1
|
Xia K, Zhou Y, Xie Y, Cai Y. Role of SMYD2 in gastrointestinal cancer progression (Review). Oncol Lett 2025; 29:282. [PMID: 40242267 PMCID: PMC12001312 DOI: 10.3892/ol.2025.15028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Gastrointestinal cancer is one of the most prevalent malignancies in humans and is often associated with a poor prognosis. Understanding the molecular mechanisms underlying cancer progression and severity is essential for the development of effective cancer therapies. Abnormal protein methylation is associated with the occurrence and advancement of cancer, highlighting the importance of protein methyltransferase research. SET and MYND domain-containing protein 2 (SMYD2), a lysine methyltransferase, has emerged as a promising small molecule target for cancer treatment. Notably, SMYD2 is implicated in the pathogenesis of several diseases, including gastrointestinal cancer. SMYD2 is closely associated with the tumorigenesis, proliferation, migration and other biological processes of gastrointestinal cancer, indicating its potential as a novel therapeutic target. The present review offers an in-depth analysis of SMYD2, covering its structural characteristics, regulatory pathways and functional significance. By assessing the biological roles and therapeutic potential of SMYD2, the current review presents fresh insights and perspectives for advancing research in different types of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kun Xia
- Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China
| | - Yaoxiang Zhou
- Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China
| | - Youping Xie
- Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China
| | - Yinzhong Cai
- Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China
| |
Collapse
|
2
|
Micallef I, Fenech K, Baron B. Therapeutic targeting potential of the protein lysine and arginine methyltransferases to reverse cancer chemoresistance. Front Mol Biosci 2024; 11:1455415. [PMID: 39703687 PMCID: PMC11656028 DOI: 10.3389/fmolb.2024.1455415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer treatments have continued to improve tremendously over the past decade, but therapy resistance is still a common, major factor encountered by patients diagnosed with cancer. Chemoresistance arises due to various circumstances and among these causes, increasing evidence has shown that enzymes referred to as protein methyltransferases (PMTs) play a significant role in the development of chemoresistance in various cancers. These enzymes are responsible for the methylation of different amino acids, particularly lysine and arginine, via protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs), respectively. Various PMTs have been identified to be dysregulated in the development of cancer and chemoresistance. Nonetheless, the functional role of these PMTs in the development of chemoresistance is poorly characterised. This advocates the need for innovative approaches and technologies suitable for better characterisation of these PMTs and their potential clinical inhibitors. In the case of a handful of PMTs, inhibitory small molecules which can function as anticancer drugs have been developed and have also entered clinical trials. Considering all this, PMTs have become a promising and valuable target in cancer chemoresistance related research. This review will give a small introduction on the different PKMTs and PRMTs families which are dysregulated in different cancers and the known proteins targeted by the respective enzymes. The focus will then shift towards PMTs known to be involved in chemoresistance development and the inhibitors developed against these, together with their mode of action. Lastly, the current obstacles and future perspectives of PMT inhibitors in cancer chemoresistance will be discussed.
Collapse
Affiliation(s)
- Isaac Micallef
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimberly Fenech
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
3
|
Han TS, Kim DS, Son MY, Cho HS. SMYD family in cancer: epigenetic regulation and molecular mechanisms of cancer proliferation, metastasis, and drug resistance. Exp Mol Med 2024; 56:2325-2336. [PMID: 39482529 PMCID: PMC11611910 DOI: 10.1038/s12276-024-01326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes. Various members of the SMYD family play significant roles in cancer proliferation, metastasis, and drug resistance by regulating cancer-specific histone methylation and nonhistone methylation. Thus, the development of specific inhibitors that target SMYD family members may lead to the development of cancer treatments, and combination therapy with various anticancer therapeutic agents may increase treatment efficacy.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
5
|
FENECH KIMBERLY, MICALLEF ISAAC, BARON BYRON. 5-Fluorouracil dose escalation generated desensitized colorectal cancer cells with reduced expression of protein methyltransferases and no epithelial-to-mesenchymal transition potential. Oncol Res 2024; 32:1047-1061. [PMID: 38827317 PMCID: PMC11136688 DOI: 10.32604/or.2024.049173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/29/2024] [Indexed: 06/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. In many cases, the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil (5-FU). The epithelial-to-mesenchymal transition (EMT) and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers. This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC. Materials and Methods HCT-116, Caco-2, and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU. The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays. This was followed by a Western blot which analyzed the protein expressions of the epithelial marker E-cadherin, mesenchymal marker vimentin, and the EMT transcription factor (EMT-TF), the snail family transcriptional repressor 1 (Snail) in the parental and desensitized cells. Western blotting was also conducted to study the protein expressions of the protein methyltransferases (PMTs), Euchromatic histone lysine methyltransferase 2 (EHMT2/G9A), protein arginine methyltransferase (PRMT5), and SET domain containing 7/9 (SETD7/9) along with the global lysine and arginine methylation profiles. Results The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU. The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells. This was reflected in the observed reduction in E-cadherin, vimentin, and Snail in the desensitized cell lines. Additionally, the protein expressions of EHMT2/G9A, PRMT5, and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment. Conclusion This study showed that continuous, dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells.
Collapse
Affiliation(s)
- KIMBERLY FENECH
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
| | - ISAAC MICALLEF
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - BYRON BARON
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080, Malta
| |
Collapse
|
6
|
Tian Y, Lei Y, Wang Y, Lai J, Wang J, Xia F. Mechanism of multidrug resistance to chemotherapy mediated by P‑glycoprotein (Review). Int J Oncol 2023; 63:119. [PMID: 37654171 PMCID: PMC10546381 DOI: 10.3892/ijo.2023.5567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
Multidrug resistance (MDR) seriously limits the clinical application of chemotherapy. A mechanism underlying MDR is the overexpression of efflux transporters associated with chemotherapeutic drugs. P‑glycoprotein (P‑gp) is an ATP‑binding cassette (ABC) transporter, which promotes MDR by pumping out chemotherapeutic drugs and reducing their intracellular concentration. To date, overexpression of P‑gp has been detected in various types of chemoresistant cancer and inhibiting P‑gp‑related MDR has been suggested. The present review summarizes the mechanisms underlying MDR mediated by P‑gp in different tumors and evaluated the related signaling pathways, with the aim of improving understanding of the current status of P‑gp‑mediated chemotherapeutic resistance. This review focuses on the main mechanisms of inhibiting P‑gp‑mediated MDR, with the aim of providing a reference for the study of reversing P‑gp‑mediated MDR. The first mechanism involves decreasing the efflux activity of P‑gp by altering its conformation or hindering P‑gp‑chemotherapeutic drug binding. The second inhibitory mechanism involves inhibiting P‑gp expression to reduce efflux. The third inhibitory mechanism involves knocking out the ABCB1 gene. Potential strategies that can inhibit P‑gp include certain natural products, synthetic compounds and biological techniques. It is important to screen lead compounds or candidate techniques for P‑gp inhibition, and to identify inhibitors by targeting the relevant signaling pathways to overcome P‑gp‑mediated MDR.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yongrong Lei
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yani Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Jiejuan Lai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
7
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023; 28:molecules28042000. [PMID: 36838987 PMCID: PMC9967872 DOI: 10.3390/molecules28042000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
Affiliation(s)
- Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Lydia Huesgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA
- Correspondence: (M.A.B.); (D.C.C.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Correspondence: (M.A.B.); (D.C.C.)
| |
Collapse
|
8
|
Shi CJ, Xue ZH, Zeng WQ, Deng LQ, Pang FX, Zhang FW, Fu WM, Zhang JF. LncRNA-NEF suppressed oxaliplatin resistance and epithelial-mesenchymal transition in colorectal cancer through epigenetically inactivating MEK/ERK signaling. Cancer Gene Ther 2023:10.1038/s41417-023-00595-1. [PMID: 36782047 DOI: 10.1038/s41417-023-00595-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
A major cause of oxaliplatin chemoresistance in colorectal cancer (CRC) is acquired epithelial-mesenchymal transition (EMT) in cancer cells, making the cancer cells easy to metastasis and recurrence. LncRNA Neighboring Enhancer of FOXA2 (lncRNA-NEF) has been characterized as a tumor suppressor to mediate cancer metastasis in multiple cancer types. However, whether it mediated the drug resistance remains unknown. In the present study, an oxaliplatin-resistant CRC cell line (SW620R) was established and lncRNA-NEF was obviously down-regulated in this resistant cell line. The further loss and gain-of-function studies demonstrated that this lncRNA suppressed oxaliplatin resistance as well as EMT programme in vitro and inhibited metastasis in vivo. Mechanistically, lncRNA-NEF epigenetically promoted the expression of DOK1 (Downstream of Tyrosine kinase 1), a negative regulator of MEK/ERK signaling, by disrupting DNA methyltransferases (DNMTs)-mediated DNA methylation. DOK1, in turn, induced the inactivation of MEK/ERK signaling, forming the lncRNA-NEF/DOK1/MEK/ERK regulatory axis to mediate oxaliplatin resistance in CRC. Collectively, our work reveals the critical function of lncRNA-NEF in mediating the oxaliplatin chemotherapy resistance in CRC, and provides a promising therapeutic strategy for CRC patients with oxaliplatin resistance.
Collapse
Affiliation(s)
- Chuan-Jian Shi
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, PR China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhi-He Xue
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei-Qiang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Li-Qiang Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Feng-Xiang Pang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Feng-Wei Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Wei-Ming Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jin-Fang Zhang
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, PR China.
| |
Collapse
|
9
|
Razmi M, Yazdanpanah A, Etemad-Moghadam S, Alaeddini M, Angelini S, Eini L. Clinical prognostic value of the SMYD2/3 as new epigenetic biomarkers in solid cancer patients: a systematic review and meta-analysis. Expert Rev Mol Diagn 2022; 22:1-15. [PMID: 36346387 DOI: 10.1080/14737159.2022.2144235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND SET and MYND domain-containing protein (SMYD) family with methyltransferase activity is involved in cancer progression. This novel meta-analysis aimed to evaluate the association of SMYD family with the clinical and survival outcomes in solid cancer patients. METHODS We systematically searched Embase, PubMed, Scopus and Web of Science to select relevant articles. Hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals were extracted. Heterogeneity was evaluated by chi-square-based Q and I2 tests, while publication bias by funnel plots and Egger's test. RESULTS Thirty-two articles (4,826 patients) met inclusion criteria. SMYD2/3 overexpression was statistically associated with poor overall survival (HR = 1.794, P < 0.001), disease/relapse/progression-free survival (HR = 2.114, P < 0.001), disease/cancer-specific survival (HR = 3.220, P = 0.003), larger tumor size (OR = 1.963, P < 0.001), advanced TNM stage (OR = 2.066, P < 0.001), lymph node metastasis (OR = 2.054, P < 0.001), and distant metastasis (OR = 1.978, P = 0.004). Subgroup analysis showed more significant association between SMYD2 overexpression and reduced survival outcomes than that in SMYD3. Conversely, the relationship between SMYD3 and various clinicopathologic factors was stronger compared to SMYD2. CONCLUSION Enhanced SMYD2/3 expression may be an unfavorable clinical prognostic factor in different solid cancer types.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ayna Yazdanpanah
- Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology (Fabit), University of Bologna, Bologna, Italy
| | - Leila Eini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Division of Histology, Department of Basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Pan K, Hu B, Wang L, Yuan J, Xu W. STUB1-SMYD2 Axis Regulates Drug Resistance in Glioma cells. J Mol Neurosci 2022; 72:2030-2044. [PMID: 35939202 DOI: 10.1007/s12031-022-02051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
SET and MYND domain-containing protein 2 (SMYD2) is an important epigenetic regulator that methylates histone and non-histone proteins. The study aimed to investigate the oncogenic role of SMYD2 in gliomas and explore its degradation mechanism induced by cisplatin. Tumor tissue microarray of 441 patients with glioma was collected for SMYD2 immunohistochemical staining. Kaplan-Meier survival curves were constructed using the overall survival values. mRNA-sequencing analysis was performed for understanding the downstream mechanisms mediated by SMYD2. The half-inhibitory concentrations (IC50) of temozolomide and cisplatin in AZ505-treated and control cells were calculated. The potential E3 ubiquitin ligase of SMYD2 was predicted in UbiBrowser and confirmed by a knockdown test. The effect of SMYD2 and its E3 ligase on apoptosis and migration of glioma cells was determined via cell-function assays. High SMYD2 expression correlated with a high WHO stage (P = 0.004) and a low survival probability (P = 0.012). The inhibition of SMYD2 suppressed the process of epithelial to mesenchymal transition (EMT) by downregulating the expression of Collagen 1A1 (COL1A1). AZ505 treatment significantly increased the drug sensitivity of glioma cells. SMYD2 expression was markedly reduced by cisplatin treatment via STIP1 Homology And U-Box Containing Protein 1 (STUB1)-mediated degradation. The knockdown of STUB1 could partly reverse the cell function impairment induced by cisplatin. Our findings suggested that SMYD2 could be a potential drug target for the treatment of gliomas, and STUB1-mediated degradation of SMYD2 plays an important role in reversing chemotherapy resistance in patients with gliomas.
Collapse
Affiliation(s)
- Kailing Pan
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China
| | - Bin Hu
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China
| | - Jianlie Yuan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China.
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 321000, China.
| |
Collapse
|
11
|
Alshammari E, Zhang YX, Yang Z. Mechanistic and functional extrapolation of SET and MYND domain-containing protein 2 to pancreatic cancer. World J Gastroenterol 2022; 28:3753-3766. [PMID: 36157542 PMCID: PMC9367238 DOI: 10.3748/wjg.v28.i29.3753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/24/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal neoplasms worldwide and represents the vast majority of pancreatic cancer cases. Understanding the molecular pathogenesis and the underlying mechanisms involved in the initiation, maintenance, and progression of PDAC is an urgent need, which may lead to the development of novel therapeutic strategies against this deadly cancer. Here, we review the role of SET and MYND domain-containing protein 2 (SMYD2) in initiating and maintaining PDAC development through methylating multiple tumor suppressors and oncogenic proteins. Given the broad substrate specificity of SMYD2 and its involvement in diverse oncogenic signaling pathways in many other cancers, the mechanistic extrapolation of SMYD2 from these cancers to PDAC may allow for developing new hypotheses about the mechanisms driving PDAC tumor growth and metastasis, supporting a proposition that targeting SMYD2 could be a powerful strategy for the prevention and treatment of PDAC.
Collapse
Affiliation(s)
- Eid Alshammari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, United States
| | - Ying-Xue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, United States
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
12
|
Pan L, Fan Y, Zhou L. SMYD2
epigenetically activates
MEX3A
and suppresses
CDX2
in colorectal cancer cells to augment cancer growth. Clin Exp Pharmacol Physiol 2022; 49:959-969. [PMID: 35637161 DOI: 10.1111/1440-1681.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lizhen Pan
- Department of Gastroenterology Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou Jiangsu P.R. China
| | - Yuejuan Fan
- Department of Gastroenterology Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou Jiangsu P.R. China
| | - Lei Zhou
- Department of Gastroenterology Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou Jiangsu P.R. China
| |
Collapse
|
13
|
Yu YQ, Thonn V, Patankar JV, Thoma OM, Waldner M, Zielinska M, Bao LL, Gonzalez-Acera M, Wallmüller S, Engel FB, Stürzl M, Neurath MF, Liebing E, Becker C. SMYD2 targets RIPK1 and restricts TNF-induced apoptosis and necroptosis to support colon tumor growth. Cell Death Dis 2022; 13:52. [PMID: 35022391 PMCID: PMC8755774 DOI: 10.1038/s41419-021-04483-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/27/2022]
Abstract
SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.
Collapse
Affiliation(s)
- Yu-Qiang Yu
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Veronika Thonn
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Marta Zielinska
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Li-Li Bao
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Stefan Wallmüller
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Eva Liebing
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany.
| |
Collapse
|
14
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
15
|
Wang Y, Jin G, Guo Y, Cao Y, Niu S, Fan X, Zhang J. SMYD2 suppresses p53 activity to promote glucose metabolism in cervical cancer. Exp Cell Res 2021; 404:112649. [PMID: 34015314 DOI: 10.1016/j.yexcr.2021.112649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Reprogrammed energy metabolism, especially the Warburg effect, is emerged as a hallmark of cancer. The protein lysine methyltransferase SMYD2 functions as an oncogene and is implicated in various malignant phenotypes of human cancers. However, the role of SMYD2 in tumor metabolism is still largely unknown. Here, we report that SMYD2 is highly expressed in human cervical cancer and its aberrant expression is linked to a poor prognosis. Bioinformatic analysis revealed a novel link between SMYD2 expression and aerobic glycolysis. Through loss-of-function experiments, we demonstrated that SMYD2 knockdown or inhibition induced a metabolic shift from aerobic glycolysis to oxidative phosphorylation, as evidenced by glucose uptake, lactate production, extracellular acidification, and the oxygen consumption rate. In contrast, SMYD2 overexpression promoted glycolytic metabolism in cervical cancer cells. Moreover, SMYD2 was required for tumor growth in cervical cancer and this oncogenic activity was largely glycolysis-dependent. Mechanistically, SMYD2 altered the methylation status of p53 and inhibited its transcriptional activity. Genetic silencing of p53 largely abrogated the effects of SMYD2 in promoting aerobic glycolysis. Taken together, our findings reveal a novel function of SMYD2 in regulating the Warburg effect in cervical cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Ge Jin
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Yunfeng Guo
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Yuan Cao
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Shuhuai Niu
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Xiaomei Fan
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| | - Jun Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
16
|
Yang L, Jin M, Jeong KW. Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. BIOLOGY 2021; 10:581. [PMID: 34201935 PMCID: PMC8301125 DOI: 10.3390/biology10070581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The KMT2 (MLL) family of proteins, including the major histone H3K4 methyltransferase found in mammals, exists as large complexes with common subunit proteins and exhibits enzymatic activity. SMYD, another H3K4 methyltransferase, and SET7/9 proteins catalyze the methylation of several non-histone targets, in addition to histone H3K4 residues. Despite these structural and functional commonalities, H3K4 methyltransferase proteins have specificity for their target genes and play a role in the development of various cancers as well as in drug resistance. In this review, we examine the overall role of histone H3K4 methyltransferase in the development of various cancers and in the progression of drug resistance. Compounds that inhibit protein-protein interactions between KMT2 family proteins and their common subunits or the activity of SMYD and SET7/9 are continuously being developed for the treatment of acute leukemia, triple-negative breast cancer, and castration-resistant prostate cancer. These H3K4 methyltransferase inhibitors, either alone or in combination with other drugs, are expected to play a role in overcoming drug resistance in leukemia and various solid cancers.
Collapse
Affiliation(s)
- Liu Yang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Mingli Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| |
Collapse
|
17
|
SMYD2 promotes tumorigenesis and metastasis of lung adenocarcinoma through RPS7. Cell Death Dis 2021; 12:439. [PMID: 33935284 PMCID: PMC8089105 DOI: 10.1038/s41419-021-03720-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
The protein methyltransferase SET and MYND domain-containing protein 2 (SMYD2) is a transcriptional regulator that methylates histones and nonhistone proteins. As an oncogene, SMYD2 has been investigated in numerous types of cancer. However, its involvement in lung cancer remains elusive. The prognostic value of SMYD2 expression in lung adenocarcinoma (LUAD) was determined through bioinformatics analysis, reverse-transcription polymerase chain reaction, western blotting, and immunohistochemistry. The effect of SMYD2 on LUAD cell proliferation and metastasis was explored in vivo and in vitro, and the underlying mechanisms were investigated via RNA-seq, and chromatin immunoprecipitation-quantitative PCR. SMYD2 expression was significantly upregulated in LUAD cell lines and tissues. High SMYD2 expression was associated with shorter overall and disease-free survival in LUAD patients. Inhibition of SMYD2 with SMYD2 knockdown or AZ505 dramatically inhibited the proliferation, migration, and invasion ability of GLC-82 and SPC-A1 cells and remarkably reduced tumor growth in mice. Mechanically, SMYD2 may activate the transcription of ribosomal small subunit protein 7 (RPS7) by binding to its promoter. Following overexpression of SMYD2, the proliferation, migration, and invasion of cells increased, which was partially reversed by RPS7. Thus, SMYD2 might modulate tumorigenesis and metastasis mediated by RPS7 LUAD. SMYD2 might be a prognostic biomarker and therapeutic target in LUAD.
Collapse
|
18
|
Zhai M, Yang Z, Zhang C, Li J, Jia J, Zhou L, Lu R, Yao Z, Fu Z. APN-mediated phosphorylation of BCKDK promotes hepatocellular carcinoma metastasis and proliferation via the ERK signaling pathway. Cell Death Dis 2020; 11:396. [PMID: 32457292 PMCID: PMC7249043 DOI: 10.1038/s41419-020-2610-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent human malignancies worldwide and has high morbidity and mortality. Elucidating the molecular mechanisms underlying HCC recurrence and metastasis is critical to identify new therapeutic targets. This study aimed to determine the roles of aminopeptidase N (APN, also known as CD13) in HCC proliferation and metastasis and its underlying mechanisms. We detected APN expression in clinical samples and HCC cell lines using immunohistochemistry, flow cytometry, real-time PCR, and enzyme activity assays. The effects of APN on HCC metastasis and proliferation were verified in both in vitro and in vivo models. RNA-seq, phosphoproteomic, western blot, point mutation, co-immunoprecipitation, and proximity ligation assays were performed to reveal the potential mechanisms. We found that APN was frequently upregulated in HCC tumor tissues and high-metastatic cell lines. Knockout of APN inhibited HCC cell metastasis and proliferation in vitro and in vivo. Functional studies suggested that a loss of APN impedes the ERK signaling pathway in HCC cells. Mechanistically, we found that APN might mediate the phosphorylation at serine 31 of BCKDK (BCKDKS31), promote BCKDK interacting with ERK1/2 and phosphorylating it, thereby activating the ERK signaling pathway in HCC cells. Collectively, our findings indicate that APN mediates the phosphorylation of BCKDKS31 and activates its downstream pathway to promote HCC proliferation and metastasis. Therefore, the APN/BCKDK/ERK axis may serve as a new therapeutic target for HCC therapy, and these findings may be helpful to identify new biomarkers in HCC progression.
Collapse
Affiliation(s)
- Mengying Zhai
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Zixia Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Chenrui Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Jinping Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Tianjin Kangzhe Pharmaceutical Technology Development Company, Ltd., 300042, Tianjin, China
| | - Jing Jia
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Tianjin Kangzhe Pharmaceutical Technology Development Company, Ltd., 300042, Tianjin, China
| | - Lingyi Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Rong Lu
- Tianjin Kangzhe Pharmaceutical Technology Development Company, Ltd., 300042, Tianjin, China.
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, 300070, Tianjin, China.
| | - Zheng Fu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Tianjin Kangzhe Pharmaceutical Technology Development Company, Ltd., 300042, Tianjin, China.
| |
Collapse
|
19
|
Lai Y, Yang Y. SMYD2 facilitates cancer cell malignancy and xenograft tumor development through ERBB2-mediated FUT4 expression in colon cancer. Mol Cell Biochem 2020; 477:2149-2159. [PMID: 32342276 DOI: 10.1007/s11010-020-03738-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study is to assess the expression levels of SMYD2 in human tissue samples and cells of colon cancer, and further explore the potential mechanisms of SMYD2 in colon cancer progression. Quantitative PCR and Immunohistochemical (IHC) assays were performed to detect SMYD2 expression in 76 tissue samples of colon cancer tissues and the corresponding normal tissues. The potential correlations between SMYD2 expression levels and clinical pathological features were assessed. We further detected the effects of SMYD2 on the proliferation, invasion and apoptosis of colon cancer cells and on ERBB2/FUT4 signaling pathway through Brdu assay, transwell assay and flow cytometry assay, respectively. The potential effects of SMYD2 on tumor growth were explored using an animal model. We demonstrated the possible involvement of SMYD2 in the progression of colon cancer. We found the high expression of SMYD2 in human colon cancer tissues and cells, and found the correlations between SMYD2 expression and the clinicopathological features including vascular invasion (P = 0.007*), TNM stage (P = 0.016*) and lymph node metastasis (P = 0.011*), of patients with colon cancer. Our data further confirmed that SMYD2 affects cell proliferation, invasion, and apoptosis of colon cancer cells via the regulation of ERBB2/FUT4 signaling pathway. We also demonstrated SMYD2 contributed to tumor growth of colon cancer cells in vivo. We investigated the potential involvement of SMYD2 in the progression of colon, and therefore confirmed SMYD2 as a possible therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yanzong Lai
- Department of Gastroenterology, Dongyang People's Hospital of Zhejiang Province, Jinhua City, 322100, Zhejiang Province, China
| | - Yang Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
20
|
Yi X, Jiang XJ, Fang ZM. Histone methyltransferase SMYD2: ubiquitous regulator of disease. Clin Epigenetics 2019; 11:112. [PMID: 31370883 PMCID: PMC6670139 DOI: 10.1186/s13148-019-0711-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing protein 2 (SMYD2) is a protein methyltransferase that methylates histone H3 at lysine 4 (H3K4) or lysine 36 (H3K36) and diverse nonhistone proteins. SMYD2 activity is required for normal organismal development and the regulation of a series of pathophysiological processes. Since aberrant SMYD2 expression and its dysfunction are often closely related to multiple diseases, SMYD2 is a promising candidate for the treatment of these diseases, such as cardiovascular disease and cancer. Here, we present an overview of the complex biology of SMYD2 and its family members and their context-dependent nature. Then, we discuss the discovery, structure, inhibitors, roles, and molecular mechanisms of SMYD2 in distinct diseases, with a focus on cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Xue-Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|