcriptional and post-transcriptional regulation of mRNA in different cell types, including mRNA transcription inhibition and mRNA decay and phenotypes via the effect of several essential oncogenic processes and tumor microenvironment. MiR-101 is a highly conserved miRNA that was found to alter the expression in various human cancers. MiR-101 has been reported to have tumor oncogenic and suppressive effects to regulate tumorigenesis and tumor progression. In this review, we summarize the new findings about the roles of miR-101 in cancers and the underlying mechanisms of targeting genes degradation and microenvironment regulation, which will improve biological understanding and design of novel therapeutics.
Collapse
Affiliation(s)
- Ning Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Chunsheng Yang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Ang Gao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
- Correspondence: (M.S.); (D.L.)
| | - Deguan Lv
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Correspondence: (M.S.); (D.L.)
| |
Collapse
|
11
|
Gong J, Wang P, Liu JC, Li J, Zeng QX, Yang C, Li Y, Yu D, Cao D, Duan YG. Integrative Analysis of Small RNA and mRNA Expression Profiles Identifies Signatures Associated With Chronic Epididymitis. Front Immunol 2022; 13:883803. [PMID: 35634321 PMCID: PMC9130659 DOI: 10.3389/fimmu.2022.883803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic epididymitis (CE) refers to a long-lasting inflammatory condition of the epididymis, which is considered the most common site of intrascrotal inflammation and an important aetiological factor of male infertility. Recent studies demonstrate that small RNAs secreted from epididymal epithelium modulate embryo development and offspring phenotypes via sperm transmission, and the resulting modifications may lead to transgenerational inheritance. However, to date, the genome-wide analysis of small RNA together with the transcriptomic expression profiles of human epididymis and CE is still lacking. In this study, we facilitated next-generation sequencing and bioinformatics to comprehensively analyze the small RNA and mRNA in an integrative way and identified signatures associated with CE. Both of the small RNA and mRNA expression data demonstrated relatively larger molecular differences among the segmental region of the epididymides, including caput, corpus, and cauda, than that of the inflammatory conditions. By comparing the inflamed caputs to the controls, a total of 1727 genes (1220 upregulated and 507 downregulated; 42 most significant genes, adjusted P <0.05) and 34 miRNAs (23 upregulated and 11 downregulated) were identified as differentially expressed. In silico functional enrichment analysis showed their roles in regulating different biological activities, including leukocyte chemotaxis, extracellular milieu reconstruction, ion channel and transporter-related processes, and nervous system development. Integrative analysis of miRNA and mRNA identified a regulatory network consisting of 22 miRNAs and 31 genes (miRNA-mRNA) which are strong candidates for CE. In addition, analysis about other species of small RNA, including (miRNA), piwi-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), Y RNA, and rsRNA identified the distinct expression pattern of tsRNA in CE. In summary, our study performed small RNA and miRNA profiling and integrative analysis in human CE. The findings will help to understand the role of miRNA-mRNA in the pathogenesis of CE and provide molecular candidates for the development of potential biomarkers for human CE.
Collapse
Affiliation(s)
- Jialei Gong
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Peng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin-Chuan Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianlin Li
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qun-Xiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chen Yang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yanfeng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
12
|
Mu L, Hu S, Li G, Wu P, Ren C, Lin T, Zhang S. Characterization of the Prognostic Values of CXCL Family in Epstein-Barr Virus Associated Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2218140. [PMID: 35693706 PMCID: PMC9177340 DOI: 10.1155/2022/2218140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Background CXCL family is a class of secreted growth factors signaling through G-protein-coupled receptors, and abnormal expression is associated with the growth and progression of many tumors. However, their prognostic value has been poorly studied in Epstein-Barr virus- (EBV-) associated gastric cancer (EBVaGC). Therefore, it is of great significance to explore the prognostic value of the CXCL family in EBVaGC. Methods CXCL family mRNA expression was analyzed in STAD data from The Cancer Genome Atlas (TCGA). Kaplan-Meier Plotter was used to assess the prognostic value of the CXCL family. Transcription factors (TFs) and miRNAs associated with the CXCL family were identified by TFCheckpoint, miRWalk, and ViRBase databases. The prognostic model was evaluated using the EBVaGC patient cohort GSE51575. Results The mRNA expression of CXCL1/3/5/6/8/9/10/11/16 was significantly upregulated, while the expression of CXCL12/14 was downregulated in EBVaGC compared with normal tissues from TCGA-STAD. The mRNA expressions of CXCL9, CXCL10, CXCL11, and CXCL17 in EBVaGCs were higher than those in EBVnGCs, but the mRNA expressions of CXCL6, CXCL12, and CXCL17 were lower than those in EBVnGCs. The mRNA expression levels of CXCL9, CXCL10, and CXCL11 in EBVaGCs were higher than those in EBVnGCs regardless of the tumor stage. High mRNA expression of CXCL8 was associated with better OS in patients with EBVaGC, while high expression of CXCL9 was associated with better OS in patients with EBVnGC. We obtained 10 candidate potential transcription factors (TFs) associated with CXCLs: OTOP3, NKX6-2, NKX2-2, FEV, SMYD1, TRIMSO, TBX10, CDX1, SLC26A3, and ARC. 576 miRNA-mRNA interactions were obtained. Among them, 65 miRNAs were predicted to be correlated with CXCL6, CXCL9, CXCL10, and CXCL11. Similar to the results of TCGA-STAD, the GSE51575 dataset also showed that the mRNA expression levels of CXCL1/3/9/10/11/16 were markedly enhanced in EBVaGC tissues compared with corresponding normal gastric mucosa tissues, while the mRNA expression levels of CXCL12/14 were significantly reduced. The mRNA expression levels of CXCL3/9/10/11/13/17 were increased in EBVaGC compared with EBVnGC tissues. Conclusions The expression differences of CXCL family members are closely associated with the progression of EBVaGC. Expression of CXCL9/10/11/17 mRNA may be a promising prognostic indicator for EBVaGC patients.
Collapse
Affiliation(s)
- Li Mu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Shun Hu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Guoping Li
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Ping Wu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Caihong Ren
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Taiyu Lin
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
13
|
Yeung V, Zhang TC, Yuan L, Parekh M, Cortinas JA, Delavogia E, Hutcheon AEK, Guo X, Ciolino JB. Extracellular Vesicles Secreted by Corneal Myofibroblasts Promote Corneal Epithelial Cell Migration. Int J Mol Sci 2022; 23:ijms23063136. [PMID: 35328555 PMCID: PMC8951135 DOI: 10.3390/ijms23063136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Corneal epithelial wound healing is a multifaceted process that encompasses cell proliferation, migration, and communication from the corneal stroma. Upon corneal injury, bidirectional crosstalk between the epithelium and stroma via extracellular vesicles (EVs) has been reported. However, the mechanisms by which the EVs from human corneal keratocytes (HCKs), fibroblasts (HCFs), and/or myofibroblasts (HCMs) exert their effects on the corneal epithelium remain unclear. In this study, HCK-, HCF-, and HCM-EVs were isolated and characterized, and human corneal epithelial (HCE) cell migration was assessed in a scratch assay following PKH26-labeled HCK-, HCF-, or HCM-EV treatment. HCE cells proliferative and apoptotic activity following EV treatment was assessed. HCF-/HCM-EVs were enriched for CD63, CD81, ITGAV, and THBS1 compared to HCK-EV. All EVs were negative for GM130 and showed minimal differences in biophysical properties. At the proteomic level, we showed HCM-EV with a log >two-fold change in CXCL6, CXCL12, MMP1, and MMP2 expression compared to HCK-/HCF-EVs; these proteins are associated with cellular movement pathways. Upon HCM-EV treatment, HCE cell migration, velocity, and proliferation were significantly increased compared to HCK-/HCF-EVs. This study concludes that the HCM-EV protein cargo influences HCE cell migration and proliferation, and understanding these elements may provide a novel therapeutic avenue for corneal wound healing.
Collapse
Affiliation(s)
- Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.Y.); (M.P.); (A.E.K.H.); (X.G.); (J.B.C.)
- Correspondence:
| | | | - Ling Yuan
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.Y.); (M.P.); (A.E.K.H.); (X.G.); (J.B.C.)
| | - Mohit Parekh
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.Y.); (M.P.); (A.E.K.H.); (X.G.); (J.B.C.)
| | - John A. Cortinas
- Division of Newborn Medicine & Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.A.C.); (E.D.)
| | - Eleni Delavogia
- Division of Newborn Medicine & Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.A.C.); (E.D.)
| | - Audrey E. K. Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.Y.); (M.P.); (A.E.K.H.); (X.G.); (J.B.C.)
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.Y.); (M.P.); (A.E.K.H.); (X.G.); (J.B.C.)
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.Y.); (M.P.); (A.E.K.H.); (X.G.); (J.B.C.)
| |
Collapse
|
14
|
Normann LS, Haugen MH, Aure MR, Kristensen VN, Mælandsmo GM, Sahlberg KK. miR-101-5p Acts as a Tumor Suppressor in HER2-Positive Breast Cancer Cells and Improves Targeted Therapy. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:25-39. [PMID: 35256859 PMCID: PMC8898020 DOI: 10.2147/bctt.s338404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Purpose Human epidermal growth factor receptor 2 positive (HER2+) breast cancers responding poorly to targeted therapy need improved treatment options. miR-101-5p has shown tumor-suppressive properties in multiple cancer forms, and we assessed the effect and mechanism of action of this miRNA in HER2+ breast cancer. Methods Expression levels of miR-101-5p in two clinical datasets, TCGA and METABRIC, were compared between tumor and normal adjacent samples, and across molecular subtypes and HER2 status. The ability of miR-101-5p to sensitize for treatment with lapatinib, tucatinib and trastuzumab was explored in HER2+ breast cancer cells responding poorly to such targeted drugs. Proliferation and apoptosis assays and downstream protein analysis were performed. Results Expression levels of miR-101-5p were significantly lower in tumor compared to normal adjacent tissue (p < 0.001), and particularly low in HER2+ tumors, both the HER2-enriched subtype (p ≤ 0.037) and clinical HER2-status (p < 0.001). In a HER2+ cell line (KPL4) responding poorly to targeted drugs, miR-101-5p overexpression inhibited proliferation (p < 0.001), and combinatorial treatment with lapatinib and trastuzumab significantly further decreased this inhibition (p = 0.004). Proteomic data and in silico analyses revealed PI3K/Akt- and HER2-pathways among the predicted regulated pathways. miR-101-5p alone (p = 0.018) and in combination with lapatinib and trastuzumab (p < 0.001) induced apoptosis, while the targeted drugs alone did not exert any significant effect neither on proliferation nor apoptosis. Conclusion miR-101-5p acts as a tumor suppressor by inducing apoptosis in HER2+ breast cancer and sensitizes cells with initially poor response to lapatinib and trastuzumab.
Collapse
Affiliation(s)
- Lisa Svartdal Normann
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mads Haugland Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Miriam Ragle Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kristine Kleivi Sahlberg
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Liu Y, Xiang J, Peng G, Shen C. Omics- and Pharmacogenomic Evidence for the Prognostic, Regulatory, and Immune-Related Roles of PBK in a Pan-Cancer Cohort. Front Mol Biosci 2021; 8:785370. [PMID: 34859058 PMCID: PMC8632063 DOI: 10.3389/fmolb.2021.785370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
PDZ-binding kinase (PBK) is known to regulate tumor progression in some cancer types. However, its relationship to immune cell infiltration and prognosis in different cancers is unclear. This was investigated in the present study by analyzing data from TCGA, GEO, GETx, TIMER, CPTAC, GEPIA2, cBioPortal, GSCALite, PROGNOSCAN, PharmacoDB, STRING, and ENCORI databases. PBK was overexpressed in most tumors including adenocortical carcinoma (hazard ratio [HR] = 2.178, p < 0.001), kidney renal clear cell carcinoma (KIRC; HR = 1.907, p < 0.001), kidney renal papillary cell carcinoma (HR = 3.024, p < 0.001), and lung adenocarcinoma (HR = 1.255, p < 0.001), in which it was associated with poor overall survival and advanced pathologic stage. PBK methylation level was a prognostic marker in thyroid carcinoma (THCA). PBK expression was positively correlated with the levels of BIRC5, CCNB1, CDC20, CDK1, DLGAP5, MAD2L1, MELK, PLK1, TOP2A, and TTK in 32 tumor types; and with the levels of the transcription factors E2F1 and MYC, which regulate apoptosis, the cell cycle, cell proliferation and invasion, tumorigenesis, and metastasis. It was also negatively regulated by the microRNAs hsa-miR-101-5p, hsa-miR-145-5p, and hsa-miR-5694. PBK expression in KIRC, liver hepatocellular carcinoma, THCA, and thymoma was positively correlated with the infiltration of immune cells including B cells, CD4+T cells, CD8+ T cells, macrophages, monocytes, and neutrophils. The results of the functional enrichment analysis suggested that PBK and related genes contribute to tumor development via cell cycle regulation. We also identified 20 drugs that potentially inhibit PBK expression. Thus, PBK is associated with survival outcome in a variety of cancers and may promote tumor development and progression by increasing immune cell infiltration into the tumor microenvironment. These findings indicate that PBK is a potential therapeutic target and has prognostic value in cancer treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Xiang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Pharmacoepigenomics circuits induced by a novel retinoid-polyamine conjugate in human immortalized keratinocytes. THE PHARMACOGENOMICS JOURNAL 2021; 21:638-648. [PMID: 34145402 DOI: 10.1038/s41397-021-00241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Retinoids are widely used in diseases spanning from dermatological lesions to cancer, but exhibit severe adverse effects. A novel all-trans-Retinoic Acid (atRA)-spermine conjugate (termed RASP) has shown previously optimal in vitro and in vivo anti-inflammatory and anticancer efficacy, with undetectable teratogenic and toxic side-effects. To get insights, we treated HaCaT cells which resemble human epidermis with IC50 concentration of RASP and analyzed their miRNA expression profile. Gene ontology analysis of their predicted targets indicated dynamic networks involved in cell proliferation, signal transduction and apoptosis. Furthermore, DNA microarrays analysis verified that RASP affects the expression of the same categories of genes. A protein-protein interaction map produced using the most significant common genes, revealed hub genes of nodal functions. We conclude that RASP is a synthetic retinoid derivative with improved properties, which possess the beneficial effects of retinoids without exhibiting side-effects and with potential beneficial effects against skin diseases including skin cancer.
Collapse
|
17
|
Chen H, Gu B, Zhao X, Zhao Y, Huo S, Liu X, Lu H. Circular RNA hsa_circ_0007364 increases cervical cancer progression through activating methionine adenosyltransferase II alpha (MAT2A) expression by restraining microRNA-101-5p. Bioengineered 2020; 11:1269-1279. [PMID: 33138667 PMCID: PMC8291787 DOI: 10.1080/21655979.2020.1832343] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence suggested that circular RNAs (circRNAs) play critical roles in cervical cancer (CC) progression. However, the roles and molecular mechanisms of hsa_circ_0007364 in the tumorigenesis of CC remain unclear. In the present study, we used bioinformatics analysis and a series of experimental analysis to characterize a novel circRNA, hsa_circ_0007364 was up-regulated and associated with advanced clinical features in CC patients. Hsa_circ_0007364 inhibition notably suppressed the proliferation and invasion abilities of CC cells in vitro and reduced tumor growth in vivo. Moreover, hsa_circ_0007364 was uncovered to sponge miR-101-5p. Additionally, methionine adenosyltransferase II alpha (MAT2A) was verified as a target gene of miR-101-5p, and its downregulation reversed the inhibitory effects of hsa_circ_0007364 knockdown on CC progression. Therefore, we suggested that hsa_circ_0007364 might serve as an oncogenic circRNA in CC progression by regulating the miR-101-5p/MAT2A axis, which provides a potential therapeutic target to the treatment. Research highlights hsa_circ_0007364 was upregulated in CC hsa_circ_0007364 promoted CC cell progression hsa_circ_0007364/miR-101-5p/MAT2A axis in CC.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Bin Gu
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xiang Zhao
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Yupeng Zhao
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Shuning Huo
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xiang Liu
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Huihong Lu
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
18
|
Shahverdi M, Amini R, Amri J, Karami H. Gene Therapy with MiRNA-Mediated Targeting of Mcl-1 Promotes the Sensitivity of Non-Small Cell Lung Cancer Cells to Treatment with ABT-737. Asian Pac J Cancer Prev 2020; 21:675-681. [PMID: 32212793 PMCID: PMC7437340 DOI: 10.31557/apjcp.2020.21.3.675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Despite the dramatic efficacy of ABT-737, a large percentage of cancer cells ultimately become resistance to this drug. Evidences show that over-expression of Mcl-1 is linked to ABT-737 resistance in NSCLC cells. The aim of this study was to investigate the effect of miRNA-101 on Mcl-1 expression and sensitivity of the A549 NSCLC cells to ABT-737. METHODS After miRNA-101 transfection, the Mcl-1 mRNA expression levels were quantified by RT-qPCR. Trypan blue staining was used to explore the effect of miRNA-101 on cell growth. The cytotoxic effects of miRNA-101 and ABT-737, alone and in combination, were measured using MTT assay. The effect of drugs combination was determined using the method of Chou-Talalay. Cell death was assessed using cell death detection ELISA assay kit. RESULTS Results showed that miRNA-101 markedly suppressed the expression of Mcl-1 mRNA in a time dependent manner, which led to A549 cell proliferation inhibition and enhancement of apoptosis (p < 0.05, relative to blank control). Pretreatment with miRNA-101 synergistically decreased the cell survival rate and lowered the IC50 value of ABT-737. Furthermore, miRNA-101 dramatically enhanced the apoptotic effect of ABT-737. Negative control miRNA had no remarkable effect on cellular parameters. CONCLUSIONS Our findings propose that suppression of Mcl-1 by miRNA-101 can effectively inhibit the cell growth and sensitize A549 cells to ABT-737. Therefore, miRNA-101 can be considered as a potential therapeutic target in patients with non-small cell lung cancer. .
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Molecular and Medicine Research Center,
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine,
| | - Razieh Amini
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine,
| | - Jamal Amri
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Hadi Karami
- Molecular and Medicine Research Center,
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine,
| |
Collapse
|
19
|
Yamada Y, Nohata N, Uchida A, Kato M, Arai T, Moriya S, Mizuno K, Kojima S, Yamazaki K, Naya Y, Ichikawa T, Seki N. Replisome genes regulation by antitumor miR-101-5p in clear cell renal cell carcinoma. Cancer Sci 2020; 111:1392-1406. [PMID: 31975570 PMCID: PMC7156888 DOI: 10.1111/cas.14327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/25/2022] Open
Abstract
Analysis of microRNA (miRNA) regulatory networks is useful for exploring novel biomarkers and therapeutic targets in cancer cells. The Cancer Genome Atlas dataset shows that low expression of both strands of pre‐miR‐101 (miR‐101‐5p and miR‐101‐3p) significantly predicted poor prognosis in clear cell renal cell carcinoma (ccRCC). The functional significance of miR‐101‐5p in cancer cells is poorly understood. Here, we focused on miR‐101‐5p to investigate the antitumor function and its regulatory networks in ccRCC cells. Ectopic expression of mature miRNAs or siRNAs was investigated in cancer cell lines to characterize cell function, ie, proliferation, apoptosis, migration, and invasion. Genome‐wide gene expression and in silico database analyses were undertaken to predict miRNA regulatory networks. Expression of miR‐101‐5p caused cell cycle arrest and apoptosis in ccRCC cells. Downstream neighbor of son (DONSON) was directly regulated by miR‐101‐5p, and its aberrant expression was significantly associated with shorter survival in propensity score‐matched analysis (P = .0001). Knockdown of DONSON attenuated ccRCC cell aggressiveness. Several replisome genes controlled by DONSON and their expression were closely associated with ccRCC pathogenesis. The antitumor miR‐101‐5p/DONSON axis and its modulated replisome genes might be a novel diagnostic and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Akifumi Uchida
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Kazuto Yamazaki
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
20
|
Toda H, Seki N, Kurozumi S, Shinden Y, Yamada Y, Nohata N, Moriya S, Idichi T, Maemura K, Fujii T, Horiguchi J, Kijima Y, Natsugoe S. RNA-sequence-based microRNA expression signature in breast cancer: tumor-suppressive miR-101-5p regulates molecular pathogenesis. Mol Oncol 2020; 14:426-446. [PMID: 31755218 PMCID: PMC6998431 DOI: 10.1002/1878-0261.12602] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrantly expressed microRNA (miRNA) are known to disrupt intracellular RNA networks in cancer cells. Exploring miRNA-dependent molecular networks is a major challenge in cancer research. In this study, we performed RNA-sequencing of breast cancer (BrCa) clinical specimens to identify tumor-suppressive miRNA in BrCa. In total, 64 miRNA were identified as candidate tumor-suppressive miRNA in BrCa cells. Analysis of our BrCa signature revealed that several miRNA duplexes (guide strand/passenger strand) derived from pre-miRNA were downregulated in BrCa tissues (e.g. miR-99a-5p/-3p, miR-101-5p/-3p, miR-126-5p/-3p, miR-143-5p/-3p, and miR-144-5p/-3p). Among these miRNA, we focused on miR-101-5p, the passenger strand of pre-miR-101, and investigated its tumor-suppressive roles and oncogenic targets in BrCa cells. Low expression of miR-101-5p predicted poor prognosis in patients with BrCa (overall survival rate: P = 0.0316). Ectopic expression of miR-101-5p attenuated aggressive phenotypes, e.g. proliferation, migration, and invasion, in BrCa cells. Finally, we identified seven putative oncogenic genes (i.e. High Mobility Group Box 3, Epithelial splicing regulatory protein 1, GINS complex subunit 1 (GINS1), Tumor Protein D52, Serine/Arginine-Rich Splicing Factor Kinase 1, Vang-like protein 1, and Mago Homolog B) regulated by miR-101-5p in BrCa cells. The expression of these target genes was associated with the molecular pathogenesis of BrCa. Furthermore, we explored the oncogenic roles of GINS1, whose function had not been previously elucidated, in BrCa cells. Aberrant expression of GINS1 mRNA and protein was observed in BrCa clinical specimens, and high GINS1 expression significantly predicted poor prognosis in patients with BrCa (overall survival rate: P = 0.0126). Knockdown of GINS1 inhibited the malignant features of BrCa cells. Thus, identification of tumor-suppressive miRNA and molecular networks controlled by these miRNA in BrCa cells may be an effective strategy for elucidation of the molecular pathogenesis of this disease.
Collapse
Affiliation(s)
- Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Naohiko Seki
- Department of Functional GenomicsChiba University Graduate School of MedicineJapan
| | - Sasagu Kurozumi
- Department of General Surgical ScienceGunma University Graduate School of MedicineJapan
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Yasutaka Yamada
- Department of Functional GenomicsChiba University Graduate School of MedicineJapan
| | | | - Shogo Moriya
- Department of Biochemistry and GeneticsChiba University Graduate School of MedicineJapan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Takaaki Fujii
- Department of General Surgical ScienceGunma University Graduate School of MedicineJapan
| | - Jun Horiguchi
- Department of Breast SurgeryInternational University of Health and WelfareChibaJapan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
- Department of Breast SurgeryFujita Health UniversityAichiJapan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| |
Collapse
|