1
|
Zhu D, Liu D, Wu K, Cheng X, Yang Y. GPR87 Promotes Angiogenesis in Esophageal Squamous Cell Carcinoma via VEGFA Regulation. Mol Carcinog 2025; 64:1057-1065. [PMID: 40135592 DOI: 10.1002/mc.23909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The role and underlying mechanisms of G protein-coupled receptor 87 (GPR87) in esophageal squamous cell carcinoma (ESCC) remain unclear, despite its established oncogenic functions in other malignancies. This study examined the expression of GPR87 and its association with survival rate in ESCC using online databases. The expression of GPR87 in ESCC tissues was identified using immunohistochemistry, and a correlation analysis was carried out using ki-67 data. ESCC cells were transfected with GPR87 knockdown or overexpression plasmids, followed by functional assays such as, CCK-8 for cell viability, colony formation for proliferation, wound healing for migration, Transwell for invasion, and tube formation for angiogenesis. Western blot analysis was used to assess STAT3 phosphorylation and VEGFA expression. Additionally, a xenograft tumor model was established to investigate the effect of GPR87 on tumor growth in vivo. The findings demonstrated that GPR87 was highly expressed in ESCC tissues and its overexpression was associated with a poor patient survival. Transfection with a GPR87 overexpression plasmid increases the cell viability, invasion, proliferation, and angiogenesis of ESCC cells, while transfection with sh-GPR87 reversed these effects. Additionally, GPR87 controlled VEGFA expression levels by promoting STAT3 phosphorylation. Rescue trials further verified that GPR87 promotes the growth of ESCC by modulating STAT3. Moreover, in vivo studies validated that GPR87 knockdown suppressed tumor growth. In conclusion, the findings highlight GPR87 as a key regulator of VEGFA expression via STAT3 activation, contributing to ESCC malignancy. Targeting GPR87 may provide a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xingdong Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Yin H, Yuan Z, Han X, Jiang D, Li D, Song F. Study on the mechanism of hyperoside in affecting the biological progression and radiosensitivity of esophageal carcinoma by modulating the STAT3/AKT/ERK pathway. BIOMOLECULES & BIOMEDICINE 2025; 25:1150-1161. [PMID: 39558814 PMCID: PMC11984358 DOI: 10.17305/bb.2024.11201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Hyperoside (HYP) exhibits diverse pharmacological effects and holds potential for enhancing chemotherapy sensitivity. However, few studies have reported the impact of HYP on the malignant progression of esophageal carcinoma (EC) and its sensitivity to radiotherapy. The impact of HYP on the viability of EC cells (TE-1 and KYSE-150) was assessed using Cell Counting Kit-8 (CCK-8) assays. The biological characteristics and radiosensitivity of EC cells following HYP treatment were evaluated through clone formation experiments, flow cytometry, scratch wound-healing assays, and transwell migration and invasion assays. Western blot analysis was performed to determine the levels of proteins associated with cell death and epithelial-mesenchymal transition (EMT), as well as to explore whether HYP interferes with the radiosensitivity of EC cells via the STAT3/AKT/ERK pathways. Finally, a subcutaneous graft tumor model was constructed to investigate the effects of HYP and X-ray treatments on in vivo tumor growth. The findings indicated a dose-dependent decrease in the survival rate of KYSE-150 and TE-1 cells following HYP treatment. HYP treatment also inhibited cell proliferation, invasion, migration, and EMT, while increasing the apoptotic rate and radiosensitivity of the cells. Notably, HYP suppressed the malignant progression of EC and enhanced radiosensitivity via the STAT3/AKT/ERK pathway. Moreover, HYP impaired the growth of EC tumors in mice, with the combined HYP and X-ray treatment exerting a stronger inhibitory effect. In conclusion, HYP increases the radiosensitivity of esophageal carcinoma cells, offering considerable promise for application in the clinical treatment of EC.
Collapse
Affiliation(s)
- Hongmei Yin
- Department of Radiotherapy, First Affiliated Hospital of Bengbu Medical University, Longzihu District, Bengbu, Anhui Province, China
| | - Zhongxia Yuan
- Department of Oncology, Beijing University of Chinese Medicine, Beijing, China
| | - Xiumei Han
- Department of Radiotherapy, First Affiliated Hospital of Bengbu Medical University, Longzihu District, Bengbu, Anhui Province, China
| | - Die Jiang
- Department of Radiotherapy, First Affiliated Hospital of Bengbu Medical University, Longzihu District, Bengbu, Anhui Province, China
| | - Duojie Li
- Department of Radiotherapy, First Affiliated Hospital of Bengbu Medical University, Longzihu District, Bengbu, Anhui Province, China
| | - FengLi Song
- Department of Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Andingmenwai, Chaoyang District, Beijing, China
| |
Collapse
|
3
|
Khan F, Pandey P, Verma M, Upadhyay TK. Terpenoid-Mediated Targeting of STAT3 Signaling in Cancer: An Overview of Preclinical Studies. Biomolecules 2024; 14:200. [PMID: 38397437 PMCID: PMC10886526 DOI: 10.3390/biom14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer has become one of the most multifaceted and widespread illnesses affecting human health, causing substantial mortality at an alarming rate. After cardiovascular problems, the condition has a high occurrence rate and ranks second in terms of mortality. The development of new drugs has been facilitated by increased research and a deeper understanding of the mechanisms behind the emergence and advancement of the disease. Numerous preclinical and clinical studies have repeatedly demonstrated the protective effects of natural terpenoids against a range of malignancies. Numerous potential bioactive terpenoids have been investigated in natural sources for their chemopreventive and chemoprotective properties. In practically all body cells, the signaling molecule referred to as signal transducer and activator of transcription 3 (STAT3) is widely expressed. Numerous studies have demonstrated that STAT3 regulates its downstream target genes, including Bcl-2, Bcl-xL, cyclin D1, c-Myc, and survivin, to promote the growth of cells, differentiation, cell cycle progression, angiogenesis, and immune suppression in addition to chemotherapy resistance. Researchers viewed STAT3 as a primary target for cancer therapy because of its crucial involvement in cancer formation. This therapy primarily focuses on directly and indirectly preventing the expression of STAT3 in tumor cells. By explicitly targeting STAT3 in both in vitro and in vivo settings, it has been possible to explain the protective effect of terpenoids against malignant cells. In this study, we provide a complete overview of STAT3 signal transduction processes, the involvement of STAT3 in carcinogenesis, and mechanisms related to STAT3 persistent activation. The article also thoroughly summarizes the inhibition of STAT3 signaling by certain terpenoid phytochemicals, which have demonstrated strong efficacy in several preclinical cancer models.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India;
| | - Pratibha Pandey
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, India;
| |
Collapse
|
4
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chen YH, Chen CT, Wu HP. Effect of Danshen for improving clinical outcomes in patients with bladder cancer: a retrospective, population-based study. Front Pharmacol 2023; 14:1260683. [PMID: 38146460 PMCID: PMC10749307 DOI: 10.3389/fphar.2023.1260683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction: Traditional Chinese Medicine (TCM) has a broad application in healthcare, with Danshen being a notable herb used in Eastern medicine for cancer treatment. This study aims to explore the relationship between Danshen use and cardiovascular risks among bladder cancer patients. Methods: Patients were selected based on a confirmed diagnosis of bladder cancer with specific inclusion and exclusion criteria to control for certain comorbidities and treatments. Utilizing Taiwan's National Health Insurance data from 2003 to 2013, this retrospective, population-based study identified three groups: 525 patients treated with Danshen, 6,419 patients not treated with TCM, and 4,356 patients treated with TCM but not with Danshen. The Cox proportional hazard model was employed to estimate the risks of Major Adverse Cardiovascular Events (MACE) and mortality while accounting for various confounders. Results: The overall incidence of MACEs was significantly lower in the Danshen group (5%) compared to the TCM (8.1%) and non-TCM (9.9%) groups (p < 0.001). The Cox model revealed that bladder cancer patients treated with Danshen had the lowest risk of MACE (adjusted hazard ratio, 0.56; 95% confidence interval, 0.38-0.84) and all-cause mortality (adjusted hazard ratio, 0.60; 95% confidence interval, 0.44-0.82). Discussion: The findings suggest that Danshen reduces the risk of MACE and all-cause mortality in bladder cancer patients, highlighting its potential benefits. This underpins the necessity for further research to substantiate the cardiovascular benefits of Danshen in bladder cancer patients and potentially broaden its application in oncology healthcare.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Artificial Intelligence and Data Science, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Tsung Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
6
|
Ma RJ, Ma C, Hu K, Zhao MM, Zhang N, Sun ZG. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 2022; 61:105. [PMID: 35856449 PMCID: PMC9339493 DOI: 10.3892/ijo.2022.5395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5‑year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non‑canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p‑STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl‑xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non‑coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non‑coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
Collapse
Affiliation(s)
- Rui-Jie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chao Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Kang Hu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
7
|
Acquaviva R, Malfa GA, Loizzo MR, Xiao J, Bianchi S, Tundis R. Advances on Natural Abietane, Labdane and Clerodane Diterpenes as Anti-Cancer Agents: Sources and Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154791. [PMID: 35897965 PMCID: PMC9330018 DOI: 10.3390/molecules27154791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
Extensive research over the past decades has identified numerous phytochemicals that could represent an important source of anti-cancer compounds. There is an immediate need for less toxic and more effective preventive and therapeutic strategies for the treatment of cancer. Natural compounds are considered suitable candidates for the development of new anti-cancer drugs due to their pleiotropic actions on target events with multiple manners. This comprehensive review highlighted the most relevant findings achieved in the screening of phytochemicals for anticancer drug development, particularly focused on a promising class of phytochemicals such as diterpenes with abietane, clerodane, and labdane skeleton. The chemical structure of these compounds, their main natural sources, and mechanisms of action were critically discussed.
Collapse
Affiliation(s)
- Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
- CERNUT, Research Centre on Nutraceuticals and Health Products, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy
| | - Giuseppe A. Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
- CERNUT, Research Centre on Nutraceuticals and Health Products, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy
- Correspondence:
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.R.L.); (R.T.)
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain;
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; (R.A.); (S.B.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.R.L.); (R.T.)
| |
Collapse
|
8
|
Shi X, Du TT, Zhang Z, Liu X, Yang Y, Xue N, Jiao X, Chen X, Xie P. (+)-Isocryptotanshinone derivatives and its simplified analogs as STAT3 signaling pathway inhibitors. Bioorg Chem 2022; 127:106015. [PMID: 35849894 DOI: 10.1016/j.bioorg.2022.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022]
Abstract
Isocryptotanshinone (ICTS), a natural product with potential signal transducer and activator of transcription-3 (STAT3) signaling pathway inhibitory activity, shows significant inhibitory activity against several tumors. In this study, a series of ICTS derivatives and simplified analogs containing a 1, 4-naphthoquinone core was designed, synthesized, and evaluated. The results demonstrated that most target compounds were potent STAT3 signaling pathway inhibitors based on their mechanism of inhibition of STAT3 phosphorylation. Moreover, based on the obtained data, the structure-activity relationship (SAR) was rationally deduced. Simultaneously, molecular docking of the compound 16r suggested its possible interaction mode with STAT3. To further verify anticancer activity, all target compounds were tested using HCT116, HepG2, MCF-7, A549, and U251 cell lines. Interestingly, compared with different tumor cell lines, the HCT-116 cell line was determined to be the most sensitive. Furthermore, compounds 21e, 16r, 28a, and 16e showed a dose-dependent inhibition of the growth of HCT116 cells. Thus, the SAR of ICTS derivatives and its simplified analogs was determined, and some of them were discovered to be potential anticancer candidates owing to their ability to inhibit the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiang Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ting Ting Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ping Xie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Liu YC, Yang YD, Liu WQ, Du TT, Wang R, Ji M, Yang BB, Li L, Chen XG. Benzobis(imidazole) derivatives as STAT3 signal inhibitors with antitumor activity. Bioorg Med Chem 2022; 65:116757. [PMID: 35504209 DOI: 10.1016/j.bmc.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Polycyclic aromatic systems have been considered good biological probes, but some may also be good scaffolds for drug development. In this study, a series of benzobis(imidazole) derivatives were identified as STAT3 signal inhibitors, among which compound 24 showed significant inhibition of IL-6 induced JAK/STAT3 signalling pathway activation. Moreover, 24 inhibited cancer cell growth and migration, and induced cell apoptosis as well as cycle arrest in human hepatocellular carcinoma cells (HepG2) and oesophageal carcinoma cells (EC109). Compound 24 also displayed obvious antitumor activity in a mouse HepG2 cell xenograft tumor model without affecting the body weight. These results confirmed that 24 was a potential STAT3 signal inhibitor with certain antitumor activity.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ru Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xiao-Guang Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F, Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022; 13:821344. [PMID: 35401182 PMCID: PMC8987160 DOI: 10.3389/fphar.2022.821344] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Collapse
|
11
|
Zhou J, Li Q, Wu H, Tsai SH, Yeh YT. Effective Inhibition of Mitochondrial Metabolism by Cryptotanshinone in MDA-MB231 cells: A Proteomic Analysis. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210208144542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background :
Triple-negative breast cancer (TNBC) is a subtype of invasive cancer in breast with the symptoms of unfavourable prognosis and limited targeted treatment options. Evidence of changes in the metabolic status of TNBC, characterised by increased glycolysis, mitochondrial oxidative phosphorylation, as well as production and utilization of tricarboxylic acid cycle intermediates.
Objective:
Investigate the proteins altered in cryptotanshinone treated MDA-MB-231 cells and explore the key pathways and specific molecular markers involved in cryptotanshinone treatment.
Method:
We use unlabeled quantitative proteomics to gain insight into the anticancer mechanism of cryptotanshinone on MDA-MB231 triple negative breast cancer cells. And flow cytometry was used to detect apoptosis and changes in cell mitochondrial membrane potential.
Results:
We show that inhibiting the expression of electron transport chain complex proteins, also inhibits mitochondrial oxidative phosphorylation. Additionally, down-regulation of the ribosime biogenesis pathway was found to inhibit cell metabolism.
Conclusion:
In summary, results show that cryptotanshinone can trigger rapid and irreversible apoptosis in MDA-MB-231 cells through effectively inhibiting cell metabolism.
Collapse
Affiliation(s)
- Jiefeng Zhou
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University,-
Taipei City, Taiwan
- Ningbo AJcore Biosciences Inc., 3rd Floor, Building One, East District, Ningbo New Materials
Innovation Center, High-Tech Zone, Ningbo, China
| | - Qingcao Li
- Laboratory Department,Ningbo Medical Center Li Huili Eastern Hospital,High-Tech Zone, Bingbo, China
| | - Haoran Wu
- Ningbo AJcore Biosciences Inc., 3rd Floor, Building One, East District, Ningbo New Materials
Innovation Center, High-Tech Zone, Ningbo, China
| | - Shin-Han Tsai
- Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical
University, Institute of Injury Prevention and Control, Taipei Medical University, Taipei City, Taiwan
| | - Yu-Ting Yeh
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University,-
Taipei City, Taiwan
- Information Technology Office, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Wang C, Wang T, Lian BW, Lai S, Li S, Li YM, Tan WJ, Wang B, Mei W. Developmental toxicity of cryptotanshinone on the early-life stage of zebrafish development. Hum Exp Toxicol 2021; 40:S278-S289. [PMID: 34423663 DOI: 10.1177/09603271211009954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cryptotanshinone (Cry) has multiple potential functions in treating different diseases. Most studies on Cry focus on its pharmacological effects and mechanisms, but toxicological reports on Cry are rare. Zebrafish is used as a model organism in drug development as it saves costs and time. This work aimed to investigate the toxicity of Cry on zebrafish. Results showed that growth retardation, pericardial edema, and scoliosis occurred when zebrafish embryos were exposed to Cry, indicating its teratogenic effects. Cell apoptosis was observed in the brainstem area of embryos using acridine orange staining, and qPCR showed that caspase-3 was increased in Cry-exposed embryos. The results of locomotor activity and touched-evoke escape reaction experiments showed that Cry significantly reduced the swimming speed and escape reaction time of larvae.
Collapse
Affiliation(s)
- C Wang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Department of Pharmaceutical Chemistry, Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangzhou, People's Republic of China
| | - T Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - B-W Lian
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - S Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - S Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Department of Pharmaceutical Chemistry, Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangzhou, People's Republic of China
| | - Y-M Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Department of Pharmaceutical Chemistry, Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangzhou, People's Republic of China
| | - W-J Tan
- Department of Food Safety, School of Food Science, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - B Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - W Mei
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Department of Pharmaceutical Chemistry, Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Yang G, Sheng B, Li R, Xu Q, Zhang L, Lu Z. Dehydrocostus Lactone Induces Apoptosis and Cell Cycle Arrest through Regulation of JAK2/STAT3/PLK1 Signaling Pathway in Human Esophageal Squamous Cell Carcinoma Cells. Anticancer Agents Med Chem 2021; 22:1742-1752. [PMID: 34353270 DOI: 10.2174/1871520621666210805142200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dehydrocostus lactone (DEH), one of the sesquiterpene lactones, has shown extensive pharmaceutical activities, including anti-cancer activity. However, its effects on human esophageal squamous cell carcinoma (ESCC) cells still unknown. OBJECTIVE To investigate the effect of DEH on ESCC cells and the underling molecular mechanisms. METHOD The cell proliferation was tested using CCK-8 and colony formation assay. Apoptosis was analyzed by flow cytometry, hoechst staining and caspase-3 activity assay. Cell cycle was analyzed by flow cytometry. IL-6 (STAT3 activator) was used to activate JAK2/STAT3 pathway. Immunofluorescence assay was performed to detect intracellular location of STAT3. SiRNA transfection was performed to knock down the expression of PLK1. The protein expression was analyzed by western blotting assay. RESULT DHE treatment significantly reduced the viability of ESCC cells through apoptosis induction and cell cycle arrest. Furthermore, DHE treatment significantly inhibited the phosphorylation of JAK2 and STAT3. IF assay showed that distribution of STAT3 in nucleus was decreased by DHE treatment. In addition, coculture with IL-6 significantly prevented the inhibition of phosphorylation of JAK2 and STAT3 by DHE treatment, and partly reversed the effect of DHE on ESCC cells. Moreover, DHE treatment significantly down-regulated the expression of PLK1, which was partly reversed by IL-6 coculture. Finally, knock down of PLK1 using siRNA reduced the viability of ESCC cells and induced apoptosis and cell cycle arrest. CONCLUSION our study demonstrated that DHE have potent anti-cancer effect on ESCC cells through apoptosis induction and cell cycle arrest via JAK2/STAT3/PLK signaling pathway.
Collapse
Affiliation(s)
- Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061. China
| | - Binwu Sheng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061. China
| | - Ruixiang Li
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061. China
| | - Qinhong Xu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061. China
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061. China
| | - Zhengyang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061. China
| |
Collapse
|
14
|
Comparative Analysis on Single- and Multiherb Strategies in Coronary Artery Atherosclerosis Therapy. Cardiol Res Pract 2021; 2021:6621925. [PMID: 34012683 PMCID: PMC8105113 DOI: 10.1155/2021/6621925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022] Open
Abstract
Herbal medicine unswervingly serves human health by modernizing preparation and administration. Coronary artery atherosclerosis is a serious threat to human health and survival all over the world. Following experimental and clinical evidence, we collected four herbal treatments containing herbal strategy I (San Qi), II (Injectio Salvia Miltiorrhizae), III (Danhong injection), and IV (Taoren Honghua Jian granule) against coronary artery disease. In order to analyze their similarities and differences in controlling coronary artery atherosclerosis, we investigated each herb of four strategies and revealed that the number of active components and molecule targets is increasing with the herb category of herbal strategy. Nitric oxide-associated carbonate dehydratase activity and nitrogen metabolism are tacitly enriched by target corresponding genes with statistical significance in four strategies. The herbal strategy with multiherb not merely possesses more amounts and interactions of target proteins than the strategy with single-herb but also enlarges interaction partners of target proteins like PTPN11 and STAT3 in strategy II, III, and IV. Whereas single-herb also involves regulating network core proteins in consistent with compatibility, such as SRC and PIK3R1 that are mostly targeted by strategy I, III, and IV. Comparing the targets of the herbal strategies and three existing drugs (atenolol, pravastatin and propranolol) and the symbols of coronary artery atherosclerosis, we discovered that MAOA, HTR1A, and ABCG2 are overlapping in the three groups. Hence, our work enables people to better understand the connections and distinctions of single- and multiherb on the healing of coronary artery atherosclerosis.
Collapse
|
15
|
Li Y, Han Q, Zhao H, Guo Q, Zhang J. Napabucasin Reduces Cancer Stem Cell Characteristics in Hepatocellular Carcinoma. Front Pharmacol 2020; 11:597520. [PMID: 33343368 PMCID: PMC7744694 DOI: 10.3389/fphar.2020.597520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Cancer stem cells (CSCs) are a rare population with self-renewal and multipotent differentiation capacity, and reside among the more differentiated cancer cells. CSCs are associated with tumor recurrence, drug resistance and poor prognosis. The aim of this study was to determine the efficacy of napabucasin against HCC and elucidate the underlying molecular mechanisms. Napabucasin significantly decreased the viability of HCC cells in vitro by inducing apoptosis and cell cycle arrest. In addition, it suppressed CSC-related gene expression and spheroid formation in vitro, indicating depletion of CSCs. The anti-neoplastic effects of napabucasin was also evident in homograft tumor-bearing mouse models. Our findings provide the scientific basis of conducting clinical trials on napabucasin as a new therapeutic agent against HCC.
Collapse
Affiliation(s)
- Ya Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Quanjuan Guo
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
16
|
Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020; 145:104633. [DOI: 10.1016/j.fitote.2020.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
17
|
Cryptotanshinone chemosensitivity potentiation by TW-37 in human oral cancer cell lines by targeting STAT3-Mcl-1 signaling. Cancer Cell Int 2020; 20:405. [PMID: 32863764 PMCID: PMC7448991 DOI: 10.1186/s12935-020-01495-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background Despite being one of the leading cancer types in the world, the diagnosis of oral cancer and its suitable therapeutic options remain limited. This study aims to investigate the single and chemosensitizing effects of TW-37, a BH3 mimetic in oral cancer, on human oral cancer cell lines. Methods We assessed the single and chemosensitizing effects of TW-37 in vitro using trypan blue exclusion assay, Western blotting, DAPI staining, Annexin V–FITC/PI double staining, and quantitative real-time PCR. Mcl-1 overexpression models were established by transforming vector and transient transfection was performed to test for apoptosis Results TW-37 enhanced the cytotoxicity of human oral cancer cell lines by inducing caspase-dependent apoptosis, which correlates with the reduction of the myeloid cell leukemia-1 (Mcl-1) expression via transcriptional and post-translational regulation. The ectopic expression of Mcl-1 partially attenuated the apoptosis-inducing capacity of TW-37 in human oral cancer cell lines. Besides, TW-37 decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705 and nuclear translocation in human oral cancer cell lines at the early time points. Furthermore, TW-37 potentiated chemosusceptibility of cryptotanshinone in human oral cancer cell lines by suppressing STAT3–Mcl-1 signaling compared with either TW-37 or cryptotanshinone alone, resulting in potent apoptosis. Conclusions This study not only unravels the single and chemosensitizing effects of TW-37 for treatment of human oral cancer but also highlights the likelihood of TW-37 as a good therapeutic strategy to enhance the prognosis of patients with oral cancer in the future.
Collapse
|
18
|
Luo Y, Song L, Wang X, Huang Y, Liu Y, Wang Q, Hong M, Yuan Z. Uncovering the Mechanisms of Cryptotanshinone as a Therapeutic Agent Against Hepatocellular Carcinoma. Front Pharmacol 2020; 11:1264. [PMID: 32903546 PMCID: PMC7438559 DOI: 10.3389/fphar.2020.01264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal and dominant form of liver cancer that currently has no effective treatment or positive prognosis. In this study, we explored the antitumor effects of cryptotanshinone (CPT) against HCC and the molecular mechanisms underlying these effects using a systems pharmacology and experimental validation approach. First, we identified a total of 296 CPT targets, 239 of which were also HCC-related targets. We elucidated the mechanisms by which CPT affects HCC through multiple network analysis, including CPT-target network analysis, protein-protein interaction network analysis, target-function network analysis, and pathway enrichment analysis. In addition, we found that CPT induced apoptosis in Huh7 and MHCC97-H ells due to increased levels of cleaved PARP, Bax, and cleaved caspase-3 and decreased Bcl-2 expression. CPT also induced autophagy in HCC cells by increasing LC3-II conversion and the expression of Beclin1 and ATG5, while decreasing the expression of p62/SQSTM1. Autophagy inhibitors (3-methyladenine and chloroquine) enhanced CPT-induced proliferation and apoptosis, suggesting that CPT-induced autophagy may protect HCC cells against cell death. Furthermore, CPT was found to inhibit the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Interestingly, activation of PI3K by insulin-like growth factor-I inhibited CPT-induced apoptosis and autophagy, suggesting that the PI3K/AKT/mTOR signaling pathway is involved in both CPT-induced apoptosis and autophagy. Finally, CPT was found to inhibit the growth of Huh7 xenograft tumors. In conclusion, we first demonstrated the antitumor effects of CPT in Huh7 and MHCC97-H cells, both in vitro and in vivo. We elucidated the potential antitumor mechanism of CPT, which involved inducing apoptosis and autophagy by inhibiting the PI3K/Akt/mTOR signaling pathway. Our findings may provide valuable insights into the clinical application of CPT, serving as a potential candidate therapeutic agent for HCC treatment.
Collapse
Affiliation(s)
- Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujie Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongqiang Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Hong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
19
|
Ashrafizadeh M, Zarrabi A, Orouei S, Saberifar S, Salami S, Hushmandi K, Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother Res 2020; 35:155-179. [PMID: 33507609 DOI: 10.1002/ptr.6815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Salami
- DVM. Graduated, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Yin S, Song M, Zhao R, Liu X, Kang WK, Lee JM, Kim YE, Zhang C, Shim JH, Liu K, Dong Z, Lee MH. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol 2020; 8:366. [PMID: 32509787 PMCID: PMC7248302 DOI: 10.3389/fcell.2020.00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related death worldwide. Xanthohumol is a prenylated flavonoid isolated from hops. Although xanthohumol has been reported to exert anti-obesity, hypoglycemic, anti-hyperlipidemia and anti-cancer activities, the mechanisms underlying its chemotherapeutic activity are yet to be elucidated. In the present study, we found that xanthohumol inhibited ESCC cell proliferation in vitro and in vivo by targeting keratin (KRT)-18. Xanthohumol suppressed the proliferation, foci formation, and anchorage-independent colony growth of KYSE30 cells. Using xanthohumol-sepharose conjugated bead pull-down and mass/mass analysis, we found that KRT18 is a novel target of xanthohumol in KYSE30 cells. KRT18 protein was highly expressed in patient ESCC tissues compared to adjunct tissues. Anti-proliferative activity of xanthohumol was abrogated or enhanced according to the knockdown or overexpression of KRT18 protein, respectively. Xanthohumol also induced apoptosis and cell cycle arrest at G1 phase which was associated with the modulation of expression of related makers including cyclin D1, cyclin D3, and cleaved-PARP, Bcl-2, cytochrome c and Bax. While xanthohumol attenuated KRT18 protein expression, it failed to cause any change in the KRT18 mRNA level. Furthermore, oral administration of xanthohumol decreased tumor volume and weight in patient-derived xenografts (PDXs) tumors having overexpressed KRT18. Overall these results suggest that xanthohumol acts as a KRT18 regulator to suppress the growth of ESCC.
Collapse
Affiliation(s)
- Shuying Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Woo Kyu Kang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Young Eun Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Chengjuan Zhang
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Mokpo-si, South Korea
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
21
|
Zhang Q, Shi J, Guo D, Wang Q, Yang X, Lu W, Sun X, He H, Li N, Wang Y, Li C, Wang W. Qishen Granule alleviates endoplasmic reticulum stress-induced myocardial apoptosis through IRE-1-CRYAB pathway in myocardial ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112573. [PMID: 31945401 DOI: 10.1016/j.jep.2020.112573] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/08/2019] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qishen Granule (QSG) is a prevailing traditional Chinese medicine formula that displays impressive cardiovascular protection in clinical. However, underlying mechanisms by which QSG alleviates endoplasmic reticulum (ER) stress-induced apoptosis in myocardial ischemia still remain unknown. AIM OF THE STUDY This study aims to elucidate whether QSG ameliorates ER stress-induced myocardial apoptosis to protect against myocardial ischemia via inositol requiring enzyme 1 (IRE-1)-αBcrystallin (CRYAB) signaling pathway. MATERIALS AND METHODS Left anterior descending (LAD) ligation induced-ischemic heart model and oxygen-glucose deprivation-reperfusion (OGD/R)-induced H9C2 cells injury model were established to clarify the effects and potential mechanism of QSG. Ethanol extracts of QSG (2.352 g/kg) were orally administered for four weeks and Ginaton Tablets (100 mg/kg) was selected as a positive group in vivo. In vitro, QSG (800 μg/ml) or STF080310 (an inhibitor of IRE-1, 10 μM) was co-cultured under OGD/R in H9C2 cells. Inhibition of IRE-1 was conducted in H9C2 cells to further confirm the exact mechanism. Finally, to define the active components of anti-cardiomyocyte apoptosis in QSG which absorbed into the blood, we furtherly used the OGD/R-induced cardiomyocyte apoptosis model to evaluate the effects. RESULTS QSG treatment improved cardiac function, ameliorated inflammatory cell infiltration and myocardial apoptosis. Similar effects were revalidated in OGD/R-induced H9C2 injury model. Western blots demonstrated QSG exerted anti-apoptotic effects by regulating apoptosis-related proteins, including increasing Bcl-2 and caspase 3/12, reducing the expressions of Bax and cleaved-caspase 3/12. Mechanistically, the IRE-1-CRYAB signaling pathway was significantly activated by QSG. Co-treatment with STF080310, the IRE-1 specific inhibitor significantly compromised the protective effects of QSG in vitro. Especially, the active components of QSG including Formononetin, Tanshinone IIA, Tanshinone I, Cryptotanshinon and Harpagoside showed significantly anti-apoptosis effects. CONCLUSION QSG protected against ER stress-induced myocardial apoptosis via the IRE-1-CRYAB pathway, which is proposed as a promising therapeutic target for myocardial ischemia.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jun Shi
- School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaomin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenji Lu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hao He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ning Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
22
|
Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, Kai G, Zhang J. The Anticancer Properties of Tanshinones and the Pharmacological Effects of Their Active Ingredients. Front Pharmacol 2020; 11:193. [PMID: 32265690 PMCID: PMC7098175 DOI: 10.3389/fphar.2020.00193] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer is a common malignant disease worldwide with an increasing mortality in recent years. Salvia miltiorrhiza, a well-known traditional Chinese medicine, has been used for the treatment of cardiovascular and cerebrovascular diseases for thousands of years. The liposoluble tanshinones in S. miltiorrhiza are important bioactive components and mainly include tanshinone IIA, dihydrodanshinone, tanshinone I, and cryptotanshinone. Previous studies showed that these four tanshinones exhibited distinct inhibitory effects on tumor cells through different molecular mechanisms in vitro and in vivo. The mechanisms mainly include the inhibition of tumor cell growth, metastasis, invasion, and angiogenesis, apoptosis induction, cell autophagy, and antitumor immunity, and so on. In this review, we describe the latest progress on the antitumor functions and mechanisms of these four tanshinones to provide a deeper understanding of the efficacy. In addition, the important role of tumor immunology is also reviewed.
Collapse
Affiliation(s)
- Li Fu
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Bing Han
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhou
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Jie Ren
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Wenzhi Cao
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Gopal Patel
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| |
Collapse
|
23
|
Hin Tang JJ, Hao Thng DK, Lim JJ, Toh TB. JAK/STAT signaling in hepatocellular carcinoma. Hepat Oncol 2020; 7:HEP18. [PMID: 32273976 PMCID: PMC7137178 DOI: 10.2217/hep-2020-0001] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second most lethal cancer in the world with limited treatment options. Hepatocellular carcinoma (HCC), which accounts for more than 80% of all liver cancers, has had increasing global incidence over the past few years. There is an urgent need for novel and better therapeutic intervention for HCC patients. The JAK/STAT signaling pathway plays a multitude of important biological functions in both normal and malignant cells. In a subset of HCC, JAK/STAT signaling is aberrantly activated, leading to dysregulation of downstream target genes that controls survival, angiogenesis, stemness, immune surveillance, invasion and metastasis. In this review, we will focus on the role of JAK/STAT signaling in HCC and discuss the current clinical status of several JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Justin Jit Hin Tang
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| |
Collapse
|