1
|
Lv J, Chen F, Lv L, Zhang L, Zou H, Liu Y, Bai Y, Fang R, Qin T, Deng Z. LncRNA ABHD11-AS1 Elevates CALM2 to Promote Metastasis of Thyroid Cancer Through Sponging miR-876-5p. Biochem Genet 2025:10.1007/s10528-025-11072-9. [PMID: 40117023 DOI: 10.1007/s10528-025-11072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
In the past decade, the treatment of thyroid cancer (TC) has been brought to a new era, but tumor metastasis still is an intractable difficulty in clinical. LncRNA ABHD11-AS1 has been confirmed to be involved in TC progression. However, its specific mechanism remains unknown. Tissues from TC patients and TC cells served as mainly experimental subjects in this study. The migration of TC cells was assessed using the scratch assay, and the ability of cell invasion was evaluated by transwell assay. RT-qPCR and western blot were conducted to determine the levels of related genes and proteins. The dual-luciferase reporter assay was used to validate the relationships among ABHD11-AS1, miR-876-5p and CALM2. ABHD11-AS1 and CALM2 are elevated in TC cancer samples and cells, while the expression of miR-876-5p is reduced. Subsequently, the ability of TC cells to migrate, invade and EMT was inhibited by both ABHD11-AS1 knockdown or miR-876-5p overexpression. Moreover, the suppression of malignant characteristics in TC cells resulting from ABHD11-AS knockdown was counteracted by the inhibition of miR-876-5p or the upregulation of CALM2. On the mechanism, ABHD11-AS1 elevated CALM2 and promoted the malignant development of TC cells by acting as a miR-876-5p sponge. ABHD11-AS1 mediated the miR-876-5p/CALM2 axis to drive the metastasis of thyroid cancer.
Collapse
Affiliation(s)
- Juan Lv
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Ling Lv
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Lu Zhang
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Huangren Zou
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Yanlin Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Yuke Bai
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Ruotong Fang
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Tiantian Qin
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan Province, China.
| |
Collapse
|
2
|
Bhartiya P, Jaiswal A, Negi M, Kaushik N, Ha Choi E, Kumar Kaushik N. Unlocking melanoma Suppression: Insights from Plasma-Induced potent miRNAs through PI3K-AKT-ZEB1 axis. J Adv Res 2025; 68:147-161. [PMID: 38447612 PMCID: PMC11785563 DOI: 10.1016/j.jare.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Melanoma is a rare but highly malignant form of skin cancer. Although recent targeted and immune-based therapies have improved survival rates by 10-15%, effective melanoma treatment remains challenging. Therefore, novel, combinatorial therapy options such as non-thermal atmospheric pressure plasma (NTP) are being investigated to inhibit and prevent chemoresistance. Although several studies have reported the apoptotic and inhibitory effects of reactive oxygen species produced by NTP in the context of melanoma, the intricate molecular network that determines the role of microRNAs (miRNAs) in regulating NTP-mediated cell death remains unexplored. OBJECTIVES This study aimed to explore the molecular mechanisms and miRNA networks regulated by NTP-induced oxidative stress in melanoma cells. METHODS Melanoma cells were exposed to NTP and then subjected to high-throughput miRNA sequencing to identify NTP-regulated miRNAs. Various biological processes and underlying molecular mechanisms were assessed using Alamar Blue, propidium iodide (PI) uptake, cell migration, and clonogenic assays followed by qRT-PCR and flow cytometry. RESULTS NTP exposure for 3 min was sufficient to modulate the expression of several miRNAs, inhibiting cell growth. Persistent NTP exposure for 5 min increased differential miRNA regulation, PI uptake, and the expression of genes involved in cell cycle arrest and death. qPCR confirmed that miR-200b-3p and miR-215-5p upregulation contributed to decreased cell viability and migration. Mechanistically, inhibiting miR-200b-3p and miR-215-5p in SK-2 cells enhancedZEB1, PI3K, and AKT expression, increasing cell proliferation and viability. CONCLUSION This study demonstrated that NTP exposure for 5 min results in the differential regulation of miRNAs related to the PI3K-AKT-ZEB1 axis and cell cycle dysregulation to facilitate melanoma suppression.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea; Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
3
|
Alhajlah S, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Mohammed JS, Fenjan MN, Edan RT, Sharma MK, Zwamel AH. Exploring the role of exosomal lncRNA in cancer immunopathogenesis: Unraveling the immune response and EMT pathways. Exp Cell Res 2025; 445:114401. [PMID: 39740727 DOI: 10.1016/j.yexcr.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Exosomes are membrane-bound vesicles secreted by diverse cell types, serving as crucial mediators in intercellular communication and significantly influencing cancer development. Exosomes facilitate complex signaling processes in the tumor microenvironment for immunomodulation, metastasis, angiogenesis, and treatment resistance. Notably, long non-coding RNAs (lncRNAs), a class of non-coding RNAs, engage with mRNA, DNA, proteins, and miRNAs to modulate gene expression through multiple mechanisms, including transcriptional, post-transcriptional, translational, and epigenetic pathways. The quantitative dynamics of exosomal lncRNAs show a consistent variation correlating with cancer progression and metastasis, suggesting their potential utility as biomarkers for cancer diagnosis and prognosis. Additionally, exosomal lncRNAs can yield critical insights into therapeutic responses in patients. The identification of exosomal lncRNAs as indicators for various cancer subtypes presents them not only as prognostic tools but also as promising therapeutic targets. Despite their potential, the precise functions of exosomal lncRNAs in the cancer biology landscape remain inadequately understood. This paper delves into the multifaceted roles of exosomal lncRNAs, particularly in the context of breast cancer, highlighting their promise for therapeutic applications. A thorough comprehension of exosomal lncRNAs is imperative for advancing our knowledge of the underlying mechanisms of breast cancer, ultimately paving the way for the development of more effective treatment strategies for patients.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, 71911, Saudi Arabia; National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India.
| | - Jaafaru Sani Mohammed
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| | - Reem Turki Edan
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | - M K Sharma
- Chaudhary Charan Singh University Meerut, Uttar Pradesh, India.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
4
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
5
|
Papoutsoglou P, Pineau R, Leroux R, Louis C, L'Haridon A, Foretek D, Morillon A, Banales JM, Gilot D, Aubry M, Coulouarn C. TGFβ-induced long non-coding RNA LINC00313 activates Wnt signaling and promotes cholangiocarcinoma. EMBO Rep 2024; 25:1022-1054. [PMID: 38332153 PMCID: PMC10933437 DOI: 10.1038/s44319-024-00075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor β (TGFβ), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFβ signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFβ target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFβ induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.
Collapse
Grants
- Recurrent Funding Institut National de la Santé et de la Recherche Médicale (Inserm)
- Recurrent Funding,PhD felloship Université de Rennes 1 (University of Rennes 1)
- PhD fellowship Conseil Régional de Bretagne (Brittany Council)
- R22026NN,R21011NN Ligue Contre le Cancer (French League Against Cancer)
- R21043NN Fondation ARC pour la Recherche sur le Cancer (ARC)
- C18007NS,C20013NS,C20014NS INCa and ITMO Cancer AVIESAN (Alliance Nationale pour les Sciences de la Vie et de la Santé) dans le cadre du Plan cancer (Non-coding RNA in cancerology: fundamental to translational)
- R21095NN French Ministry of Health and the French National Cancer Institute, PRT-K20-136, CHU Rennes, CLCC Eugene Marquis, Rennes
- FIS PI18/01075,PI21/00922,CPII19/00008 Spanish Carlos III Health Institute (ISCIII) [(FIS PI18/01075, PI21/00922, and Miguel Servet Programme CPII19/00008) cofinanced by "Fondo Europeo de Desarrollo Regional" (FEDER)] and CIBERehd (ISCIII)
- HR17-00601 'la Caixa' Foundation ('la Caixa')
- EU/2019/AMMFt/001 AMMF-The Cholangiocarcinoma Charity
- 06119JB PSC Partners US and PSC Supports UK
- 825510/ESCALON European Union Horizon 2020 Research and Innovation Program
- EU TRANSCAN23-002-2023-129,INCa_18688 Institut National Du Cancer (INCa)
Collapse
Affiliation(s)
- Panagiotis Papoutsoglou
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Raphaël Pineau
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Raffaële Leroux
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Anaïs L'Haridon
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Dominika Foretek
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, CIBERehd, Ikerbasque, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - David Gilot
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, SE-48183, Mölndal, Sweden
| | - Marc Aubry
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France.
| |
Collapse
|
6
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Anbiyaiee A, Ramazii M, Bajestani SS, Meybodi SM, Keivan M, Khoshnam SE, Farzaneh M. The function of LncRNA-ATB in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1-9. [PMID: 35597865 DOI: 10.1007/s12094-022-02848-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023]
Abstract
Cancer as a progressive and complex disease is caused by early chromosomal changes and stimulated cellular transformation. Previous studies reported that long non-coding RNAs (lncRNAs) play pivotal roles in the initiation, maintenance, and progression of cancer cells. LncRNA activated by TGF-β (ATB) has been shown to be dysregulated in different types of cancer. Aberrant expression of lncRNA-ATB plays an important role in the progression of diverse malignancies. High expression of LncRNA-ATB is associated with cancer cell growth, proliferation, metastasis, and EMT. LncRNA-ATB by targeting various signaling pathways and microRNAs (miRNAs) can trigger cancer pathogenesis. Therefore, lncRNA-ATB can be a novel target for cancer prediction and diagnosis. In this review, we will focus on the function of lncRNA-ATB in various types of human cancers.
Collapse
Affiliation(s)
- Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | | | | | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Xiaotan Sanjie Decoction Inhibits Gastric Cancer Cell Proliferation, Migration, and Invasion through lncRNA-ATB and miR-200A. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7029182. [PMID: 36060143 PMCID: PMC9436559 DOI: 10.1155/2022/7029182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
This study is aimed at exploring whether Xiaotan Sanjie decoction (XTSJ) inhibits gastric cancer (GC) proliferation and metastasis by regulating lncRNA-ATB expression. qRT-PCR and Western blot were used to analyze lncRNA-ATB and downstream-regulated genes/proteins in human GC cells. CCK8, Edu, and flow cytometry assays were used to detect the inhibitory effect of XTSJ on cell proliferation and apoptosis. Moreover, transwell and wound healing assays were used to detect the inhibitory effect of XTSJ on migration and invasion. qRT-PCR and Western blot were used to detect regulated genes and proteins levels. The HGC-27 cell line was used for follow-up analysis due to the high level of lncRNA-ATB and cell characteristics. XTSJ inhibited the proliferation and metastasis of HGC-27 in a dose-dependent manner. Further research found that XTSJ downregulated lncRNA-ATB, Vimentin, and N-cadherin, while it upregulated miR-200a and E-cadherin in a dose-dependent manner. XTSJ also upregulated Caspase 3, Caspase 9, Bax, and downregulated Bcl-2. Furthermore, XTSJ inhibited tumor growth in vivo and downregulated EMT signaling pathways. These results indicate that XTSJ may affect EMT and Bcl-2 signaling pathways by regulating lncRNA-ATB and miR-200a, thus inhibiting proliferation, migration, and invasion of HGC-27 cells. Therefore, XTSJ may be an effective treatment for the high levels of lncRNA-ATB in GC.
Collapse
|
9
|
Jo H, Shim K, Jeoung D. Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics. Int J Mol Sci 2022; 23:ijms23115881. [PMID: 35682560 PMCID: PMC9180509 DOI: 10.3390/ijms23115881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that play significant roles in cell proliferation, development, invasion, cancer development, cancer progression, and anti-cancer drug resistance. miRNAs target multiple genes and play diverse roles. miRNAs can bind to the 3′UTR of target genes and inhibit translation or promote the degradation of target genes. miR-200 family miRNAs mostly act as tumor suppressors and are commonly decreased in cancer. The miR-200 family has been reported as a valuable diagnostic and prognostic marker. This review discusses the clinical value of the miR-200 family, focusing on the role of the miR-200 family in the development of cancer and anti-cancer drug resistance. This review also provides an overview of the factors that regulate the expression of the miR-200 family, targets of miR-200 family miRNAs, and the mechanism of anti-cancer drug resistance regulated by the miR-200 family.
Collapse
|
10
|
Long Non-coding RNA FOXD2-AS1 Promotes Proliferation, Migration, and Invasion in Cholangiocarcinoma Through Regulating miR-760/E2F3 Axis. Dig Dis Sci 2022; 67:546-558. [PMID: 33570683 DOI: 10.1007/s10620-021-06876-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) has been testified to influence the initiation and evolution of sundry carcinomas. Recently, lncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) has been found to display vital regulating functions in various cancers. METHODS qRT-PCR was used to verify the dysregulation of FOXD2-AS1 expression in CCA cells and tissues, and the correlation of FOXD2-AS1 expression with clinicopathological characteristics was investigated. The viability, migration, and invasion of CCA cells were verified through CCK-8 assay, colony formation experiment, wound healing assay, and transwell assay. The regulatory networks of FOXD2-AS1 were analyzed by Bioinformatic prediction and dual-luciferase reporter assay. RESULTS We discovered that FOXD2-AS1 was significantly upregulated in CCA and its up-regulation was closely correlated with terminal TNM stage, lymph node metastasis and poor survival in the current research. In addition, it was revealed that FOXD2-AS1 was an independent prognostic factor. Functional tests uncovered that the cell viability, migration, and invasion could be restrained through downregulating the expression of FOXD2-AS1, while FOXD2-AS1 overexpression could facilitate the cell viability, migration, and invasion. Mechanistically, FOXD2-AS1 was founded to interact directly with miR-760 and the oncogene E2F3 was the downstream target of miR-760 through bioinformatic prediction and dual-luciferase reporter assays. Finally, we testified that FOXD2-AS1 could competitively sponge miR-760 and further upregulated the E2F3 expression to play a vital part in cholangiocarcinoma. CONCLUSIONS This research revealed that lncRNA FOXD2-AS1 could enhance CCA malignant progression through regulating the miR-760/E2F3 axis and was expected to be a prognostic biomarker and therapeutic target for cholangiocarcinoma.
Collapse
|
11
|
Luo Z, Hao S, Yuan J, Zhu K, Liu S, Zhang J, Yao L. Long non-coding RNA LINC00958 promotes colorectal cancer progression by enhancing the expression of LEM domain containing 1 via microRNA miR-3064-5p. Bioengineered 2021; 12:8100-8115. [PMID: 34672237 PMCID: PMC8806780 DOI: 10.1080/21655979.2021.1985259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a common cause of cancer-related death worldwide. Thus, there is an urgent need to determine the mechanism of progression of colorectal cancer. In this study, we investigated the function and mechanism of long non-coding RNA LINC00958, providing a new biomarker for colorectal cancer. The expression of LINC00958, miR-3064-5p, and LEM domain containing 1 (LEMD1) in colorectal cancer tissues and cell lines was analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between LINC00958, miR-3064-5p, and LEMD1 was assessed using the luciferase assay. The viability, proliferation, migration, invasion, and apoptosis of colorectal cancer cells with silenced LINC00958, miR-3064-5p, and LEMD1 were investigated using the cell counting kit-8 (CCK-8), 5′-Bromo-2′-deoxyuridine (BrdU), flow cytometry, wound healing, and transwell assays. Phosphorylated phosphoinositide 3-kinase (p-PI3K) and phosphorylated protein kinase B (p-AKT) protein levels were measured by western blotting. LINC00958 and LEMD1 were found to have increased, while the expression of miR-3064-5p was decreased in colorectal cancer tissues and cell lines. Silencing of LINC00958 hampered cell viability, proliferation, migration, and invasion, while enhancing the apoptosis in colorectal cancer cells. Notably, LINC00958 inhibited miR-3064-5p and promoted LEMD1; the miR-3064-5p inhibitor abrogated the effect of LINC00958 silencing in colorectal cancer cells. Additionally, LEMD1 knockdown inhibited the activation of PI3K/AKT signaling. Our analyses have shown that LINC00958 could facilitate the progression of colorectal cancer by sponging miR-3064-5p and releasing LEMD1, leading to the activation of the PI3K/AKT pathway. Thus, LINC00958 may be considered as an effective biomarker for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhaoxia Luo
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shunxin Hao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jian Yuan
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shuo Liu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lei Yao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Xu Q, Cheng D, Liu Y, Pan H, Li G, Li P, Li Y, Sun W, Ma D, Ni C. LncRNA-ATB regulates epithelial-mesenchymal transition progression in pulmonary fibrosis via sponging miR-29b-2-5p and miR-34c-3p. J Cell Mol Med 2021; 25:7294-7306. [PMID: 34180127 PMCID: PMC8335671 DOI: 10.1111/jcmm.16758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of non‐coding RNAs (ncRNAs) has been proved to play pivotal roles in epithelial‐mesenchymal transition (EMT) and fibrosis. We have previously demonstrated the crucial function of long non‐coding RNA (lncRNA) ATB in silica‐induced pulmonary fibrosis‐related EMT progression. However, the underlying molecular mechanism has not been fully elucidated. Here, we verified miR‐29b‐2‐5p and miR‐34c‐3p as two vital downstream targets of lncRNA‐ATB. As opposed to lncRNA‐ATB, a significant reduction of both miR‐29b‐2‐5p and miR‐34c‐3p was observed in lung epithelial cells treated with TGF‐β1 and a murine silicosis model. Overexpression miR‐29b‐2‐5p or miR‐34c‐3p inhibited EMT process and abrogated the pro‐fibrotic effects of lncRNA‐ATB in vitro. Further, the ectopic expression of miR‐29b‐2‐5p and miR‐34c‐3p with chemotherapy attenuated silica‐induced pulmonary fibrosis in vivo. Mechanistically, TGF‐β1‐induced lncRNA‐ATB accelerated EMT as a sponge of miR‐29b‐2‐5p and miR‐34c‐3p and shared miRNA response elements with MEKK2 and NOTCH2, thus relieving these two molecules from miRNA‐mediated translational repression. Interestingly, the co‐transfection of miR‐29b‐2‐5p and miR‐34c‐3p showed a synergistic suppression effect on EMT in vitro. Furthermore, the co‐expression of these two miRNAs by using adeno‐associated virus (AAV) better alleviated silica‐induced fibrogenesis than single miRNA. Approaches aiming at lncRNA‐ATB and its downstream effectors may represent new effective therapeutic strategies in pulmonary fibrosis.
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Demin Cheng
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honghong Pan
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guanru Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenqing Sun
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongyu Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Wen B, Zhu R, Jin H, Zhao K. Differential expression and role of miR-200 family in multiple tumors. Anal Biochem 2021; 626:114243. [PMID: 33964251 DOI: 10.1016/j.ab.2021.114243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 01/02/2023]
Abstract
microRNA (miRNA) can maintain the homeostasis of the human by participating in the regulation of cell proliferation, apoptosis, differentiation, and metabolism. During the entire stage of tumorigenesis, miRNA can maintain the heterogeneity of cancer stem cells by regulating the formation and metastasis of the tumor, which leads to chemotherapy resistance. miR-200 family consists of five members, which can regulate the proliferation, invasion, and migration of cancer cells by inhibiting the transcription of downstream genes (including zinc finger E-box binding homeobox 1 and 2, E-cadherin, N-cadherin, transforming growth factor-β, and cancer stem cell related-proteins). Meanwhile, Long non-coding RNA can bind to miR-200s to regulate the proliferation and apoptosis of cancer cells. Besides, the expression of the miR-200 family can affect the mechanism of chemotherapy resistance.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Rong Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
14
|
Ashrafizadeh M, Shahinozzaman M, Orouei S, Zarrin V, Hushmandi K, Hashemi F, Kumar A, Samarghandian S, Najafi M, Zarrabi A. Crosstalk of long non-coding RNAs and EMT: Searching the missing pieces of an incomplete puzzle for lung cancer therapy. Curr Cancer Drug Targets 2021; 21:640-665. [PMID: 33535952 DOI: 10.2174/1568009621666210203110305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is considered to be the first place among the cancer-related deaths worldwide and demands novel strategies in the treatment of this life-threatening disorder. The aim of this review is to explore regulation of epithelial-to-mesenchymal transition (EMT) by long non-coding RNAs (lncRNAs) in lung cancer. INTRODUCTION LncRNAs can be considered as potential factors for targeting in cancer therapy, since they regulate a bunch of biological processes, e.g. cell proliferation, differentiation and apoptosis. The abnormal expression of lncRNAs occurs in different cancer cells. On the other hand, epithelial-to-mesenchymal transition (EMT) is a critical mechanism participating in migration and metastasis of cancer cells. METHOD Different databases including Googlescholar, Pubmed and Sciencedirect were used for collecting articles using keywords such as "LncRNA", "EMT", and "Lung cancer". RESULT There are tumor-suppressing lncRNAs that can suppress EMT and metastasis of lung cancer cells. Expression of such lncRNAs undergoes down-regulation in lung cancer progression and restoring their expression is of importance in suppressing lung cancer migration. There are tumor-promoting lncRNAs triggering EMT in lung cancer and enhancing their migration. CONCLUSION LncRNAs are potential regulators of EMT in lung cancer, and targeting them, both pharmacologically and genetically, can be of importance in controlling migration of lung cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742. United States
| | - Sima Orouei
- Department of Genetics Science, Tehran Medical Sciences Branch, Islamic Azad University, Tehran. Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541. Korea
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141. Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| |
Collapse
|
15
|
Chen XJ, An N. Long noncoding RNA ATB promotes ovarian cancer tumorigenesis by mediating histone H3 lysine 27 trimethylation through binding to EZH2. J Cell Mol Med 2020; 25:37-46. [PMID: 33336896 PMCID: PMC7810921 DOI: 10.1111/jcmm.15329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies. The unfavourable prognosis is mainly due to the lack of early‐stage diagnosis, drug resistance and recurrence. Therefore, it needs to investigate the mechanism of OC tumorigenesis and identify effective biomarkers for the clinical diagnosis. It is reported that long noncoding RNAs (lncRNAs) play important roles during the tumorigenesis of OC. Therefore, the present study aimed to study the role and clinical significance of LncRNAs ATB (lnc‐ATB) in the development and progression of OC. In our research, lnc‐ATB expression in OC tissues was elevated compared with adjacent normal tissues and high expression of lnc‐ATB was associated with poor outcomes of OC patients. The silencing of lnc‐ATB blocked cell proliferation, invasion and migration in SKOV3 and A2780 cells. RNA immunoprecipitation and RNA pull‐down results showed that lnc‐ATB positively regulated the expression of EZH2 via directly interacting with EZH2. Besides, the overexpression of EZH2 partly rescued lnc‐ATB silencing‐inducing inhibition of cell proliferation, invasion and migration. Chromatin immunoprecipitation assay results demonstrated that the silencing of lnc‐ATB reduced the occupancy of caudal‐related homeobox protein 1, Forkhead box C1, Large tumour suppressor kinase 2, cadherin‐1 and disabled homolog 2 interacting protein promoters on EZH2 and H3K27me3. These data revealed the oncogenic of lnc‐ATB and provided a novel biomarker for OC diagnosis. Furthermore, these findings indicated the mechanism of lnc‐ATB functioning in the progression of OC, which provided a new target for OC therapy.
Collapse
Affiliation(s)
- Xue-Juan Chen
- Department of Gynecology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Na An
- Department of Gynecology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
16
|
Yao X, Huang X, Yang C, Hu A, Zhou G, Lei J, Shu J. A Novel Approach to Assessing Differentiation Degree and Lymph Node Metastasis of Extrahepatic Cholangiocarcinoma: Prediction Using a Radiomics-Based Particle Swarm Optimization and Support Vector Machine Model. JMIR Med Inform 2020; 8:e23578. [PMID: 33016889 PMCID: PMC7573697 DOI: 10.2196/23578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiomics can improve the accuracy of traditional image diagnosis to evaluate extrahepatic cholangiocarcinoma (ECC); however, this is limited by variations across radiologists, subjective evaluation, and restricted data. A radiomics-based particle swarm optimization and support vector machine (PSO-SVM) model may provide a more accurate auxiliary diagnosis for assessing differentiation degree (DD) and lymph node metastasis (LNM) of ECC. OBJECTIVE The objective of our study is to develop a PSO-SVM radiomics model for predicting DD and LNM of ECC. METHODS For this retrospective study, the magnetic resonance imaging (MRI) data of 110 patients with ECC who were diagnosed from January 2011 to October 2019 were used to construct a radiomics prediction model. Radiomics features were extracted from T1-precontrast weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) using MaZda software (version 4.6; Institute of Electronics, Technical University of Lodz). We performed dimension reduction to obtain 30 optimal features of each sequence, respectively. A PSO-SVM radiomics model was developed to predict DD and LNM of ECC by incorporating radiomics features and apparent diffusion coefficient (ADC) values. We randomly divided the 110 cases into a training group (88/110, 80%) and a testing group (22/110, 20%). The performance of the model was evaluated by analyzing the area under the receiver operating characteristic curve (AUC). RESULTS A radiomics model based on PSO-SVM was developed by using 110 patients with ECC. This model produced average AUCs of 0.8905 and 0.8461, respectively, for DD in the training and testing groups of patients with ECC. The average AUCs of the LNM in the training and testing groups of patients with ECC were 0.9036 and 0.8889, respectively. For the 110 patients, this model has high predictive performance. The average accuracy values of the training group and testing group for DD of ECC were 82.6% and 80.9%, respectively; the average accuracy values of the training group and testing group for LNM of ECC were 83.6% and 81.2%, respectively. CONCLUSIONS The MRI-based PSO-SVM radiomics model might be useful for auxiliary clinical diagnosis and decision-making, which has a good potential for clinical application for DD and LNM of ECC.
Collapse
Affiliation(s)
- Xiaopeng Yao
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Xinqiao Huang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Anbin Hu
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Guangjin Zhou
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jianbo Lei
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
- Center for Medical Informatics/Institute of Medical Technology, Peking University, Beijing, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
18
|
LncRNA-ATB in cancers: what do we know so far? Mol Biol Rep 2020; 47:4077-4086. [PMID: 32248383 DOI: 10.1007/s11033-020-05415-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
Abstract
Cancer-related deaths did not apparently decrease in the past decades despite aggressive treatments. It's reported that cancer will become the leading cause of death worldwide in the twenty-first century. Increasing evidence has revealed that lncRNAs will emerge as promising cancer biomarkers or therapeutic targets in cancer treatment. LncRNA-ATB, a long noncoding RNA activated by TGF-β, was found to be abnormally expressed in certain cancers and participate in the development and progression of tumors. In addition, aberrant lncRNA-ATB expression was also associated with clinical characteristics of tumors. The purpose of this review is to summarize functions and underlying mechanisms of lncRNA-ATB in tumors, and discuss whether lncRNA-ATB can be a biomarker and therapeutic target in cancers.
Collapse
|
19
|
Sato K, Glaser S, Alvaro D, Meng F, Francis H, Alpini G. Cholangiocarcinoma: novel therapeutic targets. Expert Opin Ther Targets 2020; 24:345-357. [PMID: 32077341 PMCID: PMC7129482 DOI: 10.1080/14728222.2020.1733528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a liver cancer derived from the biliary tree with a less than 30% five-year survival rate. Early diagnosis of CCA is challenging and treatment options are limited. Some CCA patients have genetic mutations and several therapeutic drugs or antibodies have been introduced to target abnormally expressed proteins. However, CCA is heterogeneous and patients often present with drug resistance which is attributed to multiple mutations or other factors. Novel approaches and methodologies for CCA treatments are in demand.Area covered: This review summarizes current approaches for CCA treatments leading to the development of novel therapeutic drugs or tools for human CCA patients. A literature search was conducted in PubMed utilizing the combination of the searched term 'cholangiocarcinoma' with other keywords such as 'miRNA', 'FGFR', 'immunotherapy' or 'microenvironment'. Papers published within 2015-2019 were obtained for reading.Expert opinion: Preclinical studies have demonstrated promising therapeutic approaches that target various cells or pathways. Recent studies have revealed that hepatic cells coordinate to promote CCA tumor progression in the tumor microenvironment, which may be a new therapeutic target. Although further studies are required, novel therapeutic tools such as extracellular vesicles could be utilized to manage CCA and its microenvironment.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, Texas
| | - Domenico Alvaro
- Gastroenterology, Medicine, Università Sapienza, Rome, Italy
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
20
|
Diagnostic, Prognostic, and Therapeutic Value of Non-Coding RNA Expression Profiles in Renal Transplantation. Diagnostics (Basel) 2020; 10:diagnostics10020060. [PMID: 31978997 PMCID: PMC7168890 DOI: 10.3390/diagnostics10020060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
End-stage renal disease is a public health problem responsible for millions of deaths worldwide each year. Although transplantation is the preferred treatment for patients in need of renal replacement therapy, long-term allograft survival remains challenging. Advances in high-throughput methods for large-scale molecular data generation and computational analysis are promising to overcome the current limitations posed by conventional diagnostic and disease classifications post-transplantation. Non-coding RNAs (ncRNAs) are RNA molecules that, despite lacking protein-coding potential, are essential in the regulation of epigenetic, transcriptional, and post-translational mechanisms involved in both health and disease. A large body of evidence suggests that ncRNAs can act as biomarkers of renal injury and graft loss after transplantation. Hence, the focus of this review is to discuss the existing molecular signatures of non-coding transcripts and their value to improve diagnosis, predict the risk of rejection, and guide therapeutic choices post-transplantation.
Collapse
|