1
|
Kusama K, Oka K, Yashiro Y, Yoshida K, Miyaoka H, Tamura K. Effect of Cordyceps militaris extract containing cordycepin on the adipogenesis and lipolysis of adipocytes. FEBS Open Bio 2025; 15:335-345. [PMID: 39572891 PMCID: PMC11788751 DOI: 10.1002/2211-5463.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity, a global health concern, results from an energy imbalance leading to lipid accumulation. In the present study, Cordyceps militaris extract (CM) and its primary component, cordycepin, were investigated to characterize their potential effects on adipogenesis and lipolysis. Treatment with CM or cordycepin reduced lipid droplets and increased hormone-sensitive lipase activation in 3T3-L1 cells. In a diabetic obese mouse model, CM and cordycepin lowered serum low-density lipoprotein/very low-density lipoprotein levels and reduced oxidative stress and cell senescence markers. Thus, cordycepin inhibits preadipocyte differentiation and promotes lipolysis, which may serve as a novel obesity treatment. Further studies, including clinical trials, are required to validate the clinical potential of cordycepin.
Collapse
Affiliation(s)
- Kazuya Kusama
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesJapan
| | - Kodai Oka
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesJapan
| | - Yumi Yashiro
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesJapan
| | - Kanoko Yoshida
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesJapan
| | - Hiroaki Miyaoka
- Department of Biomolecular Organic ChemistryTokyo University of Pharmacy and Life SciencesJapan
| | - Kazuhiro Tamura
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesJapan
| |
Collapse
|
2
|
Afzal M, Abusalah MAHA, Shehzadi N, Absar M, Ahmed N, Khan S, Naseem Y, Mehmood N, Singh KKB. Investigation of biometabolites and novel antimicrobial peptides derived from promising source Cordyceps militaris and effect of non-small cell lung cancer genes computationally. PLoS One 2025; 20:e0310103. [PMID: 39847593 PMCID: PMC11756765 DOI: 10.1371/journal.pone.0310103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/21/2024] [Indexed: 01/25/2025] Open
Abstract
Mushrooms are considered one of the safe and effective medications because they have great economic importance due to countless biological properties. Cordyceps militaris contains bioactive compounds with antioxidant, antimicrobial and anti-cancerous properties. This study was projected to analyze the potentials of biometabolites and to extract antimicrobial peptides and protein from the C. militaris. An in-vitro analysis of biometabolites and antimicrobial peptides was performed to investigate their pharmacological potentials followed by quantification and characterization of extracted protein. Computational analysis on non-small cell lung cancer genes (NSCLC) was performed on quantified compounds to interpret the biometabolites from C. militaris that could be potential drug candidate molecules with high specificity and potency. A total of 34 compounds representing 100% of total detected constituents identified were identified using GCMS analysis and 20 compounds using LC-MS which showed strong biological activities. FT-IR spectroscopy manifest powerful instant peaks to have different bioactive components including carboxylic acid, phenols, amines and alkanes present in methanolic extract of C. militaris. In C. militaris, higher protein concentration was observed in 70% concentration of protein extract (500 μg/ml ± 0.025). The best antioxidant activity (% Radical scavenging activity) of methanolic extracts was 80a ± 0.03, antidiabetic activity was 37 ± 0.057 and anti-inflammatory activity was 40 ± 0.021 at 12 mg/ml. Antibacterial activity for different concentrations of Cordyceps protein and methanolic extracts was significantly (p < 0.05). Indolizine, 2-(4-methylphenyl) has most binding affinity (micromolar) and optimized properties to be selected as the lead inhibitor. It interacts favorably with the active site of RET gene of NSCLC and is neuroprotective and hepatoprotective.
Collapse
Affiliation(s)
- Muhammad Afzal
- Faculty of Science and Technology, Department of Basic and Applied Chemistry, University of Central Punjab, Lahore, Pakistan
| | - Mai Abdel Haleem A. Abusalah
- Faculty of Allied Medical Sciences, Department of Medical Laboratory Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Neelum Shehzadi
- Faculty of Science and Technology, Department of Basic and Applied Chemistry, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Absar
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Sarmir Khan
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Yalnaz Naseem
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Noshaba Mehmood
- Faculty of Science and Technology, Department of Basic and Applied Chemistry, University of Central Punjab, Lahore, Pakistan
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
3
|
Lu T, Zhou L, Chu Z, Song Y, Wang Q, Zhao M, Dai C, Chen L, Cheng G, Wang J, Guo Q. Cordyceps sinensis relieves non-small cell lung cancer by inhibiting the MAPK pathway. Chin Med 2024; 19:54. [PMID: 38528546 PMCID: PMC10962170 DOI: 10.1186/s13020-024-00895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/23/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE To determine the pharmacodynamic mechanism underlying Cordyceps sinensis relief in a murine model of non-small cell lung cancer (NSCLC). METHODS We created a murine model of NSCLC and studied the potential molecular mechanism by which C. sinensis relieved NSCLC using a combination of transcriptomics, proteomics, and experimental validation. RESULTS C. sinensis markedly suppressed the fluorescence values in mice with NSCLC, improved the pathologic morphology of lung tissue, ameliorated inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and the oxidative stress indicators superoxide dismutase, malondialdehyde, and glutathione peroxidase). Transcriptomics results showed that the therapeutic effect of C. sinensis was primarily involved in the differentiation and activation of T cells. Based on the proteomic results, C. sinensis likely exerted a protective effect by recruiting immune cells and suppressing tumor cell proliferation via the MAPK pathway. Finally, the experimental validation results indicated that C. sinensis significantly decreased the VEGF and Ki67 expression, downregulated RhoA, Raf-1, and c-fos expression, which are related to cell migration and invasion, increased the serum concentration of hematopoietic factors (EPO and GM-CSF), and improved the percentage of immune cells (natural killer cells, dendritic cells, and CD4+ and CD8+ lymphocytes), which enhanced immune function. CONCLUSIONS Based on our preclinical study, C. sinensis was shown to exert a protective effect on NSCLC, primarily by inhibiting the MAPK pathway.
Collapse
Affiliation(s)
- Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lirun Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zheng Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Song
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Minghong Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuanhao Dai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Chen Z, Lu Y, Dun X, Wang X, Wang H. Research Progress of Selenium-Enriched Foods. Nutrients 2023; 15:4189. [PMID: 37836473 PMCID: PMC10574215 DOI: 10.3390/nu15194189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Selenium is an essential micronutrient that plays a crucial role in maintaining human health. Selenium deficiency is seriously associated with various diseases such as Keshan disease, Kashin-Beck disease, cataracts, and others. Conversely, selenium supplementation has been found to have multiple effects, including antioxidant, anti-inflammatory, and anticancer functions. Compared with inorganic selenium, organic selenium exhibits higher bioactivities and a wider range of safe concentrations. Consequently, there has been a significant development of selenium-enriched foods which contain large amounts of organic selenium in order to improve human health. This review summarizes the physiological role and metabolism of selenium, the development of selenium-enriched foods, the physiological functions of selenium-enriched foods, and provides an analysis of total selenium and its species in selenium-enriched foods, with a view to laying the foundation for selenium-enriched food development.
Collapse
Affiliation(s)
- Zhenna Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | | | | | | | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
5
|
Dobrzyńska M, Drzymała-Czyż S, Woźniak D, Drzymała S, Przysławski J. Natural Sources of Selenium as Functional Food Products for Chemoprevention. Foods 2023; 12:1247. [PMID: 36981172 PMCID: PMC10048267 DOI: 10.3390/foods12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, the incidence of which is increasing annually. Interest has recently grown in the anti-cancer effect of functional foods rich in selenium (Se). Although clinical studies are inconclusive and anti-cancer mechanisms of Se are not fully understood, daily doses of 100-200 µg of Se may inhibit genetic damage and the development of cancer in humans. The anti-cancer effects of this trace element are associated with high doses of Se supplements. The beneficial anti-cancer properties of Se and the difficulty in meeting the daily requirements for this micronutrient in some populations make it worth considering the use of functional foods enriched in Se. This review evaluated studies on the anti-cancer activity of the most used functional products rich in Se on the European market.
Collapse
Affiliation(s)
| | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Science, Rokietnicka 3 Street, 60-806 Poznan, Poland
| | | | | | | |
Collapse
|
6
|
Wu C, Peng S, Pilié PG, Geng C, Park S, Manyam GC, Lu Y, Yang G, Tang Z, Kondraganti S, Wang D, Hudgens CW, Ledesma DA, Marques-Piubelli ML, Torres-Cabala CA, Curry JL, Troncoso P, Corn PG, Broom BM, Thompson TC. PARP and CDK4/6 Inhibitor Combination Therapy Induces Apoptosis and Suppresses Neuroendocrine Differentiation in Prostate Cancer. Mol Cancer Ther 2021; 20:1680-1691. [PMID: 34158347 PMCID: PMC8456452 DOI: 10.1158/1535-7163.mct-20-0848] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 01/07/2023]
Abstract
We analyzed the efficacy and mechanistic interactions of PARP inhibition (PARPi; olaparib) and CDK4/6 inhibition (CDK4/6i; palbociclib or abemaciclib) combination therapy in castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC) models. We demonstrated that combined olaparib and palbociblib or abemaciclib treatment resulted in synergistic suppression of the p-Rb1-E2F1 signaling axis at the transcriptional and posttranslational levels, leading to disruption of cell-cycle progression and inhibition of E2F1 gene targets, including genes involved in DDR signaling/damage repair, antiapoptotic BCL-2 family members (BCL-2 and MCL-1), CDK1, and neuroendocrine differentiation (NED) markers in vitro and in vivo In addition, olaparib + palbociclib or olaparib + abemaciclib combination treatment resulted in significantly greater growth inhibition and apoptosis than either single agent alone. We further showed that PARPi and CDK4/6i combination treatment-induced CDK1 inhibition suppressed p-S70-BCL-2 and increased caspase cleavage, while CDK1 overexpression effectively prevented the downregulation of p-S70-BCL-2 and largely rescued the combination treatment-induced cytotoxicity. Our study defines a novel combination treatment strategy for CRPC and NEPC and demonstrates that combination PARPi and CDK4/6i synergistically promotes suppression of the p-Rb1-E2F1 axis and E2F1 target genes, including CDK1 and NED proteins, leading to growth inhibition and increased apoptosis in vitro and in vivo Taken together, our results provide a molecular rationale for PARPi and CDK4/6i combination therapy and reveal mechanism-based clinical trial opportunities for men with NEPC.
Collapse
Affiliation(s)
- Cheng Wu
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Peng
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Patrick G. Pilié
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chuandong Geng
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C. Manyam
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yungang Lu
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guang Yang
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhe Tang
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shakuntala Kondraganti
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoqi Wang
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney W. Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mario L. Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos A. Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan L. Curry
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M. Broom
- Bioinformatics and Computational Biology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C. Thompson
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Corresponding Author: Timothy C. Thompson, Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. Phone: 713-792-9955; Fax: 713-792-9956; E-mail:
| |
Collapse
|
7
|
Wu TF, Shi WY, Chiu YC, Chan YY. Investigation of the molecular mechanism underlying the inhibitory activities of ethanol extract of Bombyx mori pupa-incubated Cordyceps militaris fruiting bodies toward allergic rhinitis. Biomed Pharmacother 2021; 135:111248. [PMID: 33450505 DOI: 10.1016/j.biopha.2021.111248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/30/2022] Open
Abstract
Cordyceps militaris has been widely studied for its various pharmacological activities such as antitumor, anti-inflammation, and immune regulation. The binding of an allergen to IgE-sensitized mast cells in nasal mucosa triggers allergic rhinitis. We found that oral administration of 300 mg/kg of the ethanol extract prepared from silkworm pupa-cultivated Cordyceps militaris fruiting bodies significantly alleviated the symptoms of ovalbumin-induced allergic rhinitis in mice, including sneeze/scratch, mast cell activation, eosinophil infiltration, and Syk activation. The treatment of ethanol extract significantly suppressed the release of β-hexosaminidase (a degranulation marker) and mRNA expression levels of various cytokines, including IL-3, IL-10, and IL-13 in activated RBL2H3 cells. The ethanol extract and β-sitostenone, which was purified from the extract, could respectively reduce the Ca2+ ion mobilization in activated RBL-2H3 cells. Furthermore, results collected from western immunoblotting demonstrated that ethanol extract significantly retarded Ca2+ ion mobilization-initiated signaling cascade, which provoked the expression of various allergic cytokines. Also, the extract incubation interfered with P38 as well as NF-kB activation and Nrf-2 translocation. Our study suggested that ethanol extract possessed some natural constituents which could inhibit immediate degranulation and de novo synthesis of allergic cytokines via inhibition of Ca2+ ion mobilization in mast cells in the nasal mucosa of allergic rhinitis mice.
Collapse
Affiliation(s)
- Ting-Feng Wu
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Wan-Yin Shi
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Yi-Chen Chiu
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Yu-Yi Chan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| |
Collapse
|
8
|
Rakhee, Mishra J, Yadav RB, Meena DK, Arora R, Sharma RK, Misra K. Novel formulation development from Ophiocordyceps sinensis (Berk.) for management of high-altitude maladies. 3 Biotech 2021; 11:9. [PMID: 33442508 PMCID: PMC7778651 DOI: 10.1007/s13205-020-02536-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Ophiocordyceps sinensis (Berk.) is a fungus closely related to medicinal mushroom, which belongs to the family Ophiocordycipitaceae. It is a well-known and rich herbal source of bioactive active constituents. The medicinal mushroom has garnered worldwide attention owing to its multifarious bioactivities. This mushroom grows on the larva of ghost moths (Hepialidae) and produces fruiting bodies, which serve as a vital natural source of medicine and supplementary diets. On account of the diverse pharmacological and bioactive constituents present in O. sinensis, it has been established as a potential antioxidant, anticancer, antibacterial, anti-proliferative, anti-inflammatory agent that has been successfully used for treating several health issues, including hypoxia-related problems encountered by mountaineers, pilgrims, tourists and soldiers occurring at high-altitude regions such as acute mountain sickness (AMS), high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE), frostbite, chilblains, hypothermia, etc. The most important pharmacologically active compounds present in the O. sinensis include nucleobases and its derivatives (adenosine, cordycepin, 3-deoxyadenosine, AMP, GMP, UMP, guanosine, uridine), polysaccharides (mannose, glucose, galactose, rhamnose, arabinose, xylose, galactose), proteins, peptides and steroids. This article focuses on the various research endeavors undertaken to scientifically establish the medicinal properties of O. sinensis, highlighting the various principally active compounds, their pharmacological action, drug designing and development and future perspective for various health benefits.
Collapse
Affiliation(s)
- Rakhee
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - Jigni Mishra
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - Renu Bala Yadav
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - D. K. Meena
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - Rajesh Arora
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - R. K. Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007 India
| | - Kshipra Misra
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| |
Collapse
|
9
|
Cordyceps militaris Fruit Body Extract Decreases Testosterone Catabolism and Testosterone-Stimulated Prostate Hypertrophy. Nutrients 2020; 13:nu13010050. [PMID: 33375244 PMCID: PMC7824671 DOI: 10.3390/nu13010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
The androgens testosterone and dihydrotestosterone (DHT) are essential for a variety of systemic functions in mature males. Alteration of these hormones results in late-onset hypogonadism (LOH) and benign prostate hyperplasia (BPH). The fruit bodies of fungi of the genus Cordyceps have been regarded as folk medicine or health food with tonic and antifatigue effects. The extract from the fruit body of Cordyceps militaris parasitizing Samia cynthia ricini (CM) was evaluated as a novel-candidate natural product for ameliorating male andropause symptoms. To explore the effects of CM on LOH and BPH, CM was applied to rat models and cultured testicular cells and prostate cells. The concentrations of androgens in the serum and culture media were determined by ELISA. Expression of steroidogenic enzymes and androgen-related genes was evaluated by qPCR, and prostatic cell proliferation was assessed with the cell-viability assay. CM maintained the serum levels of testosterone and DHT, but inhibited testosterone-induced prostate hypertrophy. CM also increased the secretion of testosterone and DHT by primary testicular cells, with no changes in the mRNA expression of steroidogenic enzymes, but decreased the growth of prostatic cell lines. Our data suggest that CM could improve both LOH and BPH in males.
Collapse
|
10
|
Wang Y, Wu N, Zhang J, Wang H, Men X. MiR-153-5p Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to Paclitaxel by Inducing G2M Phase Arrest. Onco Targets Ther 2020; 13:4089-4097. [PMID: 32494162 PMCID: PMC7231778 DOI: 10.2147/ott.s241640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Paclitaxel (PTX) resistance is a main obstacle for the treatment of triple-negative breast cancers (TNBC). Evidences have shown that miR-153-5p could induce the apoptosis of breast cancer cells. Thus, this study aimed to investigate the effect of miR-153-5p on PTX-resistance TNBC cells. Methods Cell Counting Kit-8, flow cytometry and wound healing assays were used to detect the viability, apoptosis and migration of MDA-MB-231/PTX cells, respectively. The luciferase reporter assay was used to explore the potential binding targets of miR-153-5p. The expressions of CDK1, cyclin B1 and p-Akt in MDA-MB-231/PTX cells were detected with Western blot. In vivo animal study was performed finally. Results In this study, the inhibitory effects of PTX on the proliferation and migration of MDA-MB-231/PTX cells were significantly enhanced following transfection with miR-153-5p. In addition, overexpression of miR-153-5p markedly enhanced the pro-apoptotic effect of PTX on MDA-MB-231/PTX cells. Luciferase reporter assay validated that cyclin-dependent kinase 1 (CDK1) was a potential binding target of miR-153-5p. Moreover, overexpression of miR-153-5p prominently increased PTX-induced cell cycle arrest at G2/M phase in MDA-MB-231/PTX cells via downregulation of CDK1, cyclin B1 and p-Akt. In vivo experiments confirmed that overexpression of miR-153-5p notably enhanced PTX sensitivity in MDA-MB-231/PTX xenograft model. Conclusion We found that overexpression of miR-153-5p could reverse PTX resistance in PTX-resistant TNBC cells via inducing G2/M phase arrest, indicating that miR‑153-5p may be a promising agent for patients with PTX-resistant TNBC.
Collapse
Affiliation(s)
- Yang Wang
- Department of Galactophore Surgery, Weifang People's Hospital, Weifang, Shandong 261041, People's Republic of China
| | - Nan Wu
- Department of Galactophore Surgery, Weifang People's Hospital, Weifang, Shandong 261041, People's Republic of China
| | - Jun Zhang
- Department of Galactophore Surgery, Weifang People's Hospital, Weifang, Shandong 261041, People's Republic of China
| | - Huidong Wang
- Department of Galactophore Surgery, Weifang People's Hospital, Weifang, Shandong 261041, People's Republic of China
| | - Xiaojuan Men
- Department of Galactophore Surgery, Weifang People's Hospital, Weifang, Shandong 261041, People's Republic of China
| |
Collapse
|