1
|
Wang L, Liu X, Lv H, Zhang H, Lin R, Xu S, Zhang C, Lou S, Qiu Z, Sun C, Cui N. Research Progress on Natural Products That Regulate miRNAs in the Treatment of Osteosarcoma. BIOLOGY 2025; 14:61. [PMID: 39857292 PMCID: PMC11759184 DOI: 10.3390/biology14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
miRNAs are small non-coding RNA molecules that play critical roles in the regulation of gene expression and have been closely associated with various diseases, including cancer. These molecules significantly influence the cell cycle of tumor cells and control programmed cell death (apoptosis). Currently, research on miRNAs has become a major focus in developing cancer therapies. Osteosarcoma, a malignant neoplasm predominantly occurring during adolescence and later in life, is characterized by a high propensity for metastasis. This review explores the role of miRNAs in the initiation and progression of cancer, highlighting their potential as predictive biomarkers for disease. It discusses the mechanisms by which natural products modulate miRNA activity to influence apoptosis, ferroptosis, and autophagy in osteosarcoma cells, aiming to identify new strategies for osteosarcoma treatment. Recent studies on how natural products regulate miRNAs to reduce tumor cell resistance to chemotherapy are also reviewed. Furthermore, the review elaborates on how natural products regulate m6A modifications to influence miRNA expression, thereby exerting antitumor effects. In this process, interactions between m6A modifications and miRNAs have been identified, with both jointly influencing tumorigenesis and cancer progression, offering a new perspective in osteosarcoma treatment. These approaches could help uncover novel regulatory mechanisms in osteosarcoma pathways and provide a theoretical foundation for developing new drugs and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Xinyu Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Haoze Lv
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Han Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Rimei Lin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Shan Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Chaojing Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Shilei Lou
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Cong Sun
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Ning Cui
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
2
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
3
|
Liao M, Qin M, Liu L, Huang H, Chen N, Du H, Huang D, Wang P, Zhou H, Tong G. Exosomal microRNA profiling revealed enhanced autophagy suppression and anti-tumor effects of a combination of compound Phyllanthus urinaria and lenvatinib in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155091. [PMID: 37844378 DOI: 10.1016/j.phymed.2023.155091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Compound Phyllanthus urinaria (CP), a traditional Chinese herbal remedy, possesses strong anti-cancer effects and is extensively employed in the clinical management of hepatocellular carcinoma (HCC). While lenvatinib and other oral tyrosine kinase inhibitors have been authorized as initial treatments for advanced unresectable HCC, the survival of patients is ultimately restricted due to the gradual development of drug resistance. Fortunately, the co-administration of CP and lenvatinib holds promise for anti-cancer applications. PURPOSE Our objective was to understand the molecular-level mechanisms of bioactive phytocompounds in CP, in order to explore the anti-HCC effects of combining CP and lenvatinib treatment and reveal the underlying mechanisms. Furthermore, we discovered new miRNAs associated with autophagy that are common to both HepG2-derived exosomes and HepG2 cells. These miRNAs play a role in the advancement of HCC and were identified through the utilization of CP and lenvatinib. METHODS To assess the anti-HCC effects of CP in combination with lenvatinib, both an in vitro CCK-8 assay and an in vivo xenograft model assay were performed. TEM, NTA, and nano-flow cytometry were employed for the identification of isolated exosomes. To ascertain the miRNA expression patterns in HepG2 cells and HepG2-derived exosomes, miRNA-sequencing analysis was conducted. Further investigation involved the use of real-time PCR, examination of the fusion protein GFP-mRFP-LC3, TEM analysis, and western blotting. RESULTS In vitro and in vivo, the combination of CP and lenvatinib showed a stronger and more powerful impact on HCC compared to either CP or lenvatinib alone. The combination of CP and lenvatinib had a significant impact on autophagy-related miRNAs in HepG2-derived exosomes and HepG2 cells, as demonstrated by cellular and exosomal miRNA sequencing. Additional tests indicated that the increased inhibition of autophagy in HepG2 cells subjected to CP treatment, as well as the combination of CP and lenvatinib, was accomplished through the regulation of Beclin-1, LC3-II, and P62 expression. CONCLUSION In conclusion, our results indicate that the combination of CP and lenvatinib can effectively inhibit HCC by promoting the exosome-mediated suppression of autophagy. This novel therapeutic option is highly efficient and durable, making it a promising treatment for HCC. Moreover, the miRNAs that are differentially expressed and associated with exosome-mediated autophagy, which have been discovered in this study, could potentially be targeted for clinical treatment of HCC.
Collapse
Affiliation(s)
- Mianmian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, No. 28, The second Gaoxin Road, Nanshan District, Shenzhen, Guangdong 518000, China
| | - Linhua Liu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Houshuang Huang
- Shenzhen Institute for Drug Control, No. 28, The second Gaoxin Road, Nanshan District, Shenzhen, Guangdong 518000, China
| | - Ning Chen
- Shenzhen Institute for Drug Control, No. 28, The second Gaoxin Road, Nanshan District, Shenzhen, Guangdong 518000, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Danping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China; Department of Integrated Traditional Chinese and Western Medicine, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, No. 28, The second Gaoxin Road, Nanshan District, Shenzhen, Guangdong 518000, China.
| | - Hua Zhou
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune, Disease Research, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| | - Guangdong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
4
|
Ji Y, Liu J, Zhu W, Ji J. circ_0002060 Enhances Doxorubicin Resistance in Osteosarcoma by Regulating the miR-198/ABCB1 Axis. Cancer Biother Radiopharm 2023; 38:585-595. [PMID: 33351694 DOI: 10.1089/cbr.2020.4240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Osteosarcoma (OS) is a common, aggressive primary sarcoma of bone. Drug resistance is a huge obstacle to chemotherapy for cancer. This study aimed to investigate the role and mechanism of circ_0002060 in OS resistance to doxorubicin (DOX). Methods: The levels of circ_0002060, miR-198, and ATP-binding cassette subfamily B member 1 (ABCB1) in OS tissues and DOX-resistant OS cells were measured by quantitative real-time polymerase chain reaction or Western blot assay. Kaplan-Meier analysis was performed to determine the relationship between circ_0002060 expression in OS tissues and overall survival of OS patients. The half-inhibitory concentration (IC50) of DOX was calculated using the Cell Counting Kit-8 (CCK-8) assay. Proliferation and apoptosis of DOX-resistant OS cells were assessed by colony formation assay and flow cytometry. The levels of apoptosis-related proteins in DOX-resistant OS cells were measured by Western blot assay. Xenograft assay was utilized to analyze the effect of circ_0002060 on DOX resistance in vivo. The interactions among circ_0002060, miR-198, and ABCB1 in DOX-resistant OS cells were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation assay, or RNA pull-down assay. Results: circ_0002060 and ABCB1 were upregulated, while miR-198 was downregulated in OS tissues and DOX-resistant OS cells. circ_0002060 silencing reduced DOX resistance in vitro and in vivo. Moreover, circ_0002060 enhanced DOX resistance by sponging miR-198. Besides, miR-198 decreased DOX resistance by binding to ABCB1. In addition, circ_0002060 sponged miR-198 to upregulate ABCB1 expression. Conclusions: circ_0002060 promoted DOX resistance and OS progression by regulating the miR-198/ABCB1 axis, suggesting that circ_0002060 might be a promising biomarker for OS therapy.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Jun Liu
- Department of Traumatology and Orthopaedics II Ward, Weifang People's Hospital, Weifang, China
| | - Wenshuai Zhu
- Department of Traumatology and Orthopaedics II Ward, Weifang People's Hospital, Weifang, China
| | - Jianqin Ji
- Department of Traumatology and Orthopaedics II Ward, Weifang People's Hospital, Weifang, China
| |
Collapse
|
5
|
Almansa-Gómez S, Prieto-Ruiz F, Cansado J, Madrid M. Autophagy Modulation as a Potential Therapeutic Strategy in Osteosarcoma: Current Insights and Future Perspectives. Int J Mol Sci 2023; 24:13827. [PMID: 37762129 PMCID: PMC10531374 DOI: 10.3390/ijms241813827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy, the process that enables the recycling and degradation of cellular components, is essential for homeostasis, which occurs in response to various types of stress. Autophagy plays an important role in the genesis and evolution of osteosarcoma (OS). The conventional treatment of OS has limitations and is not always effective at controlling the disease. Therefore, numerous researchers have analyzed how controlling autophagy could be used as a treatment or strategy to reverse resistance to therapy in OS. They highlight how the inhibition of autophagy improves the efficacy of chemotherapeutic treatments and how the promotion of autophagy could prove positive in OS therapy. The modulation of autophagy can also be directed against OS stem cells, improving treatment efficacy and preventing cancer recurrence. Despite promising findings, future studies are needed to elucidate the molecular mechanisms of autophagy and its relationship to OS, as well as the mechanisms underlying the functioning of autophagic modulators. Careful evaluation is required as autophagy modulation may have adverse effects on normal cells, and the optimization of autophagic modulators for use as drugs in OS is imperative.
Collapse
Affiliation(s)
| | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| |
Collapse
|
6
|
Xie W, Li S, Guo H, Zhang J, Tu M, Wang R, Lin B, Wu Y, Wang X. Androgen receptor knockdown enhances prostate cancer chemosensitivity by down-regulating FEN1 through the ERK/ELK1 signalling pathway. Cancer Med 2023; 12:15317-15336. [PMID: 37326412 PMCID: PMC10417077 DOI: 10.1002/cam4.6188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Flap endonuclease 1 (FEN1) is highly upregulated in prostate cancer and promotes the growth of prostate cancer cells. Androgen receptor (AR) is the most critical determinant of the occurrence, progression, metastasis, and treatment of prostate cancer. However, the effect of FEN1 on docetaxel (DTX) sensitivity and the regulatory mechanisms of AR on FEN1 expression in prostate cancer need to be further studied. METHODS Bioinformatics analyses were performed using data from the Cancer Genome Atlas and the Gene Expression Omnibus. Prostate cancer cell lines 22Rv1 and LNCaP were used. FEN1 siRNA, FEN1 overexpression plasmid, and AR siRNA were transfected into cells. Biomarker expression was evaluated by immunohistochemistry and Western blotting. Apoptosis and the cell cycle were explored using flow cytometry analysis. Luciferase reporter assay was performed to verify the target relationship. Xenograft assays were conducted using 22Rv1 cells to evaluate the in vivo conclusions. RESULTS Overexpression of FEN1 inhibited cell apoptosis and cell cycle arrest in the S phase induced by DTX. AR knockdown enhanced DTX-induced cell apoptosis and cell cycle arrest at the S phase in prostate cancer cells, which was attenuated by FEN1 overexpression. In vivo experiments showed that overexpression of FEN1 significantly increased tumour growth and weakened the inhibitory effect of DTX on prostate tumour growth, while AR knockdown enhance the sensitivity of DTX to prostate tumour. AR knockdown resulted in FEN1, pho-ERK1/2, and pho-ELK1 downregulation, and the luciferase reporter assay confirmed that ELK1 can regulate the transcription of FEN1. CONCLUSION Collectively, our studies demonstrate that AR knockdown improves the DTX sensitivity of prostate cancer cells by downregulating FEN1 through the ERK/ELK1 signalling pathway.
Collapse
Affiliation(s)
- Weijie Xie
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Shulin Li
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
- Department of UrologyAffiliated Hospital of Guangdong Medical UniversityGuangdong ProvinceZhanjiangPeople's Republic of China
| | - Huan Guo
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Jiawei Zhang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Menjiang Tu
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Rui Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Bingling Lin
- Department of RadiologyPeking University Shenzhen HospitalShenzhenPeople's Republic of China
| | - Yuqi Wu
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Xiangwei Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
- Department of UrologyAffiliated Hospital of Guangdong Medical UniversityGuangdong ProvinceZhanjiangPeople's Republic of China
| |
Collapse
|
7
|
Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response. Pharmacol Res 2023; 189:106695. [PMID: 36780958 DOI: 10.1016/j.phrs.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.
Collapse
|
8
|
Suwei D, Yanbin X, Jianqiang W, Xiang M, Zhuohui P, Jianping K, Yunqing W, Zhen L. Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis. Cell Mol Biol Lett 2022; 27:48. [PMID: 35705923 PMCID: PMC9199130 DOI: 10.1186/s11658-022-00353-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most lethal skin cancer characterized by its high metastatic potential. It is urgent to find novel therapy strategies to overcome this feature. Metformin has been confirmed to suppress invasion and migration of various types of cancer. However, additional mechanisms underlying the antimetastatic effect of metformin on melanoma require further investigation. Here, we performed microarray analysis and uncovered an altered mRNA and miRNA expression profile between melanoma and nevus. Luciferase reporter assay confirmed that miR-5100 targets SPINK5 to activate STAT3 phosphorylation. Migration and wound healing assays showed that the miR-5100/SPINK5/STAT3 axis promotes melanoma cell metastasis; the mechanism was proven by initiation of epithelial–mesenchymal transition. Co-immunoprecipitation (Co-IP) further confirmed an indirect interaction between SPINK5 and STAT3. Furthermore, metformin dramatically inhibited miR-5100/SPINK5/STAT3 pathway, and decreased B16-F10 cell metastasis to lung in C57 mouse module. Intriguingly, pretreatment of metformin before melanoma cell injection improved this effect further. These findings exposed the underlying mechanisms of action of metformin and update the use of this drug to prevent metastasis in melanoma.
Collapse
Affiliation(s)
- Dong Suwei
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Xiao Yanbin
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Wang Jianqiang
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Ma Xiang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Peng Zhuohui
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Kang Jianping
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Wang Yunqing
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Li Zhen
- Department of Medical Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| |
Collapse
|
9
|
Qi S, Xu L, Han Y, Chen H, Cheng A. miR-29a-3p mitigates the development of osteosarcoma through modulating IGF1 mediated PI3k/Akt/FOXO3 pathway by activating autophagy. Cell Cycle 2022; 21:1980-1995. [PMID: 35575588 DOI: 10.1080/15384101.2022.2078614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Osteosarcoma (OS), occurring in mesenchymal tissues and with a high degree of malignancy, is most common in children and adolescents. At present, we intend to figure out the expression and functions of miR-29a-3p in OS development. Reverse transcription-polymerase chain reaction (RT-PCR) was adopted to monitor the expression of miR-29a-3p and IGF1 in OS tissues and adjacent non-tumor tissues. Then, the 3- (4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, colony formation experiment, western blot and Transwell assay were conducted to validate OS cell proliferation, colony formation ability, apoptosis, migration and invasion. Next, the association between miR-29a-3p and IGF1 was corroborated by the dual-luciferase reporter assay and the Pearson correlation analysis. Finally, WB was implemented to test the levels of autophagy-related proteins LC3-I/LC3-II, Beclin-1, p62, and the IGF-1R/PI3k/Akt/FOXO3 axis in OS cells. As a result, miR-29a-3p was down-regulated in OS tissues (versus adjacent non-tumor tissues) and OS cell lines. Overexpressing miR-29a-3p aggravated apoptosis, dampened cell proliferation, colony formation, migration and invasion, and promoted autophagy of OS cells. IGF1 was identified as a target of miR-29a-3p. IGF1 induced oncogenic effects in OS by activating IGF-1R/ PI3k/Akt pathway, and it dampened the tumor-suppressive effect of miR-29a-3p on OS. Taken together, miR-29a-3p repressed the OS evolvement through inducing autophagy and inhibiting IGF1 mediated PI3k/Akt/FOXO3 pathway.
Collapse
Affiliation(s)
- Song Qi
- Department of Trauma Surgery, Wuhan No 1 Hospital, Wuhan 430022, Hubei, China
| | - Li Xu
- Department of Trauma Surgery, Wuhan No 1 Hospital, Wuhan 430022, Hubei, China
| | - Yongyuan Han
- Orthopedics Department I, Zaozhuang Chinese Medicine Hospital, Zaozhuang 277000, Shandong, China
| | - Hongkun Chen
- Pediatric Surgery, Zaozhuang Municipal Hospital, Zaozhuang 277102, Shandong, China
| | - Anyuan Cheng
- Department of Trauma Surgery, Wuhan No 1 Hospital, Wuhan 430022, Hubei, China
| |
Collapse
|
10
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
ZHANG L, CHEN B, GUAN P, ZHANG Z. Serum level of miR-217 predicts prognostic outcome for osteosarcoma patients in China. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Liu Y, Guo W, Fang S, He B, Li X, Fan L. miR-1270 enhances the proliferation, migration, and invasion of osteosarcoma <em>via</em> targeting cingulin. Eur J Histochem 2021; 65. [PMID: 34873899 PMCID: PMC8678625 DOI: 10.4081/ejh.2021.3237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Osteosarcoma (OS), characterized by high morbidity and mortality, is the most common bone malignancy worldwide. MicroRNAs (miRNAs) play a crucial role in the initiation and development of OS. The purpose of this study was to investigate the roles of miR-1270 in OS. RT-qPCR and Western blot were applied to detect the mRNA and protein level, respectively. CCK-8, colony formation, and TUNEL assays were conducted to determine the cell viability, proliferation, and apoptosis of OS cells. Wound healing and transwell assay were performed to detect the migration and invasion ability of OS cells. Bioinformatics analysis and dual-luciferase reporter assay were used to predict the target genes of miR-1270. Tumor xenograft in vivo assay was carried out to determine miR-1270 effect on the tumor size, volume, and weight. In this study, miR-1270 was overexpressed in OS tissues and cells. However, miR-1270 knockdown inhibited the proliferation, migration and invasion, and promoted the OS cells’ apoptosis. Mechanistically, cingulin (CGN) was predicted and proved to be a target of miR-1270 and partially alleviated the effects of miR-1270 on the proliferation, migration and invasion ability of OS cells. Taken together, knockdown of miR-1270 may inhibit the development of OS via targeting CGN. This finding may provide a novel therapeutic strategy for OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Shuo Fang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Bin He
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Xiaohai Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| | - Li Fan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan.
| |
Collapse
|
14
|
Xiang B, Li Y, Li J, Li J, Jiang H, Zhang Q. MiR-19 3b regulated the formation of coat colors by targeting WNT10A and GNAI2 in Cashmere goats. Anim Biotechnol 2021:1-9. [PMID: 34747678 DOI: 10.1080/10495398.2021.1998089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MiRNAs as a series of small noncoding RNAs that play a crucial part in regulating coat color and hair follicle development. In the previous Solexa sequencing experiments, there were many miRNAs expressed differentially in alpacas with different coat color, including miR-193b.But the mechanism of miR-193b in mammalian pigmentation is still unknown. In this study, bioinformatics analysis showed that WNT10A and GNAI2 might be the target genes of miR-193b. qRT-PCR showed the expression of miR-193b in white Cashmere goats' skins was obviously lower than that in browns, and the expression of WNT10A and GNAI2 were similar with miR-193b. The protein levels of WNT10A and GNAI2 indicated the same findings. Furthermore, the expression of WNT10A and GNAI2 in keratinocytes were analyzed from mRNA and protein levels, the results manifested that the group of overexpression of miR-193b in HaCaT cells increased the expressions of target genes, and miR-193b inhibition group reduced expressions. Luciferase report assays confirmed that the targeting relationship between miR-193b and target genes (WNT10A and GNAI2), the results showed that miR-193b was positively correlated with target genes. These experimental data showed that miR-193b might participate in adjustment of coat color in skin tissue of Cashmere goat by targeting WNT10A and GNAI2.
Collapse
Affiliation(s)
- Ba Xiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Jianyu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - HuaiZhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - QiaoLing Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
15
|
Zhong G, Wang Y, Wei H, Chen M, Lin H, Huang Z, Huang J, Wang S, Lin J. The Clinical Significance of the Expression of FEN1 in Primary Osteosarcoma. Int J Gen Med 2021; 14:6477-6485. [PMID: 34675615 PMCID: PMC8504935 DOI: 10.2147/ijgm.s335817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The aim of this research was to investigate the clinical significance of the expression of flap structure-specific endonuclease 1 (FEN1) in primary osteosarcoma. METHODS The expression of FEN1 was detected by immunohistochemistry analysis. The association of the expression of FEN1 in osteosarcoma with clinicopathological parameters was analyzed by using χ 2 test or Fisher's exact test. Survival analyses were performed by Kaplan-Meier method and Cox proportional hazards regression model. RESULTS Of the 40 osteosarcoma patients, 19 (47.5%) patients presented with FEN1 high expression, while in the non-neoplastic bone specimens, the FEN1 high expression was observed in 10% (3/30), the positive expression rate in osteosarcoma patients was significantly higher than that of non-neoplastic bone specimens (P< 0.01). Univariate analysis indicated that the progression-free survival (PFS) and overall survival (OS) were correlated with the expression level of FEN1 (PFS, P < 0.001; OS, P = 0.002), Enneking staging (PFS, P = 0.026; OS, P = 0.044) and chemotherapy response (PFS, P = 0.019; OS, P = 0.031). Multivariate analysis demonstrated that FEN1 expression was an independent prognostic factor for the PFS (HR = 4.73, P = 0.002) and OS (HR = 4.01, P = 0.038) of osteosarcoma patients. CONCLUSION This study showed that FEN1 was overexpressed in osteosarcoma patients and positively associated with poor prognosis of osteosarcoma patients. Further studies should focus on the relative mechanisms and the targeted FEN1 therapies for osteosarcoma.
Collapse
Affiliation(s)
- Guangxian Zhong
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Yunqing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Hongxiang Wei
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Meifang Chen
- The Health Management Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Huangfeng Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Zhen Huang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Jinlong Huang
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Shenglin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Jianhua Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| |
Collapse
|
16
|
A bibliometric analysis of researches on flap endonuclease 1 from 2005 to 2019. BMC Cancer 2021; 21:374. [PMID: 33827468 PMCID: PMC8028219 DOI: 10.1186/s12885-021-08101-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background Flap endonuclease 1 (FEN1) is a structure-specific nuclease that plays a role in a variety of DNA metabolism processes. FEN1 is important for maintaining genomic stability and regulating cell growth and development. It is associated with the occurrence and development of several diseases, especially cancers. There is a lack of systematic bibliometric analyses focusing on research trends and knowledge structures related to FEN1. Purpose To analyze hotspots, the current state and research frontiers performed for FEN1 over the past 15 years. Methods Publications were retrieved from the Web of Science Core Collection (WoSCC) database, analyzing publication dates ranging from 2005 to 2019. VOSviewer1.6.15 and Citespace5.7 R1 were used to perform a bibliometric analysis in terms of countries, institutions, authors, journals and research areas related to FEN1. A total of 421 publications were included in this analysis. Results Our findings indicated that FEN1 has received more attention and interest from researchers in the past 15 years. Institutes in the United States, specifically the Beckman Research Institute of City of Hope published the most research related to FEN1. Shen BH, Zheng L and Bambara Ra were the most active researchers investigating this endonuclease and most of this research was published in the Journal of Biological Chemistry. The main scientific areas of FEN1 were related to biochemistry, molecular biology, cell biology, genetics and oncology. Research hotspots included biological activities, DNA metabolism mechanisms, protein-protein interactions and gene mutations. Research frontiers included oxidative stress, phosphorylation and tumor progression and treatment. Conclusion This bibliometric study may aid researchers in the understanding of the knowledge base and research frontiers associated with FEN1. In addition, emerging hotspots for research can be used as the subjects of future studies.
Collapse
|
17
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. DNA damage response and repair in osteosarcoma: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2021; 102:103105. [PMID: 33836418 DOI: 10.1016/j.dnarep.2021.103105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents which has the survival rate of 20% in its advanced stages. Osteosarcomas are mostly resistance to our common treatments. DNA damage response (DDR) is a specialized multistep process containing abundant proteins which are necessary for the survival of any cell and organism. DDR machinery detects a diversity of DNA lesions and inhibits the cell cycle progression if these lesions are not repairable. DDR is involved in aging, age-related diseases, and cancer. In recent years, DDR inhibitors have gained the attention of researches due to their potentials in offering novel therapeutic targets and improving the response of many cancers to either chemo- or radio-therapy. In this regard, we tried to gather a great body of evidence about the role of DDR ingredients in osteosarcoma's initiation/progression, prognosis, and treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Cheng C, Seen D, Zheng C, Zeng R, Li E. Role of Small GTPase RhoA in DNA Damage Response. Biomolecules 2021; 11:212. [PMID: 33546351 PMCID: PMC7913530 DOI: 10.3390/biom11020212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has suggested a role of the small GTPase Ras homolog gene family member A (RhoA) in DNA damage response (DDR) in addition to its traditional function of regulating cell morphology. In DDR, 2 key components of DNA repair, ataxia telangiectasia-mutated (ATM) and flap structure-specific endonuclease 1 (FEN1), along with intracellular reactive oxygen species (ROS) have been shown to regulate RhoA activation. In addition, Rho-specific guanine exchange factors (GEFs), neuroepithelial transforming gene 1 (Net1) and epithelial cell transforming sequence 2 (Ect2), have specific functions in DDR, and they also participate in Ras-related C3 botulinum toxin substrate 1 (Rac1)/RhoA interaction, a process which is largely unappreciated yet possibly of significance in DDR. Downstream of RhoA, current evidence has highlighted its role in mediating cell cycle arrest, which is an important step in DNA repair. Unraveling the mechanism by which RhoA modulates DDR may provide more insight into DDR itself and may aid in the future development of cancer therapies.
Collapse
Affiliation(s)
| | | | | | | | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515031, Guangdong, China; (C.C.); (D.S.); (C.Z.); (R.Z.)
| |
Collapse
|
19
|
Xu L, Shen JM, Qu JL, Song N, Che XF, Hou KZ, Shi J, Zhao L, Shi S, Liu YP, Qu XJ, Teng YE. FEN1 is a prognostic biomarker for ER+ breast cancer and associated with tamoxifen resistance through the ERα/cyclin D1/Rb axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:258. [PMID: 33708885 PMCID: PMC7940940 DOI: 10.21037/atm-20-3068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Tamoxifen is an important choice in endocrine therapy for patients with oestrogen receptor-positive (ER+) breast cancer, and disease progression-associated resistance to tamoxifen therapy is still challenging. Flap endonuclease-1 (FEN1) is used as a prognostic biomarker and is considered to participate in proliferation, migration, and drug resistance in multiple cancers, especially breast cancer, but the prognostic function of FEN1 in ER+ breast cancer, and whether FEN1 is related to tamoxifen resistance or not, remain to be explored. Methods On-line database Kaplan-Meier (KM) plotter, GEO datasets, and immunohistochemistry were used to analyse the prognostic value of FEN1 in ER+ breast cancer from mRNA and protein levels. Cell viability assay and colony formation assays showed the response of tamoxifen in MCF-7 and T47D cells. Microarray data with FEN1 siRNA versus control group in MCF-7 cells were analysed by Gene Set Enrichment Analysis (GSEA). The protein levels downstream of FEN1 were detected by western blot assay. Results ER+ breast cancer patients who received tamoxifen for adjuvant endocrine therapy with poor prognosis showed a high expression of FEN1. MCF-7 and T47D appeared resistant to tamoxifen after FEN1 over-expression and increased sensitivity to tamoxifen after FEN1 knockdown. Importantly, FEN1 over-expression could activate tamoxifen resistance through the ERα/cyclin D1/Rb axis. Conclusions As a biomarker of tamoxifen effectiveness, FEN1 participates in tamoxifen resistance through ERα/cyclin D1/Rb axis. In the future, reversing tamoxifen resistance by knocking-down FEN1 or by way of action as a small molecular inhibitor of FEN1 warrants further investigation.
Collapse
Affiliation(s)
- Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Ji-Ming Shen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Jing-Lei Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Xiao-Fang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Ke-Zuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Jing Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Lei Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Yun-Peng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Yue-E Teng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
MiR-193b enhanced proliferation and migration and inhibits apoptosis through targeting RAB7A in osteosarcoma cell. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00111-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Ashrafizadeh M, Zarrabi A, Orouei S, Kiavash Hushmandi, Hakimi A, Amirhossein Zabolian, Daneshi S, Samarghandian S, Baradaran B, Najafi M. MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. Eur J Pharmacol 2020; 892:173660. [PMID: 33310181 DOI: 10.1016/j.ejphar.2020.173660] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Chemoresistance has doubled the effort needed to reach an effective treatment for cancer. Now, scientists should consider molecular pathways and mechanisms involved in chemoresistance to overcome cancer. Autophagy is a "self-digestion" mechanism in which potentially toxic and aged organelles and macromolecules are degraded. Increasing evidence has shown that autophagy possesses dual role in cancer cells (onco-suppressor or oncogene). So, it is vital to identify its role in cancer progression and malignancy. MicroRNAs (miRs) are epigenetic factors capable of modulation of autophagy in cancer cells. In the current review, we emphasize on the relationship between miRs and autophagy in cancer chemotherapy. Besides, we discuss upstream mediators of miR/autophagy axis in cancer chemotherapy including long non-coding RNAs, circular RNAs, Nrf2 c-Myc, and HIF-1α. At the final section, we provide a discussion about how anti-tumor compounds affect miR/autophagy axis in ensuring chemosensitivity. These topics are described in this review to show how autophagy inhibition/induction can lead to chemosensitivity/chemoresistance, and miRs are considered as key players in these discussions.
Collapse
Affiliation(s)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azadeh Hakimi
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
22
|
Wang S, Li MY, Liu Y, Vlantis AC, Chan JY, Xue L, Hu BG, Yang S, Chen MX, Zhou S, Guo W, Zeng X, Qiu S, van Hasselt CA, Tong MC, Chen GG. The role of microRNA in cisplatin resistance or sensitivity. Expert Opin Ther Targets 2020; 24:885-897. [PMID: 32559147 DOI: 10.1080/14728222.2020.1785431] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cisplatin is a chemotherapy drug that has been used to treat a number of cancers for decades, and is still one of the most commonly used anti-cancer agents. However, some patients do not respond to cisplatin while other patients who were originally sensitive to cisplatin eventually develop chemoresistance, leading to treatment failure or/and tumor recurrence. AREAS COVERED Different mechanisms contribute to cisplatin resistance or sensitivity, involving multiple pathways or/and processes such as DNA repair, DNA damage response, drug transport, and apoptosis. Among the various mechanisms, it appears that microRNAs play an important role in determining the resistance or sensitivity. In this article, we analyzed and summarized recent findings in this area, with the aim that these data can aid further research and understanding, leading to the eventual reduction of cisplatin resistance. EXPERT COMMENTARY microRNAs can positively or negatively regulate cisplatin resistance by acting on molecules or/and pathways related to apoptosis, autophagy, hypoxia, cancer stem cells, NF-κB, and Notch1. It appears that the modulation of relevant microRNAs can effectively re-sensitize cancer cells to cisplatin regimen in certain types of cancers including breast, colorectal, gastric, liver, lung, ovarian, prostate, testicular, and thyroid cancers.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong, Pharmaceutical University , Guangzhou, China.,Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital , Hong Kong, China
| | - Yi Liu
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital , Hong Kong, China
| | - Alexander C Vlantis
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Jason Yk Chan
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Lingbin Xue
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China
| | - Bao-Guang Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Binzhou Medical University , Binzhou, Shenzhen, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen , Shenzhen, Guangdong, China
| | - Mo-Xian Chen
- Division of Gastroenterology, Shenzhen Children's Hospital , Shenzhen, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital , Shenzhen, China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., LTD , Shenzhen, Guangdong, China
| | - Xianhai Zeng
- DShenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital , Shandong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Shuqi Qiu
- DShenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital , Shandong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - C Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Michael Cf Tong
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| |
Collapse
|
23
|
Huang W, Tang H, Wen F, Lu X, Li Q, Shu P. Jianpi-yangwei decoction inhibits DNA damage repair in the drug resistance of gastric cancer by reducing FEN1 expression. BMC Complement Med Ther 2020; 20:196. [PMID: 32586310 PMCID: PMC7318551 DOI: 10.1186/s12906-020-02983-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background Flap Endonuclease 1(FEN1) has been considered as a new tumor marker in recent years and Jianpi Yangwei Decoction (JPYW) is a basic Traditional Chinese Medicine (TCM) for the treatment of gastric cancer. This study aimed to explore the role of FEN1-mediated DNA damage repair in the drug resistance of gastric cancer and the effect of JPYW on it by employing BGC823/5-Fu drug-resistant cell model. Methods The DNA repair efficiency of BGC823 and BGC823/5-Fu was compared intracellularly and extracellularly using an extrachromosomal assay system and the reconstituted base excision repair assay. By comparing gene and protein expression and identifying cell survival rates after knockdown or high expression of FEN1, the correlation between FEN1 high expression and 5-Fluorouracil (5-Fu) drug resistance was revealed. The effect of JPYW on DNA damage repair and FEN1 expression was observed by the degree of γ-H2AX phosphorylation in the cells, DNA repair efficiency and enzyme activity, et al. Results BGC823/5-Fu had a higher DNA repair efficiency than BGC823(P < 0.001), which proved to be both intracellular and extracellular. FEN1 was highly expressed in BGC823/5-Fu regardless of gene level(P < 0.001) or protein level. Furthermore, manipulating FEN1 altered the sensitivity of cancer cells to chemotherapeutic drug 5-Fu. Different concentrations of JPYW were used to investigate the inhibitory effect on the expression of FEN1 and DNA damage repair. JPYW inhibited DNA damage repair both intracellularly and extracellularly: the phosphorylation of γ-H2AX increased, with more DNA damage in the cells; the synthetic 8-oxo dG damage repair was reduced; and the ability of cell lysates to repair DNA damage decreased. The decrease of FEN1 expression in BGC823/5-Fu had a concentration dependent relationship with JYPW. In addition, JPYW inhibited the activity of FEN1 at the enzymatic level, as the amount of cut-off synthetic 32p labeled DNA substrates were decreased. Conclusion FEN1 was highly expressed in drug-resistance gastric cancer cells BGC823/5-Fu, which leading to BGC823 resistant to (5-Fu) by acting on DNA damage repair. JPYW inhibited DNA damage repair and reversed 5-Fu drug resistance by reducing FEN1 expression and inhibiting FEN1 functional activity.
Collapse
Affiliation(s)
- Wenjie Huang
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Jiangsu province, Nanjing, 210029, China
| | - Huijuan Tang
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Jiangsu province, Nanjing, 210029, China.,Department of Clinical and Molecular Sciences, Università Politenica delle Marche, 60126, Ancona, Italy
| | - Fang Wen
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Jiangsu province, Nanjing, 210029, China
| | - Xiaona Lu
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Jiangsu province, Nanjing, 210029, China
| | - Qingpei Li
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Jiangsu province, Nanjing, 210029, China
| | - Peng Shu
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Jiangsu province, Nanjing, 210029, China.
| |
Collapse
|
24
|
Liu W, Cheng L, Li Q, Jing J. TRIP6 regulates the proliferation, migration, invasion and apoptosis of osteosarcoma cells by activating the NF-κB signaling pathway. Exp Ther Med 2020; 19:2317-2325. [PMID: 32104300 PMCID: PMC7027267 DOI: 10.3892/etm.2020.8466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/18/2019] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone receptor-interacting protein 6 (TRIP6), a member of the zyxin family of Lin-Isl-Mec (LIM) proteins, is an adaptor protein primarily expressed in epithelial cells. TRIP6 can regulate a variety of cellular responses, such as actin cytoskeletal reorganization and cell adhesion. However, to the best of our knowledge, the role of TRIP6 in osteosarcoma (Os) has not been previously reported. Therefore, the present study investigated the role of TRIP6 in the occurrence and development of Os, and the potential of utilizing TRIP6 as a therapeutic target in Os. The present results suggested that the expression levels of TRIP6 were significantly increased in Os cells and clinical tissue specimens compared with normal osteoblasts and adjacent non-tumor tissue. Moreover, the present results suggested that overexpressing TRIP6 significantly increased proliferation, migration and invasion, while inhibiting apoptosis in Os cells. However, silencing TRIP6 decreased proliferation, migration and invasion, while activating apoptosis in Os cells. The present results suggested that overexpression of TRIP6 increased NF-κB activation by decreasing the protein expression levels of inhibitor of κBα, and increasing total and phosphorylated P65 levels. The present results indicated that TRIP6 silencing decreased NF-κB activation. Collectively, the present results suggested that TRIP6 may play a role in promoting Os cell proliferation, migration and invasion, while inhibiting cell apoptosis. Furthermore, TRIP6 may be utilized as a novel prognostic biomarker and therapeutic target in Os.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qingning Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|