1
|
Kuempers C, Jagomast T, Paulsen FO, Heidel C, Bohnet S, Schierholz S, Reischl M, Dreyer E, Olchers T, Reck M, Kirfel J, Perner S. TRIM11 expression in non-small cell lung cancer is associated with poor prognosis. Histol Histopathol 2024; 39:437-446. [PMID: 37409491 DOI: 10.14670/hh-18-647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Despite promising results of targeted therapy approaches, non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death. Tripartite motif containing 11 (TRIM11) is part of the TRIM family of proteins, playing crucial roles in tumor progression. TRIM11 serves as an oncogene in various cancer types and has been reported to be associated with a poor prognosis. In this study, we aimed to investigate the protein expression of TRIM11 in a large NSCLC cohort and to correlate its expression with comprehensive clinico-pathological data. METHODS Immunohistochemical staining of TRIM11 was performed on a European cohort of NSCLC patients (n=275) including 224 adenocarcinomas and 51 squamous cell carcinomas. Protein expression was categorized according to staining intensity as absent, low, moderate and high. To dichotomize samples, absent and low expression was defined as weak and moderate and high expression was defined as high. Results were correlated with clinico-pathological data. RESULTS TRIM11 was significantly more highly expressed in NSCLC than in normal lung tissue and significantly more highly expressed in squamous cell carcinomas than in adenocarcinomas. We found a significantly worse 5-year overall survival for patients who highly expressed TRIM11 in NSCLC. CONCLUSIONS High TRIM11 expression is linked with a poor prognosis and might serve as a promising novel prognostic biomarker for NSCLC. Its assessment could be implemented in future routine diagnostic workup.
Collapse
Affiliation(s)
- Christiane Kuempers
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Tobias Jagomast
- Medical Clinic III, Pulmonology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Finn-Ole Paulsen
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Heidel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
- Department of Haematology and Oncology, Sana Hospitals, Luebeck, Germany
| | - Sabine Bohnet
- Medical Clinic III, Pulmonology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Stefanie Schierholz
- Department of Surgery, Medical University of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Eva Dreyer
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Till Olchers
- Department of Thoracic Oncology, LungenClinic Grosshansdorf, Großhansdorf, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Martin Reck
- Department of Thoracic Oncology, LungenClinic Grosshansdorf, Großhansdorf, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sven Perner
- Institute for Hematopathology Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Xuan T. Tripartite Motif-containing Protein 11 Silencing Inhibits Proliferation and Glycolysis and Promotes Apoptosis of Esophageal Squamous Cell Carcinoma Cells by Inactivating Signal Transduction and Activation of Transcription Factor 3/c-Myc Signaling. CHINESE J PHYSIOL 2024; 67:37-46. [PMID: 38780271 DOI: 10.4103/ejpi.ejpi-d-23-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 05/25/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common type of human digestive tract cancer with poor survival. Tripartite motif-containing protein 11 (TRIM11) is an oncogene in certain cancers that can regulate glycolysis and signal transduction and activation of transcription factor 3 (STAT3) signaling. This study was designed to investigate the role and the mechanism of TRIM11 in ESCC. First, TRIM11 expression in ESCC tissues and the correlation between TRIM11 expression and prognosis were analyzed using bioinformatics tools. After TRIM11 expression was detected by Western blot in ESCC cells, TRIM11 was silenced to evaluate its effect on the malignant phenotypes of ESCC cells. Cell proliferation and apoptosis were assessed by cell counting kit-8 assay, ethynyl-2'- deoxyuridine staining, and flow cytometry, respectively. The glucose uptake and lactate secretion were detected to examine glycolysis. In addition, Western blot was employed to detect the expression of proteins related to apoptosis, glycolysis, and STAT3/c-Myc signaling. Then, ESCC cells were treated with STAT3 activator further to clarify the regulatory effect of TRIM11 on STAT3/c-Myc signaling. TRIM11 was upregulated in ESCC tissues and cells, and high expression of TRIM11 was associated with a poor prognosis. TRIM11 knockdown inhibited the proliferation and glycolysis while facilitating apoptosis of ESCC cells. Besides, the expression of p-STAT3 and c-Myc was significantly downregulated by TRIM11 silencing. Of note, the STAT3 activator partially reversed the effects of TRIM11 depletion on the proliferation, apoptosis, and glycolysis in ESCC cells. Collectively, TRIM11 loss-of-function affects the proliferation, apoptosis, and glycolysis in ESCC cells by inactivating STAT3/c-Myc signaling.
Collapse
Affiliation(s)
- Tingting Xuan
- Department of Radiotherapy, The First People's Hospital of Nantong, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Yu T, Yang X, Fu Q, Liang J, Wu X, Sheng J, Chen Y, Xiao L, Wu Y, Nie D, You X, Mai H, Chen K, Hu S. TRIM11 attenuates Treg cell differentiation by p62-selective autophagic degradation of AIM2. Cell Rep 2023; 42:113231. [PMID: 37804507 DOI: 10.1016/j.celrep.2023.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/20/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023] Open
Abstract
Ubiquitination is an important protein modification that regulates diverse biological processes, including CD4+ T cell differentiation and functions. However, the function of most E3 ubiquitin ligases in CD4+ T cell differentiation and CD4+ T cell-mediated pathological diseases remains unclear. In this study, we find that tripartite motif-containing motif 11 (TRIM11) specifically negatively regulates regulatory T (Treg) cell differentiation in CD4+ T cells and promotes autoimmune disease development in an AIM2-dependent manner. Mechanistically, TRIM11 interacts with absent in melanoma 2 (AIM2) and promotes the selective autophagic degradation of AIM2 by inducing AIM2 ubiquitination and binding to p62 in CD4+ T cells. AIM2 attenuates AKT and FOXO1 phosphorylation, MYC signaling, and glycolysis, thereby promoting the stability of Treg cells during experimental autoimmune encephalomyelitis (EAE). Our findings suggest that TRIM11 serves as a potential target for immunotherapeutic intervention for dysregulated immune responses that lead to autoimmunity and cancers.
Collapse
Affiliation(s)
- Ting Yu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Department of Pharmacy, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaofang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Fu
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Junyu Liang
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinger Wu
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Junli Sheng
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yitian Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Lu Xiao
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuxia Wu
- Department of Pharmacy, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, HaiKou, Hainan, China
| | - Dingnai Nie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong You
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Haiyan Mai
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China.
| | - Shengfeng Hu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Bai X, Tang J. TRIM proteins in breast cancer: Function and mechanism. Biochem Biophys Res Commun 2023; 640:26-31. [PMID: 36495607 DOI: 10.1016/j.bbrc.2022.11.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most prevalent malignancy in the world, and despite tremendous progress in current treatment strategies, recurrence, metastasis and drug resistance of breast cancer remain the major causes of death in patients. Tripartite motif (TRIM) family proteins play a critical role in the tumor progression such as cell proliferation, migration, invasion, and metastasis. Accumulating evidence suggests that the TRIM protein family serve as cancer suppressor proteins or oncoproteins in breast cancer. This review focused on the roles and molecular mechanisms of TRIM protein in breast cancer. Importantly, it provides new insights that TRIM proteins may be ideal targets to treat breast cancer.
Collapse
Affiliation(s)
- Xin Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jianming Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
5
|
Zhao Z, Deng J, Lu M, Yang J, Chen L, Li D, Sang Y. TRIM11, a new target of p53, facilitates the migration and invasion of nasopharyngeal carcinoma cells. Mol Biol Rep 2023; 50:731-737. [PMID: 36376537 PMCID: PMC9884187 DOI: 10.1007/s11033-022-07833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although tripartite motif-containing protein 11 (TRIM11) is known to be associated with a variety of cancers, its role in nasopharyngeal carcinoma (NPC) is unclear. METHODS AND RESULTS To investigate the role of TRIM11 in NPC, TRIM11 was stably overexpressed in 6-10B and CNE2 cells with lentiviral vectors and knocked down in S18 and 5-8F cells using the CRISPR/Cas9 system. Transwell assays and wound-healing assays revealed that TRIM11 facilitated the migration and invasion of NPC cells. Mechanistically, we found that p53 inhibits TRIM11 expression by binding to its promoter. CONCLUSIONS TRIM11 may serve as a potential diagnostic marker for NPC and has a certain therapeutic value.
Collapse
Affiliation(s)
- Ziyi Zhao
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The First Hospital of Nanchang, Nanchang, 330008, China
| | - Jinkuang Deng
- Jiangxi Engineering Laboratory for the Development and Utilisation of Agricultural Microbial Resources, College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ming Lu
- Department of Otolaryngology Head and Neck Surgery, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The First Hospital of Nanchang, Nanchang, 330008, China
| | - Linlin Chen
- The Key Laboratory of Oral Biomedicine in Jiangxi Province, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, China.
| | - DianYuan Li
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, 215002, China.
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The First Hospital of Nanchang, Nanchang, 330008, China.
| |
Collapse
|
6
|
Ray SK, Mukherjee S. Altered Expression of TRIM Proteins - Inimical Outcome and Inimitable Oncogenic Function in Breast Cancer with Diverse Carcinogenic Hallmarks. Curr Mol Med 2023; 23:44-53. [PMID: 35021972 DOI: 10.2174/1566524022666220111122450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
Deregulation of ubiquitin-mediated degradation of oncogene products or tumor suppressors appears to be implicated in the genesis of carcinomas, according to new clinical findings. Conferring to recent research, some members of the tripartite motif (TRIM) proteins (a subfamily of the RING type E3 ubiquitin ligases) act as significant carcinogenesis regulators. Intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis are all regulated by TRIM family proteins, the majority of which have E3 ubiquitin ligase activity. The expression of TRIMs in tumors is likely to be related to the formation and/or progression of the disease, and TRIM expression could be used to predict cancer prognosis. Breast cancer is the most common malignancy in women and also the leading cause of death. TRIM family proteins have unique, vital activities, and their dysregulation, such as TRIM 21, promotes breast cancer, according to growing evidence. Many TRIM proteins have been identified as important cancer biomarkers, with decreased or elevated levels of expression. TRIM29 functions as a hypoxia-induced tumor suppressor gene, revealing a new molecular mechanism for ATM-dependent breast cancer suppression. In breast cancer cells, the TRIM28-TWIST1-EMT axis exists, and TRIM28 enhances breast cancer metastasis by stabilizing TWIST1, and thereby increasing epithelial-tomesenchymal transition. Interestingly, many TRIM proteins are involved in the control of p53, and many TRIM proteins are likewise regulated by p53, according to current research. Furthermore, TRIMs linked to specific tumors may aid in the creation of innovative TRIM-targeted cancer treatments. This review focuses on TRIM proteins that are involved in tumor development, progression, and are of clinical significance in breast cancer.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
7
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
8
|
Regulation of KDM5C stability and enhancer reprogramming in breast cancer. Cell Death Dis 2022; 13:843. [PMID: 36192394 PMCID: PMC9530161 DOI: 10.1038/s41419-022-05296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 01/23/2023]
Abstract
Abnormality of enhancer regulation has emerged as one of the critical features for cancer cells. KDM5C is a histone H3K4 demethylase and frequently mutated in several types of cancer. It is critical for H3K4me3 and activity of enhancers, but its regulatory mechanisms remain elusive. Here, we identify TRIM11 as one ubiquitin E3 ligase for KDM5C. TRIM11 interacts with KDM5C, catalyzes K48-linked ubiquitin chain on KDM5C, and promotes KDM5C degradation through proteasome. TRIM11 deficiency in an animal model represses the growth of breast tumor and stabilizes KDM5C. In breast cancer patient tissues, TRIM11 is highly expressed and KDM5C is lower expressed, and their expression is negatively correlated. Mechanistically, TRIM11 regulates the enhancer activity of genes involved in cell migration and immune response by targeting KDM5C. TRIM11 and KDM5C regulate MCAM expression and cell migration through targeting H3K4me3 on MCAM enhancer. Taken together, our study reveals novel mechanisms for enhancer regulation during breast cancer tumorigenesis and development.
Collapse
|
9
|
Yang J, Ye J, Ma T, Tang F, Huang L, Liu Z, Tian S, Cheng X, Zhang L, Guo Z, Tu F, He M, Xu X, Lu X, Wu Y, Zeng X, Zou J, Wang X, Peng W, Zhang P. Tripartite motif-containing protein 11 promotes hepatocellular carcinogenesis through ubiquitin-proteasome-mediated degradation of pleckstrin homology domain leucine-rich repeats protein phosphatase 1. Hepatology 2022; 76:612-629. [PMID: 34767673 DOI: 10.1002/hep.32234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.
Collapse
Affiliation(s)
- Juan Yang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jianming Ye
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Tengfei Ma
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.,Huanggang Institute of Translational Medicine, Huanggang, China
| | - Fangfang Tang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Li Huang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenli Guo
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Fuping Tu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Miao He
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xueming Xu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xiaojuan Lu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Yanyang Wu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xiaoli Zeng
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Jiahua Zou
- Cancer Center of Huanggang Central Hospital, Huanggang, China
| | - Xiangcai Wang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
| | - Peng Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
11
|
Lou Q, Zhang M, Yang Y, Gao Y. Low-dose arsenic trioxide enhances membrane-GLUT1 expression and glucose uptake via AKT activation to support L-02 cell aberrant proliferation. Toxicology 2022; 475:153237. [PMID: 35714947 DOI: 10.1016/j.tox.2022.153237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Long term low dose exposure of arsenic has been reported to lead various cells proliferation and malignant transformation. GLUT1, as the key transporter of glucose, has been reported to have association with rapid proliferation of various cells or tumor cells. In our study, we found that low dose exposure to arsenic trioxide (0.1μmol/L As2O3) could induce an increase in glucose uptake and promote cell viability and DNA synthesis. And, 2-DG, a non-metabolized glucose analog, significantly decreased the glucose uptake and cell proliferation of 0.1μmol/L As2O3 treated L-02 cells. However, 4 mmol/L 2-DG was co-utilized with equal dose glucose had no significant effect on the cell proliferation of 0.1μmol/L As2O3 treated L-02 cells. Further studies showed that exposure to 0.1μmol/L As2O3 could promote the expression of GLUT1 on plasma membrane. Inhibition of GLUT1 expression by 5μmol/L BAY-876 significantly decreased the abilities of glucose uptake and cell proliferation in As2O3-treated L-02 cells. Moreover, 0.1μmol/L As2O3 induced the AKT activation indicated by increased the phospho-AKT (Ser473 and Thr308). Knockdown AKT by shRNA or inhibited AKT activation by LY294002 was followed by significantly decreased glucose uptake, GLUT1 plasma membrane expression and cell proliferation in As2O3-treated L-02 cells. All in all, these results demonstrated that arsenic trioxide-induced AKT activation contributed to the cells proliferation through upregulating expression of GLUT1 on plasma membrane that enhanced glucose uptake.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
12
|
Jin X, Shao X, Pang W, Wang Z, Huang J. Sex-determining Region Y-box transcription factor 13 promotes breast cancer cell proliferation and glycolysis by activating the tripartite motif containing 11-mediated Wnt/β-catenin signaling pathway. Bioengineered 2022; 13:13033-13044. [PMID: 35611828 PMCID: PMC9276007 DOI: 10.1080/21655979.2022.2073127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most frequent cancer among women and the second highest mortality in female across the world. Recent studies have illustrated that sex-determining region Y (SRY)-box protein (SOX) family plays essential roles in regulating various cancers. Nevertheless, the detailed effects of SOX13 on breast cancer are still uncovered. In our present study, SOX13 protein level was measured by using western blot assay in tissues and cells, and the results showed that SOX13 was upregulated in breast cancer tissues and cells compared with normal samples. Moreover, silencing SOX13 inhibited breast cancer cell viability, arrested cell cycle at G1/S phase and suppressed glycolysis, while overexpression of SOX13 reversed these events. Additionally, SOX13 knockdown reduced the level of proteins related to Wnt/β-catenin signaling pathway, whereas overexpression of tripartite motif containing 11 (TRM11) efficiently attenuated the effects, indicating that SOX13 controlled Wnt/β-catenin pathway depending on TRIM11. Furthermore, the data gained from xenograft tumor model illustrated that silencing SOX13 suppressed the tumor growth in nude mice and the glycolysis of tissues. In conclusion, our investigation illustrated that SOX13 facilitated breast cancer cell proliferation and glycolysis by modulating Wnt/β-catenin signaling pathway affected via TRIM11.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Breast Surgery, Taizhou Municipal Hospital, Taizhou, Zhejiang Province, China
| | - Xuan Shao
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wenyang Pang
- Department of Breast Surgery, Taizhou Municipal Hospital, Taizhou, Zhejiang Province, China
| | - Zhengyi Wang
- Department of Breast Surgery, Taizhou Municipal Hospital, Taizhou, Zhejiang Province, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
13
|
Li J, Xu X, Huang H, Li L, Chen J, Ding Y, Ping J. Pink1 promotes cell proliferation and affects glycolysis in breast cancer. Exp Biol Med (Maywood) 2022; 247:985-995. [PMID: 35410525 DOI: 10.1177/15353702221082613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1) is regarded as a tumor suppressor and plays an important role in cancer cell biology, while relatively few studies have examined Pink1 in breast cancer, especially in vivo. The aims of this study were to investigate Pink1 expression in different subtypes of breast cancer tissues and cell lines and explore the effect of Pink1 protein on breast cancer. In these experiments, Pink1 expression was investigated using the tissue microarray immunohistochemistry (TMA-IHC) method in 150 samples of breast cancer tissues with different subtypes, and strong staining of Pink1 was significantly correlated with the histological grade of breast cancer (p = 0.015). In addition, Pink1 messenger RNA (mRNA) displayed much higher expression levels in breast cancer cell lines than in MCF-10A breast epithelial cells. Moreover, proteomic data obtained by isobaric tags for relative and absolute quantification (iTRAQ) showed that Pink1 deletion induced a distinct proteomic profile in MDA-MB-231 cells, and enrichment analysis showed that the differential proteins were concentrated mainly in energy metabolism-related pathways. Moreover, Seahorse XF analysis showed that Pink1 knockout reduced the glycolytic ability of MDA-MB-231 cells. Our findings indicated that Pink1 may be an indicator of malignancy in breast cancer and that it presents oncogenic properties in breast cancer, which raises another perspective for understanding the regulatory role of Pink1 in breast cancer.
Collapse
Affiliation(s)
- Jing Li
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China
| | - Xuting Xu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China
| | - Huilian Huang
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China
| | - Liqin Li
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China
| | - Jing Chen
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China
| | - Yunfeng Ding
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China
| | - Jinliang Ping
- Department of Pathology, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China
| |
Collapse
|
14
|
Shi X, Du Y, Li S, Wu H. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. Int J Mol Sci 2022; 23:3639. [PMID: 35408996 PMCID: PMC8998487 DOI: 10.3390/ijms23073639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian 116024, China; (X.S.); (Y.D.); (S.L.)
| |
Collapse
|
15
|
Zhu S, Gu H, Peng C, Xia F, Cao H, Cui H. Regulation of Glucose, Fatty Acid and Amino Acid Metabolism by Ubiquitination and SUMOylation for Cancer Progression. Front Cell Dev Biol 2022; 10:849625. [PMID: 35392171 PMCID: PMC8981989 DOI: 10.3389/fcell.2022.849625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and SUMOylation, which are posttranslational modifications, play prominent roles in regulating both protein expression and function in cells, as well as various cellular signal transduction pathways. Metabolic reprogramming often occurs in various diseases, especially cancer, which has become a new entry point for understanding cancer mechanisms and developing treatment methods. Ubiquitination or SUMOylation of protein substrates determines the fate of modified proteins. Through accurate and timely degradation and stabilization of the substrate, ubiquitination and SUMOylation widely control various crucial pathways and different proteins involved in cancer metabolic reprogramming. An understanding of the regulatory mechanisms of ubiquitination and SUMOylation of cell proteins may help us elucidate the molecular mechanism underlying cancer development and provide an important theory for new treatments. In this review, we summarize the processes of ubiquitination and SUMOylation and discuss how ubiquitination and SUMOylation affect cancer metabolism by regulating the key enzymes in the metabolic pathway, including glucose, lipid and amino acid metabolism, to finally reshape cancer metabolism.
Collapse
Affiliation(s)
- Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fanwei Xia
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Huan Cao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui,
| |
Collapse
|
16
|
The E3 Ubiquitin Ligase TRIM11 Facilitates Gastric Cancer Progression by Activating the Wnt/β-Catenin Pathway via Destabilizing Axin1 Protein. JOURNAL OF ONCOLOGY 2022; 2022:8264059. [PMID: 35237324 PMCID: PMC8885197 DOI: 10.1155/2022/8264059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/03/2022]
Abstract
Background Aberrant expression of tripartite motif 11 (TRIM11) and the Wnt/β-catenin pathway are essential for facilitating tumorigenesis and progression in multiple types of cancer. Aim To investigate the molecular changes linking the dysregulation of TRIM11 and Wnt/β-catenin pathway activation in gastric cancer (GC) progression. Methods The expression levels of TRIM11 were detected in GC tissues and cells by immunohistochemistry and western blotting. The role of TRIM11 in the growth, proliferation, and invasion of gastric cancer cells was observed by a series of cell functional experiments and further verified in vivo. Co-immunoprecipitation (Co-IP), immunofluorescence, cycloheximide, and western blotting assays and other experiments were conducted to explore the mechanisms of TRIM11 underlying the regulation of the Wnt/β-catenin pathway. For further verification, rescue experiments were performed by cotransfection of TRIM11 and Axin1 siRNA in GC cells. Results Using Co-IP assays, we identified TRIM11 as a potent binding partner of Axin1 in GC cells. Elevated TRIM11 levels were significantly correlated with unfavorable clinical outcomes and poor survival in patients with GC. In addition, TRIM11 promoted the cell proliferation and invasion capacities of GC cells in vitro and tumor growth in vivo. Mechanistic investigations revealed that TRIM11 destabilized Axin1 protein by interacting with Axin1, thus inducing the activation of the Wnt/β-catenin pathway. Moreover, we found that the oncogenic effects of TRIM11 on GC cells were partly mediated by suppression of Axin1. Furthermore, the protein expression of TRIM11 and Axin1 was negatively correlated in GC tissues. Conclusion Collectively, our findings not only establish a pivotal TRIM11-Axin1-β-catenin axis in driving GC progression but also indicate that TRIM11 serves as a valuable therapeutic target for the treatment of GC patients.
Collapse
|
17
|
Xie Y, Wang M, Xia M, Guo Y, Zu X, Zhong J. Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci 2022; 292:120322. [PMID: 35031261 DOI: 10.1016/j.lfs.2022.120322] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/18/2022]
Abstract
Aerobic glycolysis, or the Warburg effect, is regarded as a critical part of metabolic reprogramming and plays a crucial role in the occurrence and development of tumours. Ubiquitination and deubiquitination, essential post-translational modifications, have attracted increasing attention with regards to the regulation of metabolic reprogramming in cancer. However, the mechanism of ubiquitination in glycolysis remains unclear. In this review, we discuss the roles of ubiquitination and deubiquitination in regulating glycolysis, and their involvement in regulating important signalling pathways, enzymes, and transcription factors. Focusing on potential mechanisms may provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Yao Xie
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Clinical Laboratory, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mu Wang
- Clinical Research Institute, the NanHua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Min Xia
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yinping Guo
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
18
|
Pauletto E, Eickhoff N, Padrão NA, Blattner C, Zwart W. TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication. Cells 2021; 10:1517. [PMID: 34208621 PMCID: PMC8234875 DOI: 10.3390/cells10061517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers.
Collapse
Affiliation(s)
- Eleonora Pauletto
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Nuno A. Padrão
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Christine Blattner
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| |
Collapse
|
19
|
Marzano F, Caratozzolo MF, Pesole G, Sbisà E, Tullo A. TRIM Proteins in Colorectal Cancer: TRIM8 as a Promising Therapeutic Target in Chemo Resistance. Biomedicines 2021; 9:biomedicines9030241. [PMID: 33673719 PMCID: PMC7997459 DOI: 10.3390/biomedicines9030241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient’s premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.
Collapse
Affiliation(s)
- Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Mariano Francesco Caratozzolo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, “Aldo Moro”, 70125 Bari, Italy
| | - Elisabetta Sbisà
- Institute for Biomedical Technologies, National Research Council, CNR, 70126 Bari, Italy;
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Correspondence:
| |
Collapse
|
20
|
Lan Q, Tan X, He P, Li W, Tian S, Dong W. TRIM11 Promotes Proliferation, Migration, Invasion and EMT of Gastric Cancer by Activating β-Catenin Signaling. Onco Targets Ther 2021; 14:1429-1440. [PMID: 33658804 PMCID: PMC7920621 DOI: 10.2147/ott.s289922] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Gastric cancer (GC) is the sixth most common malignant tumor and the third leading cause of cancer-related death in the world. Studies have shown that TRIM protein can regulate transcription factor activity and is associated with many cancers. However, the role of TRIM11 in gastric cancer remains unclear. METHODS TRIM11 protein levels were examined in 36 cases of GC tissues and 4 gastric cancer cell lines. TRIM11 overexpression and knockdown cells were constructed in MGC-803, HGC-27 and SGC-7901, respectively. The biological roles and mechanisms of TRIM11 were examined using CCK8, colony formation, transwell migration assay, invasion assay, Western blotting, Immunohistochemistry and in vivo nude mice experiments. RESULTS We found that TRIM11 was upregulated in gastric cancer tissues and gastric cancer cell lines. Functionally, TRIM11 overexpression increased growth rate, colony formation, invasion and migration ability, EMT and β-catenin protein level and its downstream proteins such as CyclinD1 and C-myc, while TRIM11 knockdown shows the opposite effects. CONCLUSION In summary, our data show that TRIM11 is overexpressed in GC. TRIM11 promotes proliferation, migration, invasion and EMT of gastric cancer by activating β-catenin signaling.
Collapse
Affiliation(s)
- Qingzhi Lan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Central Laboratory of Renmin Hospital, Wuhan, People’s Republic of China
| | - Xiaoping Tan
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, People’s Republic of China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Central Laboratory of Renmin Hospital, Wuhan, People’s Republic of China
| | - Wei Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Central Laboratory of Renmin Hospital, Wuhan, People’s Republic of China
| | - Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Central Laboratory of Renmin Hospital, Wuhan, People’s Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
21
|
Deng B, Deng J, Yi X, Zou Y, Li C. ROCK2 Promotes Osteosarcoma Growth and Glycolysis by Up-Regulating HKII via Phospho-PI3K/AKT Signalling. Cancer Manag Res 2021; 13:449-462. [PMID: 33500659 PMCID: PMC7823140 DOI: 10.2147/cmar.s279496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background Osteosarcoma (OS) is a malignant bone tumour that exhibits a high mortality. While tumours thrive in a state of malnutrition, the mechanism by which OS cells adapt to metabolic stress through metabolic reprogramming remains unclear. Methods We analysed the expression of ROCK2 in osteosarcoma tissues by RT-qPCR and Western blot. Cell proliferation were analysed using CCK8, EdU and colony formation assays. The level of cell glycolysis was detected by glucose-6 phosphate, glucose consumption, lactate production and ATP levels. Results Herein, our study showed that ROCK2 expression in OS tissues was higher than in adjacent tissues. Functional assays have demonstrated that ROCK2 contributes to the growth of OS cells by inducing aerobic glycolysis. The current study revealed that ROCK2 knockdown decreased the levels of mitochondrial hexokinase II (HKII). And also indicated that ROCK2 served as a key enzyme in glycolysis and that it served an important role in tumour growth. A significant positive correlation was identified between the mRNA and protein expressions of ROCK2 and HKII, further demonstrating that ROCK2-induced glycolysis and proliferation was dependent on HKII expression in OS cells. Mechanistically, ROCK2 promotes HKII expression by activating the phospho-PI3K/AKT signalling pathway. Conclusion Taken together, the results of the current study linked the two drivers of OS growth and aerobic glycolysis and identified a new mechanism of ROCK2 control in OS.
Collapse
Affiliation(s)
- Binbin Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jianyong Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuan Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yeqing Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Chen Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
22
|
Zhan W, Zhang S. TRIM proteins in lung cancer: Mechanisms, biomarkers and therapeutic targets. Life Sci 2021; 268:118985. [PMID: 33412211 DOI: 10.1016/j.lfs.2020.118985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
The tripartite motif (TRIM) family is defined by the presence of a Really Interesting New Gene (RING) domain, one or two B-box motifs and a coiled-coil region. TRIM proteins play key roles in many biological processes, including innate immunity, tumorigenesis, cell differentiation and ontogenetic development. Alterations in TRIM gene and protein levels frequently emerge in a wide range of tumors and affect tumor progression. As canonical E3 ubiquitin ligases, TRIM proteins participate in ubiquitin-dependent proteolysis of prominent components of the p53, NF-κB and PI3K/AKT signaling pathways. The occurrence of ubiquitylation events induced by TRIM proteins sustains internal balance between tumor suppressive and tumor promoting genes. In this review, we summarized the diverse mechanism of TRIM proteins responsible for the most common malignancy, lung cancer. Furthermore, we also discussed recent progress in both the diagnosis and therapeutics of tumors contributed by TRIM proteins.
Collapse
Affiliation(s)
- Weihua Zhan
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Song Z, Guo Q, Wang H, Gao L, Wang S, Liu D, Liu J, Qi Y, Lin B. miR-5193, regulated by FUT1, suppresses proliferation and migration of ovarian cancer cells by targeting TRIM11. Pathol Res Pract 2020; 216:153148. [PMID: 32823233 DOI: 10.1016/j.prp.2020.153148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide. A better understanding of the pathogenesis of ovarian cancer may help to improve the overall survival. Our previous studies have demonstrated that alpha-(1,2)-fucosyltransferase 1 (FUT1) is an oncogenic glycogene in ovarian cancer. However, the underlying mechanism is not fully clarified. In this study, we identified a microRNA as an important downstream regulator for the carcinogenic effect of FUT1 in ovarian cancer. miR-5193 was found down-regulated in ovarian cancer cells, FUT1-overexpression ovarian cancer cells and ovarian tumor samples. MTT, flow cytometry and Transwell assays demonstrated that miR-5193 inhibited the proliferation and migration, and induced the cell cycle arrest and apoptosis of ovarian cancer cells. Real-time PCR and western blot assays showed that miR-5193 downregulated the expression of TRIM11 and upregulated the expression of p53 and p21. Dual luciferase reporter assay indicated that TRIM11 was a direct target of miR‑5193. Rescue experiments confirmed that miR-5193 functioned in ovarian cancer cells by directly targeting TRIM11. Moreover, transfection with miR-5193 mimic in FUT1-overexpression ovarian cancer cells reversed the carcinogenic effect of FUT1. Taken together, our results suggest that miR-5193 is an essential suppressor of human ovarian cancer development, and is an important downstream regulator regarding the carcinogenesis of FUT1 in ovarian cancer.
Collapse
Affiliation(s)
- Zuofei Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, 110016, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Qian Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Huimin Wang
- Department of Obstetrics and Gynecology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China.
| |
Collapse
|
24
|
Chen L, Guo L, Sun Z, Yang G, Guo J, Chen K, Xiao R, Yang X, Sheng L. Monoamine Oxidase A is a Major Mediator of Mitochondrial Homeostasis and Glycolysis in Gastric Cancer Progression. Cancer Manag Res 2020; 12:8023-8035. [PMID: 32943935 PMCID: PMC7481281 DOI: 10.2147/cmar.s257848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/02/2020] [Indexed: 01/07/2023] Open
Abstract
Objective Monoamine oxidase A (MAO-A) is a mitochondrial protein involved in tumourigenesis in different types of cancer. However, the biological function of MAO-A in gastric cancer development remains unknown. Methods We examined MAO-A expression in gastric cancer tissues and in gastric cancer cell lines by immunohistochemistry and Western blot analyses. CCK8, FACS and bromodeoxyuridine incorporation assays were performed to assess the effects of MAO-A on gastric cancer cell proliferation. The role of MAO-A in mitochondrial function was determined through MitoSOX Red staining, ATP generation and glycolysis assays. Results In the present study, we observed that MAO-A was significantly upregulated in gastric cancer tissues and in AGS and MGC803 cells. The observed MAO-A inhibition indicated decreased cell cycle progression and proliferation. Silencing MAO-A expression was associated with suppressed migration and invasion of gastric cancer cells in vitro. Moreover, alleviated mitochondrial damage in these cells was demonstrated by decreased levels of mitochondrial reactive oxygen species and increased ATP generation. MAO-A knockdown also regulated the expression of the glycolysis rate-limiting enzymes hexokinase 2 and pyruvate dehydrogenase. Finally, we observed that the glycolysis-mediated effect was weakened in AGS and MGC803 cells when MAO-A was blocked. Conclusion The findings of the present study indicate that MAO-A is responsible for mitochondrial dysfunction and aerobic glycolysis, which in turn leads to the proliferation and metastasis of human gastric tumour cells.
Collapse
Affiliation(s)
- Ling Chen
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Li Guo
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Ziwen Sun
- Department of Scientific Research and Education, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Guochun Yang
- Department of Emergency Medicine, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kai Chen
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ruixue Xiao
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xigui Yang
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Lijun Sheng
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
25
|
TRIM11 promotes breast cancer cell proliferation by stabilizing estrogen receptor α. Neoplasia 2020; 22:343-351. [PMID: 32599554 PMCID: PMC7326724 DOI: 10.1016/j.neo.2020.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in female worldwide, over 70% of which are estrogen receptor α (ERα) positive. ERα has a crucial role in the initiation and progression of breast cancer and is an indicator of endocrine therapy, while endocrine resistance is an urgent problem in ER-positive breast cancer patients. In the present study, we identify a novel E3 ubiquitin ligase TRIM11 function to facilitate ERα signaling. TRIM11 is overexpressed in human breast cancer, and associates with poor prognosis. The protein level of TRIM11 is highly correlated with ERα. RNA-seq results suggest that ERα signaling may be an underlying target of TRIM11. Depletion of TRIM11 in breast cancer cells significantly decreases cell proliferation and migration. And the suppression effects can be reversed by overexpressing ERα. In addition, ERα protein level, ERα target genes expression and estrogen response element activity are also dramatically decreased by TRIM11 depletion. Further mechanistic analysis indicates that the RING domain of TRIM11 interacted with the N terminal of ERα in the cytoplasm and promotes its mono-ubiquitination, thus enhances ERα protein stability. Our study describes TRIM11 as a modulating factor of ERα and increases ERα stability via mono-ubiquitination. TRIM11 could be a promising therapeutic target for breast cancer treatment.
Collapse
|
26
|
Zhang R, Li SW, Liu L, Yang J, Huang G, Sang Y. TRIM11 facilitates chemoresistance in nasopharyngeal carcinoma by activating the β-catenin/ABCC9 axis via p62-selective autophagic degradation of Daple. Oncogenesis 2020; 9:45. [PMID: 32382014 PMCID: PMC7206012 DOI: 10.1038/s41389-020-0229-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy resistance is the major cause of nasopharyngeal carcinoma (NPC) treatment failure. Tripartite motif-containing protein (TRIM) family members play important roles in tumor development and chemotherapy failure. Here, based on a screening analysis of 71 TRIM family members by qRT-PCR, we first confirmed that the TRIM11 levels were significantly higher in drug-resistant NPC cells than in non-drug-resistant NPC cells, and high TRIM11 expression predicted poor overall survival (OS) and progression-free survival (PFS). N(6)-Methyladenosine (m6A) was highly enriched in TRIM11 in NPC drug-resistant cells and enhanced its RNA stability. TRIM11 enhanced the multidrug resistance in NPC by inhibiting apoptosis in vitro and promoting cisplatin (DDP) resistance in vivo. TRIM11 associated with Daple and promoted Daple ubiquitin-mediated degradation in a p62-selective autophagic manner, further upregulating β-catenin expression to induce ABCC9 expression by directly binding to the ABCC9 promoter. TRIM11 may regulate NPC drug resistance by positively modulating the Daple/β-catenin/ABCC9 signaling pathway. Thus, TRIM11 may be a potential diagnostic marker and therapeutic target for chemoresistant NPC.
Collapse
Affiliation(s)
- Runa Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Guofu Huang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
27
|
Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy. Pharmacol Res 2020; 156:104806. [PMID: 32294525 DOI: 10.1016/j.phrs.2020.104806] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequently occurring cancer in women. Chemotherapy in combination with immunotherapy has been used to treat breast cancer. Atezolizumab targeting the protein programmed cell death-ligand (PD-L1) in combination with paclitaxel was recently approved by the Food and Drug Administration (FDA) for Triple-Negative Breast Cancer (TNBC), the most incurable type of breast cancer. However, the use of such drugs is restricted by genotype and is effective only for those TNBC patients expressing PD-L1. In addition, resistance to chemotherapy with drugs such as lapatinib, geftinib, and tamoxifen can develop. In this review, we address chemoresistance in breast cancer and discuss Akt as the master regulator of drug resistance and several oncogenic mechanisms in breast cancer. Akt not only directly interacts with the mitogen-activated protein (MAP) kinase signaling pathway to affect PD-L1 expression, but also has crosstalk with Notch and Wnt/β-catenin signaling pathways involved in cell migration and breast cancer stem cell integrity. In this review, we discuss the effects of tyrosine kinase inhibitors on Akt activation as well as the mechanism of Akt signaling in drug resistance. Akt also has a crucial role in mitochondrial metabolism and migrates into mitochondria to remodel breast cancer cell metabolism while also functioning in responses to hypoxic conditions. The Akt inhibitors ipatasertib, capivasertib, uprosertib, and MK-2206 not only suppress cancer cell proliferation and metastasis, but may also inhibit cytokine regulation and PD-L1 expression. Ipatasertib and uprosertib are undergoing clinical investigation to treat TNBC. Inhibition of Akt and its regulators can be used to control breast cancer progression and also immunosuppression, while discovery of additional compounds that target Akt and its modulators could provide solutions to resistance to chemotherapy and immunotherapy.
Collapse
|
28
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
29
|
Guo Y, Liang F, Zhao F, Zhao J. Resibufogenin suppresses tumor growth and Warburg effect through regulating miR-143-3p/HK2 axis in breast cancer. Mol Cell Biochem 2020; 466:103-115. [PMID: 32006291 DOI: 10.1007/s11010-020-03692-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
Increasing evidence confirmed that the Warburg effect plays an important role involved in the progression of malignant tumors. Resibufogenin (RES) has been proved to have a therapeutic effect in multiple malignant tumors. However, the mechanism of whether RES exerted an antitumor effect on breast cancer through regulating the Warburg effect is largely unknown. The effect of RES on glycolysis was determined by glucose consumption, lactate production, ATP generation, extracellular acidification rate and oxygen consumption rate in breast cancer cells. The total RNA and protein levels were respectively measured by RT-qPCR and western blot. Cell proliferation and apoptosis were examined using the CCK-8 assay, colony formation assay, and flow cytometry, respectively. The interaction between miR-143-3p and HK2 was verified by dual-luciferase reporter gene assay. We also evaluated the influence of RES on the tumor growth and Warburg effect in vivo. RES treatment significantly decreased glycolysis, cell proliferation and induced apoptosis of both MDA-MB-453 and MCF-7 cells. Simultaneously, the expression of HK2 was decreased in breast cancer cells treated with RES, which was positively associated with tumor size and glycolysis. Moreover, HK2 was a direct target gene of miR-143-3p. Mechanistically, upregulation of miR-143-3p by RES treatment inhibited tumor growth by downregulating HK2-mediated Warburg effect in breast cancer. Our findings suggested that RES exerted anti-tumorigenesis and anti-glycolysis activities in breast cancer through upregulating the inhibitory effect of miR-143-3p on HK2 expression, which provided a new potential strategy for breast cancer clinical treatment.
Collapse
Affiliation(s)
- Ying Guo
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated To Shandong University, Jingwu Road 324, Huaiyin District, Jinan, 250021, Shandong, China
| | - Fei Liang
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated To Shandong University, Jingwu Road 324, Huaiyin District, Jinan, 250021, Shandong, China
| | - Fuli Zhao
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated To Shandong University, Jingwu Road 324, Huaiyin District, Jinan, 250021, Shandong, China
| | - Jian Zhao
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated To Shandong University, Jingwu Road 324, Huaiyin District, Jinan, 250021, Shandong, China.
| |
Collapse
|
30
|
TRIM32 Promotes the Growth of Gastric Cancer Cells through Enhancing AKT Activity and Glucose Transportation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4027627. [PMID: 32051827 PMCID: PMC6995489 DOI: 10.1155/2020/4027627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Tripartite motif protein 32 (TRIM32), an E3 ubiquitin ligase, is a member of the TRIM protein family. However, the underlying function of TRIM32 in gastric cancer (GC) remains unclear. Here, we aimed to explore the function of TRIM32 in GC cells. TRIM32 was induced silencing and overexpression using RNA interference (RNAi) and lentiviral-mediate vector in GC cells, respectively. Moreover, the PI3K/AKT inhibitor LY294002 was used to examine the relationship between TRIM32 and AKT. Quantitative reverse-transcription PCR (qRT-PCR) and western blot were used to determine the mRNA and protein contents. The glucose analog 2-NBDG was used as a fluorescent probe for determining the activity of glucose transport. An annexin V-fluorescein isothiocyanate apoptosis detection kit was used to stain NCI-N87, MKN74, and MKN45 cells. Cell counting kit-8 (CCK-8) assay was used to examine cell proliferation. Our results indicated that TRIM32 was associated with poor overall survival of patients with GC. Moreover, TRIM32 was a proproliferation and antiapoptosis factor and involved in the AKT pathway in GC cells. Furthermore, TRIM32 possibly mediated the metabolism of glycolysis through targeting GLUT1 and HKII in GC cells. Importantly, TRIM32 silencing deeply suppressed the tumorigenicity of GC cells in vivo. Our findings not only enhanced the understanding of the function of TRIM32 but also indicated its potential value as a target in GC treatment.
Collapse
|