1
|
Zhang J, Guo H, Gong C, Shen J, Jiang G, Liu J, Liang T, Guo L. Therapeutic targets in the Wnt signaling pathway: Treating cancer with specificity. Biochem Pharmacol 2025; 236:116848. [PMID: 40049295 DOI: 10.1016/j.bcp.2025.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 04/20/2025]
Abstract
The Wnt signaling pathway is a critical regulatory mechanism that governs cell cycle progression, apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, and the tumor immune microenvironment, while also maintaining tissue homeostasis. Dysregulated activation of this pathway is implicated in various cancers, closely linked to tumor initiation, progression, and metastasis. The Wnt/β-catenin axis plays a central role in the pathogenesis of common cancers, including colorectal cancer (CRC), breast cancer (BC), liver cancer, and lung cancer. Unlike traditional chemotherapy, targeted therapy offers a more precise approach to cancer treatment. As a key regulator of oncogenesis, the Wnt pathway represents a promising target for clinical interventions. This review provides a comprehensive analysis of the Wnt signaling pathway, exploring its roles in tumor biology and its implications in human malignancies. It further examines the molecular mechanisms and modes of action across different cancers, detailing how the Wnt pathway contributes to tumor progression through mechanisms such as metastasis promotion, immune modulation, drug resistance, and enhanced cellular proliferation. Finally, therapeutic strategies targeting Wnt pathway components are discussed, including inhibitors targeting extracellular members, as well as those within the cell membrane, cytoplasm, and nucleus. The potential of these targets in the development of novel therapeutic agents underscores the critical importance of intervening in the Wnt signaling pathway for effective cancer treatment.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Chengxuan Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Guijie Jiang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiarui Liu
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhang M, Song S, Wang B, Shang Y, Liu P, Li J. A novel necroptosis-related miRNA signature for predicting the prognosis of esophageal cancer and immune infiltration analysis. Transl Cancer Res 2025; 14:949-965. [PMID: 40104746 PMCID: PMC11912044 DOI: 10.21037/tcr-24-1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/26/2024] [Indexed: 03/20/2025]
Abstract
Background The prognostic value of necroptosis-related microRNAs (miRNAs), which are important in tumorigenesis and development, remains unclear. Therefore, we aimed to screen prognostic necroptosis-related miRNAs in esophageal cancer (EC). Methods Nine necroptosis-related miRNA expression profiles and associated clinical data of EC patients were obtained from The Cancer Genome Atlas (TCGA) database. The relationships between necroptosis-related miRNAs and overall survival (OS) were determined via Cox regression model analysis. Target genes of the miRNAs were investigated in TargetScan, miRDB, and miRTarBase. The biological functions of these genes were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. For the most significant correlation between miR-425-5p expression and the survival of EC patients, the effect of miR-425-5p on necroptosis was explored in EC cells. The relationship between targeted gene expression and immune infiltration was also analyzed and validated. Results Hsa-miR-425-5p, hsa-miR-500a-3p, hsa-miR-7-5p and hsa-miR-200a-5p were selected for the construction of a prognostic signature based on their correlation with the survival of EC patients. EC patients were divided into high- and low-risk groups according to the median value of the risk score. Patients in the high-risk group tended to have higher death rates than those in the low-risk group (P<0.05). The risk score was an independent prognostic indicator for the OS of EC patients [hazard ratio (HR) >1, P<0.05]. The prognostic model had good predictive efficiency. The genes targeted by necroptosis-related miRNAs were significantly enriched in apoptosis etc. The inhibition of miR-425-5p promoted necroptosis in EC cells by targeting branched chain amino acid transaminase 1 (BCAT1). The expression level of BCAT1 was significantly correlated with immune infiltration. Conclusions A necroptosis-related four-miRNA model was constructed successfully to predict the potential value of the four miRNAs in the prognosis of EC, which can be conducive to promoting the therapeutic effect on EC.
Collapse
Affiliation(s)
- Miao Zhang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaoran Song
- Department of Radiotherapy, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yangyang Shang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Yuan Z, Li M, Tang Z. BCAT1 promotes cell proliferation, migration, and invasion via the PI3K-Akt signaling pathway in oral squamous cell carcinoma. Oral Dis 2025; 31:364-375. [PMID: 39056279 DOI: 10.1111/odi.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES To analyze the expression, biological function of branched chain amino-acid transaminase 1 (BCAT1) in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Real-time PCR and immunohistochemistry were used to analyze the expression of BCAT1 protein in OSCC and normal oral tissues. Based on the clinicopathological information of patients, the relationship between the expression of BCAT1 protein and other clinicopathological factors was analyzed. Real-time PCR and western blot assays were used to analyze the expression of BCAT1 gene and protein in normal human oral keratinocytes (HOK) and human OSCC cells, respectively. After BCAT1 overexpression or knockdown, the proliferation, cell cycle, migration, and invasion of human OSCC cells were analyzed by CCK8, flow cytometry, wound healing, and transwell invasion assays, respectively. After adding the BCAT1 inhibitor EGR240 to OSCC cells, the changes in cell proliferation, migration, and invasion ability in OSCC cells were analyzed. Based on the TCGA database, the involved signal pathway in BCAT1-related and BCAT1-binding genes was obtained for Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, verified by western blot assays. After inhibiting PI3K, the effect of BCAT1 on the expression of the downstream phosphorylated protein of the PI3K-Akt signaling pathway was analyzed by western blot assays. The relationship between the expression of BCAT1 and EMT-related protein of OSCC cells was also analyzed. RESULTS The expression of BCAT1 gene and protein were upregulated in OSCC tissue, which positively correlated with the pathological grade of patients with OSCC. Compared with normal oral keratinocytes, BCAT1 gene and protein were upregulated in OSCC cells. BCAT1 overexpression promoted the proliferation, migration, and invasion of OSCC cells. BCAT1 knockdown or inhibition could reduce the proliferation, migration, and invasion abilities of OSCC cells. The results of bioinformatics analysis and Western bolt showed that BCAT1 could regulate the activation of PI3K-Akt signaling pathway, and promote epithelial-mesenchymal transition (EMT) of OSCC cells. CONCLUSIONS BCAT1 could promote the proliferation, migration, and invasion of OSCC cells via PI3K-Akt signaling pathway, which is a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
| | - Ming Li
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
4
|
Li S, Guo Y, Zhu G, Sun L, Zhou F. Identify BCAT1 plays an oncogenic role and promotes EMT in KIRC via single cell RNA-seq and experiment. Front Oncol 2024; 14:1446324. [PMID: 39324007 PMCID: PMC11422235 DOI: 10.3389/fonc.2024.1446324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a major subtype of renal cell carcinoma with poor prognosis due to its invasive and metastatic nature. Despite advances in understanding the molecular underpinnings of various cancers, the role of branched-chain amino acid transferase 1 (BCAT1) in KIRC remains underexplored. This study aims to fill this gap by investigating the oncogenic role of BCAT1 in KIRC using single-cell RNA-seq data and experimental validation. Methods Single-cell transcriptomic data GSE159115 was utilized to investigate potential biomarkers in KIRC. After screening, we used BCAT1 as a target gene and investigated its function and mechanism in KIRC through databases such as TCGA-GTEx, using genome enrichment analysis (GSEA), genome variation analysis (GSVA), gene ontology (GO) and Kyoto Encyclopedia of the Genome (KEGG). BCAT1 expression was detected in clinical tissue samples using Western Blotting (WB) and immunohistochemical (IHC) staining techniques. We established cell lines stably overexpressing and knocking down BCAT1 and performed WB, qRT-PCR, cell scratch assay and transwell assay. Results BCAT1 was highly expressed in KIRC and was associated with disease prognosis and TME. Patients with mutations in the BCAT1 gene had shorter overall survival (OS) and disease-free survival (DFS). patients with high BCAT1 expression had shorter OS, progression-free interval (PFI), and disease-specific survival (DSS). GSEA showed that BCAT1 was significantly enriched in epithelial mesenchymal transition (EMT). Bioinformatics analysis and WB and IHC staining showed that BCAT1 expression was higher in KIRC than in paracancerous tissues. In vitro experiments confirmed that BCAT1 in KIRC cells may promote EMT affecting its invasion, migration. We constructed a protein interaction network (PPI) to hypothesize proteins that may interact with BCAT1. Single-sample gene set enrichment analysis (ssGSEA) revealed the immune infiltration environment of BCAT1. Furthermore, hypomethylation of the BCAT1 promoter region in KIRC may contribute to disease progression by promoting BCAT1 expression. Conclusion BCAT1 promotes KIRC invasion and metastasis through EMT and has prognostic predictive value and potential as a biomarker. It may become a novel biomarker.
Collapse
Affiliation(s)
- Shiqing Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinsheng Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanhua Zhu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Mao L, Wang L, Lyu Y, Zhuang Q, Li Z, Zhang J, Gu Z, Lu S, Wang X, Guan Y, Xiong J, Wang Y, Mao Y, Yang H, Liu Y. Branch Chain Amino Acid Metabolism Promotes Brain Metastasis of NSCLC through EMT Occurrence by Regulating ALKBH5 activity. Int J Biol Sci 2024; 20:3285-3301. [PMID: 38993559 PMCID: PMC11234221 DOI: 10.7150/ijbs.85672] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Metabolic reprogramming is one of the essential features of tumors that may dramatically contribute to cancer metastasis. Employing liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 12 pairwise serum samples of NSCLC brain metastasis patients before and after CyberKnife Stereotactic Radiotherapy. We evaluated the histopathological architecture of 144 surgically resected NSCLC brain metastases. Differential metabolites were screened and conducted for functional clustering and annotation. Metabolomic profiling identified a pathway that was enriched in the metabolism of branched-chain amino acids (BCAAs). Pathologically, adenocarcinoma with a solid growth pattern has a higher propensity for brain metastasis. Patients with high BCAT1 protein levels in lung adenocarcinoma tissues were associated with a poor prognosis. We found that brain NSCLC cells had elevated catabolism of BCAAs, which led to a depletion of α-KG. This depletion, in turn, reduced the expression and activity of the m6A demethylase ALKBH5. Thus, ALKBH5 inhibition participated in maintaining the m6A methylation of mesenchymal genes and promoted the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC cells and the proliferation of NSCLC cells in the brain. BCAA catabolism plays an essential role in the metastasis of NSCLC cells.
Collapse
Affiliation(s)
- Luning Mao
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Lan Wang
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Yingying Lyu
- Department of Neurosurgery, Huashan Hospital, Fudan University
- National Centre for Neurological Disorders, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Centremete for Brain Science, Fudan University, Shanghai
| | - Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University
- National Centre for Neurological Disorders, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Centremete for Brain Science, Fudan University, Shanghai
| | - Zhujun Li
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Jialong Zhang
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Zhiyan Gu
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Shanghai Medical College, Fudan University
| | - Xin Wang
- Cyberknife Centre, Department of Neurosurgery, Huashan Hospital, Fudan University
| | - Yun Guan
- Cyberknife Centre, Department of Neurosurgery, Huashan Hospital, Fudan University
| | - Ji Xiong
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Yin Wang
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University
- National Centre for Neurological Disorders, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Centremete for Brain Science, Fudan University, Shanghai
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University
- National Centre for Neurological Disorders, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Centremete for Brain Science, Fudan University, Shanghai
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| |
Collapse
|
6
|
Liu H, Zhang J, Li J, Cao X, Yu K, Xia X, Li Z, Wang F. LncRNA PSMB8-AS1 increases glioma malignancy via the miR-382-3p/BCAT1 axis. Transl Oncol 2024; 39:101806. [PMID: 38235619 PMCID: PMC10628860 DOI: 10.1016/j.tranon.2023.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND This study aimed to investigate the specific roles of the long non-coding RNA (lncRNA) proteasome 20S subunit beta 8 (PSMB8)-antisense RNA 1 (AS1)/microRNA (miR)-382-3p/branched-chain amino acid transaminase 1 (BCAT1) interaction network in gliomas. METHODS Western blotting and quantitative reverse transcription-polymerase chain reaction were performed to assess the expression levels of lncRNA PSMB8-AS1, BCAT1, and miR-382-3p. Moreover, the cell proliferation, migration, and apoptosis were assessed using the cell counting kit-8, Transwell, and caspase-3 activity assays, respectively. The biological role of lncRNA PSMB8-AS1 in glioma was investigated in vivo using a xenograft mouse model. Additionally, the associations among lncRNA PSMB8-AS1, miR-382-3p, and BCAT1 were analyzed using dual-luciferase and RNA immunoprecipitation assays and bioinformatics analyses. RESULTS Glioma cell lines and tissues exhibited overexpression of lncRNA PSMB8-AS1 and BCAT1 and low expression of miR-382-3p. Knockdown of PSMB8-AS1 remarkably repressed the tumor growth in vivo and the migration and proliferation of glioma cells in vitro. In contrast, knockdown of lncRNA PSMB8-AS1 increased the cell apoptosis. Mechanistically, PSMB8-AS1 directly targeted miR-382-3p. By sponging miR-382-3p, lncRNA PSMB8-AS1 stimulated the migration and proliferation of glioma cells and suppressed their apoptosis. Additionally, miR-382-3p directly targeted BCAT1. Inhibition of miR-382-3p reversed the antitumor effects of BCAT1 silencing on glioma progression. CONCLUSION Our study revealed that lncRNA PSMB8-AS1 aggravated glioma malignancy by enhancing BCAT1 expression after competitively binding to miR-382-3p. Therefore, lncRNA PSMB8-AS1 may be a potential biomarker and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Neurosurgery, Pengzhou People's Hospital, Chengdu 610500, Sichuan, China; Department of Neurosurgery, Pengzhou Second People's Hospital, Chengdu 610500, Sichuan, China; Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jiamin Li
- Department of Critical Care Medicine, Xindu District People's Hospital of Chengdu, Chengdu 610500, Sichuan, China
| | - Xiaoying Cao
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Kai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xun Xia
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Zongxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Fengbo Wang
- Department of Rehabilitation, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China.
| |
Collapse
|
7
|
Li Z, Meng D, Liu Y, Bi F, Tian K, Xu J, Sun J, Gu C, Li Y. Knockdown of PRMT1 suppresses the malignant biological behavior of osteosarcoma cells and increases cisplatin sensitivity via c-Myc-mediated BCAT1 downregulation. J Biochem Mol Toxicol 2024; 38:e23537. [PMID: 37700640 DOI: 10.1002/jbt.23537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Increasing evidence indicated that protein arginine methyltransferase-1 (PRMT1) is an oncogene in multiple malignant tumors, including osteosarcoma (OS). The aim of this study was to investigate the underlying mechanism of PRMT1 in OS. The effects of PRMT1 or BCAT1, branched-chain amino acid transaminase 1 (BCAT1) on OS cell proliferation, invasion, autophagy, and apoptosis in vitro were examined. Moreover, molecular control of PRMT1 on c-Myc or transactivation of BCAT1 on c-Myc was assessed by chromatin immunoprecipitation and quantitative reverse transcription PCR assays. The effects of PRMT1 in vivo were examined with a xenograft tumor model. The results showed that PRMT1 was potently upregulated in OS tissues and cells. Upregulation of PRMT1 markedly increased OS cell proliferation and invasion in vitro and reduced cell apoptosis, whereas PRMT1 silencing showed the opposite effects. Cisplatin, one of the most effective chemotherapeutic drugs, improved cell survival rate by inducing the expression of PRMT1 to downregulate the cisplatin sensitivity. Meanwhile, the cisplatin-induced upregulation of PRMT1 expression caused dramatically autophagy induction and autophagy-mediated apoptosis by inactivating the mTOR signaling pathway, which could be reversed by 3-methyladenine, an autophagy inhibitor, or PRMT1 silencing. PRMT1 could activate c-Myc transcription and increase c-Myc-mediated expression of BCAT1. Furthermore, BCAT1 overexpression counteracted the effects of PRMT1 knockdown on cell proliferation, invasion, and apoptosis. Of note, deficiency of PRMT1 suppressed tumor growth in vivo. PRMT1 facilitated the proliferation and invasion of OS cells, inhibited cell apoptosis, and decreased chemotherapy sensitivity through c-Myc/BCAT1 axis, which may become potential target in treating OS.
Collapse
Affiliation(s)
- Zhifu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dongdong Meng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yongyi Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fanggang Bi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ke Tian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jianzhong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jianguang Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chexi Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
8
|
Chen C, Naveed H, Chen K. Research progress on branched-chain amino acid aminotransferases. Front Genet 2023; 14:1233669. [PMID: 38028625 PMCID: PMC10658711 DOI: 10.3389/fgene.2023.1233669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Branched-chain amino acid aminotransferases, widely present in natural organisms, catalyze bidirectional amino transfer between branched-chain amino acids and branched-chain α-ketoacids in cells. Branched-chain amino acid aminotransferases play an important role in the metabolism of branched-chain amino acids. In this paper, the interspecific evolution and biological characteristics of branched-chain amino acid aminotransferases are introduced, the related research of branched-chain amino acid aminotransferases in animals, plants, microorganisms and humans is summarized and the molecular mechanism of branched-chain amino acid aminotransferase is analyzed. It has been found that branched-chain amino acid metabolism disorders are closely related to various diseases in humans and animals and plants, such as diabetes, cardiovascular diseases, brain diseases, neurological diseases and cancer. In particular, branched-chain amino acid aminotransferases play an important role in the development of various tumors. Branched-chain amino acid aminotransferases have been used as potential targets for various cancers. This article reviews the research on branched-chain amino acid aminotransferases, aiming to provide a reference for clinical research on targeted therapy for various diseases and different cancers.
Collapse
Affiliation(s)
- Can Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Liu Y, Guo S, Xie W, Yang H, Li W, Zhou N, Yang J, Zhou G, Mao C, Zheng Y. Identification of microRNA editing sites in clear cell renal cell carcinoma. Sci Rep 2023; 13:15117. [PMID: 37704698 PMCID: PMC10499803 DOI: 10.1038/s41598-023-42302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignant tumor originating from the renal tubular epithelium. Although the microRNAs (miRNAs) transcriptome of ccRCC has been extensively studied, the role of miRNAs editing in ccRCC is largely unknown. By analyzing small RNA sequencing profiles of renal tissues of 154 ccRCC patients and 22 normal controls, we identified 1025 miRNA editing sites from 246 pre-miRNAs. There were 122 editing events with significantly different editing levels in ccRCC compared to normal samples, which include two A-to-I editing events in the seed regions of hsa-mir-376a-3p and hsa-mir-376c-3p, respectively, and one C-to-U editing event in the seed region of hsa-mir-29c-3p. After comparing the targets of the original and edited miRNAs, we found that hsa-mir-376a-1_49g, hsa-mir-376c_48g and hsa-mir-29c_59u had many new targets, respectively. Many of these new targets were deregulated in ccRCC, which might be related to the different editing levels of hsa-mir-376a-3p, hsa-mir-376c-3p, hsa-mir-29c-3p in ccRCC compared to normal controls. Our study sheds new light on miRNA editing events and their potential biological functions in ccRCC.
Collapse
Affiliation(s)
- Yulong Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Shiyong Guo
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenping Xie
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Huaide Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Nan Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, 650223, Yunnan, China
| | - Guangchen Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Roh J, Kim B, Im M, Jang W, Chae Y, Kang J, Youn B, Kim W. MALAT1-regulated gene expression profiling in lung cancer cell lines. BMC Cancer 2023; 23:818. [PMID: 37667226 PMCID: PMC10476395 DOI: 10.1186/s12885-023-11347-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and has a poor prognosis. Identifying biomarkers based on molecular mechanisms is critical for early diagnosis, timely treatment, and improved prognosis of lung cancer. MALAT1 has been reported to have overexpressed and tumor-promoting functions in NSCLC. It has been proposed as a potential biomarker for the diagnosis and prognosis of cancer. Therefore, this study was conducted to profile the changes in gene expression according to the regulation of expression of MALAT1 in NSCLC cell lines and to investigate the correlation through bioinformatic analysis of differentially expressed genes (DEGs). METHODS MALAT1 expression levels were measured using RT-qPCR. The biological functions of MALAT1 in NSCLC were analyzed by cell counting, colony forming, wound-healing, and Transwell invasion assays. In addition, gene expression profiling in response to the knockdown of MALAT1 was analyzed by transcriptome sequencing, and differentially expressed genes regulated by MALAT1 were performed by GO and KEGG pathway enrichment analyses. Bioinformatic databases were used for gene expression analysis and overall survival analysis. RESULTS Comparative analysis versus MALAT1 expression in MRC5 cells (a normal lung cell line) and the three NSCLC cell lines showed that MALAT1 expression was significantly higher in the NSCLC cells. MALAT1 knockdown decreased cell survival, proliferation, migration, and invasion in all three NSCLC cell lines. RNA-seq analysis of DEGs in NSCLC cells showed 198 DEGs were upregulated and 266 DEGs downregulated by MALAT1 knockdown in all three NSCLC cell lines. Survival analysis on these common DEGs performed using the OncoLnc database resulted in the selection of five DEGs, phosphoglycerate mutase 1 (PGAM1), phosphoglycerate mutase 4 (PGAM4), nucleolar protein 6 (NOL6), nucleosome assembly protein 1 like 5 (NAP1L5), and sestrin1 (SESN1). The gene expression levels of these selected DEGs were proved to gene expression analysis using the TNMplot database. CONCLUSION MALAT1 might function as an oncogene that enhances NSCLC cell survival, proliferation, colony formation, and invasion. RNA-seq and bioinformatic analyses resulted in the selection of five DEGs, PGAM1, PGAM4, NOL6, NAP1L5, and SESN1, which were found to be closely related to patient survival and tumorigenesis. We believe that further investigation of these five DEGs will provide valuable information on the oncogenic role of MALAT1 in NSCLC.
Collapse
Affiliation(s)
- Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si, 28173, Chungbuk, Republic of Korea
| | - Boseong Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, 28173, Chungbuk, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si, 28173, Chungbuk, Republic of Korea
| | - Wonyi Jang
- Department of Science Education, Korea National University of Education, Cheongju-si, 28173, Chungbuk, Republic of Korea
| | - Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si, 28173, Chungbuk, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, 28173, Chungbuk, Republic of Korea.
- Department of Biology Education, Korea National University of Education, Cheongju-si, 28173, Chungbuk, Republic of Korea.
| |
Collapse
|
11
|
Xue W, Cai L, Li S, Hou Y, Wang YD, Yang D, Xia Y, Nie X. WNT ligands in non-small cell lung cancer: from pathogenesis to clinical practice. Discov Oncol 2023; 14:136. [PMID: 37486552 PMCID: PMC10366069 DOI: 10.1007/s12672-023-00739-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the malignant tumor with the highest morbidity and leading cause of death worldwide, whereas its pathogenesis has not been fully elucidated. Although mutations in some crucial genes in WNT pathways such as β-catenin and APC are not common in NSCLC, the abnormal signal transduction of WNT pathways is still closely related to the occurrence and progression of NSCLC. WNT ligands (WNTs) are a class of secreted glycoproteins that activate WNT pathways through binding to their receptors and play important regulatory roles in embryonic development, cell differentiation, and tissue regeneration. Therefore, the abnormal expression or dysfunction of WNTs undoubtedly affects WNT pathways and thus participates in the pathogenesis of diseases. There are 19 members of human WNTs, WNT1, WNT2, WNT2b, WNT3, WNT3a, WNT4, WNT5a, WNT5b, WNT6, WNT7a, WNT7b, WNT8a, WNT8b, WNT9a, WNT9b, WNT10a, WNT10b, WNT11 and WNT16. The expression levels of WNTs, binding receptors, and activated WNT pathways are diverse in different tissue types, which endows the complexity of WNT pathways and multifarious biological effects. Although abundant studies have reported the role of WNTs in the pathogenesis of NSCLC, it still needs further study as therapeutic targets for lung cancer. This review will systematically summarize current research on human WNTs in NSCLC, from molecular pathogenesis to potential clinical practice.
Collapse
Affiliation(s)
- Wanting Xue
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Lihong Cai
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China
| | - Su Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yujia Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dongbin Yang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Hebi, 458030, China.
| | - Yubing Xia
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China.
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Ding Y, Wang X, Lu S, Lai A, Xie B, He X, Liu Q. BCAT1, as a prognostic factor for HCC, can promote the development of liver cancer through activation of the AKT signaling pathway and EMT. J Mol Histol 2023; 54:25-39. [PMID: 36344754 DOI: 10.1007/s10735-022-10108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
More and more studies have shown that Branched chain amino acid transaminase 1 (BCAT1) is involved in the occurrence and development of a variety of tumors. However, the mechanism of its occurrence and development in hepatocellular carcinoma (HCC) remains unclear. Here, we demonstrated the relationship between BCAT1 and AKT signaling pathway, as well as EMT, and the clinical significance of BCAT1 by using BCAT1 expression in 5 cell lines and 113 liver cancer and non-liver cancer tissue samples. The results showed that the expression of AKT was positively correlated with BCAT1 in HCC tissues, and BCAT1 could promote the progression of HCC cells through the AKT signaling pathway. Clinical analysis and Bioinformatics technology analysis revealed that BCAT1 was correlated with poor prognosis, and BCAT1 expression in the HCC tissues was evidently correlated with tumor number, vascular invasion, Edmondson grade and TNM stage (P < 0.05). In vitro studies showed that BCAT1 increased the invasion and migration of in MHCC-97H cells a d Huh7 cells. By inhibiting the expression of the BCAT1 gene, we detected the corresponding changes in the expression levels of Twist, E-cadherin and Vimentin, confirming that BCAT1 may promote the invasion and migration of HCC cells through epithelial-mesenchymal transformation (EMT). Overall, BCAT1 can activate AKT signaling pathway and EMT to promote the development and metastasis of HCC cells. this study may provide new ideas and directions for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yifeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoqing Wang
- Department of Psychiatry, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Shaowei Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Aijun Lai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Binhui Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiao He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
13
|
Leung RWH, Lee TKW. Wnt/β-Catenin Signaling as a Driver of Stemness and Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14215468. [PMID: 36358885 PMCID: PMC9656505 DOI: 10.3390/cancers14215468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Aberrant Wnt/β-catenin signaling has been reported to play crucial role in pathogenesis of hepatocellular carcinoma (HCC). In this review, we focus on the regulatory role of Wnt/β-catenin signaling in cancer stemness and metabolic reprogramming, which are two emerging hallmarks of cancer. Understanding the role of Wnt/β-catenin signaling in regulation of the above processes reveals novel therapeutic strategy against this deadly disease. Abstract Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide due to its high rates of tumor recurrence and metastasis. Aberrant Wnt/β-catenin signaling has been shown to play a significant role in HCC development, progression and clinical impact on tumor behavior. Accumulating evidence has revealed the critical involvement of Wnt/β-catenin signaling in driving cancer stemness and metabolic reprogramming, which are regarded as emerging cancer hallmarks. In this review, we summarize the regulatory mechanism of Wnt/β-catenin signaling and its role in HCC. Furthermore, we provide an update on the regulatory roles of Wnt/β-catenin signaling in metabolic reprogramming, cancer stemness and drug resistance in HCC. We also provide an update on preclinical and clinical studies targeting Wnt/β-catenin signaling alone or in combination with current therapies for effective cancer therapy. This review provides insights into the current opportunities and challenges of targeting this signaling pathway in HCC.
Collapse
Affiliation(s)
- Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: ; Tel.: +852-3400-8799; Fax: +852-2364-9932
| |
Collapse
|
14
|
Penick ER, Bateman NW, Rojas C, Magana C, Conrads K, Zhou M, Hood BL, Wang G, Parikh N, Huang Y, Darcy KM, Casablanca Y, Mhawech-Fauceglia P, Conrads TP, Maxwell GL. Proteomic alterations associated with residual disease in neoadjuvant chemotherapy treated ovarian cancer tissues. Clin Proteomics 2022; 19:35. [PMID: 36195845 PMCID: PMC9531351 DOI: 10.1186/s12014-022-09372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Optimal cytoreduction to no residual disease (R0) correlates with improved disease outcome for high-grade serous ovarian cancer (HGSOC) patients. Treatment of HGSOC patients with neoadjuvant chemotherapy, however, may select for tumor cells harboring alterations in hallmark cancer pathways including metastatic potential. This study assessed this hypothesis by performing proteomic analysis of matched, chemotherapy naïve and neoadjuvant chemotherapy (NACT)-treated HGSOC tumors obtained from patients who had suboptimal (R1, n = 6) versus optimal (R0, n = 14) debulking at interval debulking surgery (IDS). METHODS Tumor epithelium was harvested by laser microdissection from formalin-fixed, paraffin-embedded tissues from matched, pre- and post-NACT treated tumors for twenty HGSOC patients and analyzed by quantitative mass spectrometry-based proteomics. RESULTS Differential analysis of patient matched pre- and post-NACT treated tumors revealed proteins associated with cell survival and metabolic signaling to be significantly altered in post-NACT treated tumor cells. Comparison of pre-NACT treated tumors from suboptimal (R1) versus optimally (R0) debulked patients identified proteins associated with tumor cell viability and invasion signaling enriched in R1 patients. We identified five proteins altered between R1 and R0 patients in pre- NACT treated tumors that significantly correlated with PFS in an independent cohort of HGSOC patients, including Fermitin family homolog 2 (FERMT2), a protein elevated in R1 that correlated with disease progression in HGSOC patients (multivariate Cox HR = 1.65, Wald p = 0.022) and increased metastatic potential in solid-tumor malignancies. CONCLUSIONS This study identified distinct proteome profiles in patient matched pre- and post-NACT HGSOC tumors that correlate with NACT resistance and that may predict residual disease status at IDS that collectively warrant further pre-clinical investigation.
Collapse
Affiliation(s)
- Emily R Penick
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Nicholas W Bateman
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD, 20817, USA
| | - Christine Rojas
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Cuauhtemoc Magana
- Department of Anatomic Pathology, Division of Gynecologic Pathology, University of Southern California, Los Angeles, CA, 9007, USA
| | - Kelly Conrads
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD, 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Rd, Falls Church, VA, 22003, USA
| | - Brian L Hood
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD, 20817, USA
| | - Guisong Wang
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD, 20817, USA
| | - Niyati Parikh
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD, 20817, USA
| | - Ying Huang
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD, 20817, USA
| | - Kathleen M Darcy
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD, 20817, USA
| | - Yovanni Casablanca
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.,Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Paulette Mhawech-Fauceglia
- Department of Anatomic Pathology, Division of Gynecologic Pathology, University of Southern California, Los Angeles, CA, 9007, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA. .,Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA. .,Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Rd, Falls Church, VA, 22003, USA.
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA. .,Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA. .,Women's Health Integrated Research Center, Women's Service Line, Inova Health System, 3289 Woodburn Rd, Falls Church, VA, 22003, USA.
| |
Collapse
|
15
|
Yu M, Zhao Q, Li J, Xu F, Zhang Z, Liu Y, Dai L, Zhang B, Zhang J, Zhang J. BCAT1 promotes lung adenocarcinoma progression through enhanced mitochondrial function and NF-κB pathway activation. J Zhejiang Univ Sci B 2022; 23:760-769. [PMID: 36111572 DOI: 10.1631/jzus.b2100985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lung cancer is one of the most prevalent and malignant cancers, among which lung adenocarcinoma (LUAD) accounts for the majority and remains a major cause of cancer-related mortality worldwide (Cui et al., 2019). Despite the growing intensity of research on the pathobiology and progression of lung cancer and the fact that many genes have been identified as potential drivers and targets for therapy (Luo et al., 2019; Zhang et al., 2019), the treatment and prognosis of lung cancer patients have hardly improved. Therefore, this study aimed to investigate the precise mechanism of lung cancer development and explore efficient diagnostic and therapeutic methods for clinical treatment.
Collapse
Affiliation(s)
- Mengdan Yu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.,School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jinxia Li
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhibiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory of Tumor Epidemiology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Bingxia Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China. , .,Henan Key Laboratory of Tumor Epidemiology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China. ,
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Tumor Epidemiology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Nong X, Zhang C, Wang J, Ding P, Ji G, Wu T. The mechanism of branched-chain amino acid transferases in different diseases: Research progress and future prospects. Front Oncol 2022; 12:988290. [PMID: 36119495 PMCID: PMC9478667 DOI: 10.3389/fonc.2022.988290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
It is well known that the enzyme catalyzes the first step of branched-chain amino acid (BCAA) catabolism is branched-chain amino transferase (BCAT), which is involved in the synthesis and degradation of leucine, isoleucine and valine. There are two main subtypes of human branched chain amino transferase (hBCAT), including cytoplasmic BCAT (BCAT1) and mitochondrial BCAT (BCAT2). In recent years, the role of BCAT in tumors has attracted the attention of scientists, and there have been continuous research reports that BCAT plays a role in the tumor, Alzheimer's disease, myeloid leukaemia and other diseases. It plays a significant role in the growth and development of diseases, and new discoveries about this gene in some diseases are made every year. BCAT usually promotes cancer proliferation and invasion by activating the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway and activating Wnt/β-catenin signal transduction. This article reviews the role and mechanism of BCAT in different diseases, as well as the recent biomedical research progress. This review aims to make a comprehensive summary of the role and mechanism of BCAT in different diseases and to provide new research ideas for the treatment, prognosis and prevention of certain diseases.
Collapse
Affiliation(s)
- Xiazhen Nong
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Li A, Zhang Y, Wang R, Xu R, Ma Y, Song L, Cao W, Tang X. Coal dust exposure induces proliferation and migration of human bronchial epithelial cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Ajuba Overexpression Promotes Breast Cancer Chemoresistance and Glucose Uptake through TAZ-GLUT3/Survivin Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3321409. [PMID: 35178446 PMCID: PMC8844350 DOI: 10.1155/2022/3321409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
Abstract
The LIM protein Ajuba has been implicated in the development of human cancers. To date, its expression pattern and biological significance in breast cancers (BC) have not been fully investigated. In the current study, we examined Ajuba protein levels in 93 invasive ductal carcinoma specimens by immunohistochemistry. The Ajuba expression level was elevated in breast cancer tissue compared with normal tissue. Ajuba overexpression is correlated with advanced tumor-node-metastasis (TNM) stage, positive node status, and adverse patient outcomes. The Ajuba protein level was also higher in BC cell lines compared to normal breast epithelial cell line MCF-10A. Ectopically expressed Ajuba in MCF-7 cells stimulated in vitro and in vivo cell growth, invasion, cell cycle progression, and decreased paclitaxel-induced apoptosis. RNA-sequencing (RNA-seq) followed by gene set enrichment analysis (GSEA) analysis showed that Ajuba overexpression regulated the Hippo signaling pathway. Ajuba overexpression also increased glucose uptake and increased expression of TAZ, GLUT3, and Survivin. TAZ knockdown abolished the role of Ajuba on GLUT3 and Survivin induction. The ChIP assay showed that TEAD4, a major TAZ binding transcription factor, could bind to the GLUT3 and Survivin promoter regions. In conclusion, our data demonstrated that elevated Ajuba expression is correlated with poor BC prognosis and regulated malignant behavior through TAZ-GLUT3/Survivin signaling in BC cells.
Collapse
|
19
|
Xu D, Wang Y, Zhang Y, Liu Z, Chen Y, Zheng J. Systematic Analysis of an Invasion-Related 3-Gene Signature and Its Validation as a Prognostic Model for Pancreatic Cancer. Front Oncol 2021; 11:759586. [PMID: 34976806 PMCID: PMC8715959 DOI: 10.3389/fonc.2021.759586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a malignant tumor of the digestive system that is associated with a poor prognosis in patients owing to its rapid progression and high invasiveness. Methods Ninety-seven invasive-related genes obtained from the CancerSEA database were clustered to obtain the molecular subtype of pancreatic cancer based on the RNA-sequencing (RNA-seq) data of The Cancer Genome Atlas (TCGA). The differentially expressed genes (DEGs) between subtypes were obtained using the limma package in R, and the multi-gene risk model based on DEGs was constructed by Lasso regression analysis. Independent datasets GSE57495 and GSE62452 were used to validate the prognostic value of the risk model. To further explore the expression of the hub genes, immunohistochemistry was performed on PAAD tissues obtained from a large cohort. Results The TCGA-PAAD samples were divided into two subtypes based on the expression of the invasion-related genes: C1 and C2. Most genes were overexpressed in the C1 subtype. The C1 subtype was mainly enriched in tumor-related signaling pathways, and the prognosis of patients with the C1 subtype was significantly worse than those with the C2 subtype. A 3-gene signature consisting of LY6D, BCAT1, and ITGB6 based on 538 DEGs between both subtypes serves as a stable prognostic marker in patients with pancreatic cancer across multiple cohorts. LY6D, BCAT1, and ITGB6 were over-expressed in 120 PAAD samples compared to normal samples. Conclusions The constructed 3-gene signature can be used as a molecular marker to assess the prognostic risk in patients with PAAD.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuliang Zhang
- Department of Otolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhehao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yonghai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Jinfang Zheng,
| |
Collapse
|
20
|
Mao L, Chen J, Lu X, Yang C, Ding Y, Wang M, Zhang Y, Tian Y, Li X, Fu Y, Yang Y, Gu Y, Gao F, Huang J, Liao L. Proteomic analysis of lung cancer cells reveals a critical role of BCAT1 in cancer cell metastasis. Theranostics 2021; 11:9705-9720. [PMID: 34646394 PMCID: PMC8490523 DOI: 10.7150/thno.61731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
Metastasis is the major cause of high mortality in lung cancer. Exploring the underlying mechanisms of metastasis thus holds promise for identifying new therapeutic strategies that may enhance survival. Methods: We applied quantitative mass spectrometry to compare protein expression profiles between primary and metastatic lung cancer cells whilst investigating metastasis-related molecular features. Results: We discovered that BCAT1, the key enzyme in branched-chain amino acid metabolism, is overexpressed at the protein level in metastatic lung cancer cells, as well as in metastatic tissues from lung cancer patients. Analysis of transcriptomic data available in the TCGA database revealed that increased BCAT1 transcription is associated with poor overall survival of lung cancer patients. In accord with a critical role in metastasis, shRNA-mediated knockdown of BCAT1 expression reduced migration of metastatic cells in vitro and the metastasis of these cells to distal organs in nude mice. Mechanistically, high levels of BCAT1 depleted α-ketoglutarate (α-KG) and promoted expression of SOX2, a transcription factor regulating cancer cell stemness and metastasis. Conclusion: Our findings suggest that BCAT1 plays an important role in promoting lung cancer cell metastasis, and may define a novel pathway to target as an anti-metastatic therapy.
Collapse
|
21
|
Xu XC, He S, Zhou YQ, Liu CJ, Liu SQ, Peng W, Liu YX, Wei PP, Bei JX, Luo CL. RNA-binding motif protein RBM47 promotes tumorigenesis in nasopharyngeal carcinoma through multiple pathways. J Genet Genomics 2021; 48:595-605. [PMID: 34274258 DOI: 10.1016/j.jgg.2021.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
RNA binding motif proteins (RBMs) have been widely implicated in the tumorigenesis of multiple human cancers but scarcely studied in nasopharyngeal carcinoma (NPC). Here, we compare the mRNA levels of 29 RBMs between 87 NPC and 10 control samples. We find that RBM47 is frequently upregulated in NPC specimens, and its high expression is associated with the poor prognosis of patients with NPC. Biological experiments show that RBM47 plays an oncogenic role in NPC cells. Mechanically, RBM47 binds to the promoter and regulates the transcription of BCAT1, and its overexpression partially rescues the inhibitory effects of RBM47-knockdown on NPC cells. Moreover, transcriptome analysis reveals that RBM47 regulates alternative splicing of pre-mRNA, including those cancer-related, to a large extent in NPC cells. Furthermore, RBM47 binds to hnRNPM and cooperatively regulates multiple splicing events in NPC cells. In addition, we find that knockdown of hnRNPM inhibits proliferation and migration of NPC cells. Our study, taken together, shows that RBM47 promotes the progression of NPC through multiple pathways, acting as a transcriptional factor and a modulator of alternative splicing in cooperation with hnRNPM. Our study also highlights that RBM47 and hnRNPM could be prognostic factors and potential therapeutic targets for NPC.
Collapse
Affiliation(s)
- Xiao-Chen Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Ya-Qing Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Chu-Jun Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Shu-Qiang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Wan Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Yu-Xiang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Pan-Pan Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; Department of Medical Oncology, National Cancer Centre of Singapore, Singapore 169610, Singapore
| | - Chun-Ling Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China.
| |
Collapse
|
22
|
Shu X, Zhan PP, Sun LX, Yu L, Liu J, Sun LC, Yang ZH, Ran YL, Sun YM. BCAT1 Activates PI3K/AKT/mTOR Pathway and Contributes to the Angiogenesis and Tumorigenicity of Gastric Cancer. Front Cell Dev Biol 2021; 9:659260. [PMID: 34164393 PMCID: PMC8215359 DOI: 10.3389/fcell.2021.659260] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/03/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Focusing on antiangiogenesis may provide promising choices for treatment of gastric cancer (GC). This study aimed to investigate the mechanistic role of BCAT1 in the pathogenesis of GC, particularly in angiogenesis. METHODS Bioinformatics and clinical samples analysis were used to investigate the expression and potential mechanism of BCAT1 in GC. BGC823 cells with BCAT1 overexpression or silencing were induced by lentiviral transduction. Cell phenotypes and angiogenesis were evaluated. The relevant proteins were quantized by Western blotting, immunohistochemistry, or immunofluorescence. Xenograft models were constructed to confirm the role of BCAT1 in vivo. RESULTS BCAT1 was overexpressed in GC patients and associated with lower survival. BCAT1 expression was correlated with proliferation-, invasion-, or angiogenesis-related markers expression and pathways. Silencing BCAT1 expression suppressed cell viability, colony formation, cycle progression, invasion, and angiogenesis of BGC823 cells, as well as the tumor growth of xenograft models, whereas overexpressing BCAT1 had the opposite results both in vitro and in vivo. Bioinformatics analysis and Western blotting demonstrated that BCAT1 activated the PI3K/AKT/mTOR pathway. The addition of LY294002 reversed the tumor growth induced by BCAT1 overexpression, further verifying this mechanism. CONCLUSION BCAT1 might act as an oncogene by facilitating proliferation, invasion, and angiogenesis through activation of the PI3K/AKT/mTOR pathway. This finding could aid the optimization of antiangiogenesis strategies.
Collapse
Affiliation(s)
- Xiong Shu
- Laboratory of Molecular Orthopedics, Beijing Jishuitan Hospital, Beijing Research Institute of Orthopedics and Traumatology, Beijing, China
| | - Pan-Pan Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Chao Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Hua Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Liang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Min Sun
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Cai H, Ren L, Wang Y, Zhang Y. Beta-Elemene Reduces the Malignancy of Non-Small Cell Lung Cancer by Enhancing C3orf21 Expression. Front Oncol 2021; 11:571476. [PMID: 34026596 PMCID: PMC8137837 DOI: 10.3389/fonc.2021.571476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/09/2021] [Indexed: 11/14/2022] Open
Abstract
Background Beta-elemene has potent anti-tumor effect, but its anti-tumor mechanism remains unclear. Chromosome 3 open reading frame 21 (C3orf21) acts as a tumor suppressor. This study tested whether the anti-tumor effect of beta-elemene was associated with modulating C3orf21 expression in non-small cell lung cancer (NSCLC). Materials and Methods The impact of beta-elemene on C3orf21 expression in NSCLC cells was quantified. The stable C3orf21 silencing A549 and over-expressing PC-9 cells were established and their effects on the beta-elemene-attenuated proliferation, wound healing and invasion of NSCLC cells as well as the expression of key regulators and signal events were determined. Results Beta-elemene significantly up-regulated C3orf21 expression in NSCLC cells. Beta-elemene treatment significantly attenuated the proliferation, wound healing and invasion of NSCLC cells, which were significantly mitigated by C3orf21 silencing, but enhanced by C3orf21 over-expression. Similar patterns of beta-elemene-modulated cyclinD1, c-Myc, COX2, MMP2, MMP9, VEGF, PTEN and Notch1 expression were detected in NSCLC cells. Conclusions Such data indicated that beta-elemene treatment attenuated the malignancy of NSCLC cells by up-regulating C3orf21 expression. Our findings may provide new mechanisms underlying the pharmacological action of beta-elemene.
Collapse
Affiliation(s)
- Hu Cai
- Department of Integration of Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lili Ren
- Department of Integration of Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ying Wang
- Department of Gynecological Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yongjun Zhang
- Department of Integration of Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
24
|
Wang H, Wang F, Ouyang W, Jiang X, Wang Y. BCAT1 overexpression regulates proliferation and c‑Myc/GLUT1 signaling in head and neck squamous cell carcinoma. Oncol Rep 2021; 45:52. [PMID: 33760210 PMCID: PMC7962101 DOI: 10.3892/or.2021.8003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Branched chain amino acid transaminase 1 (BCAT1) overexpression has been reported in various cancers; however, at present, its significance and biological role in head and neck squamous cell carcinoma (HNSCC) remain unknown. BCAT1 protein expression was upregulated in 56/106 (52.8%) cases of HNSCC. BCAT1 overexpression was associated with tumor-node-metastasis stage, tumor stage and nodal metastasis. The Cancer Genome Atlas data suggested that high BCAT1 expression was associated with poor patient survival. Oncomine data suggested that BCAT1 expression was increased in HNSCC. Functionally, BCAT1 overexpression promoted cell proliferation, colony formation, invasion and cisplatin resistance in FaDu cells. BCAT1 overexpression also upregulated the mitochondrial membrane potential, and increased ATP production, glucose consumption and glucose uptake. Western blotting demonstrated that BCAT1 overexpression upregulated c-Myc and glucose transporter 1 (GLUT1) protein levels. Depletion of c-Myc using small interfering RNA abolished the influence of BCAT1 on GLUT1. Chromatin immunoprecipitation assays demonstrated that c-Myc has binding sites in the GLUT1 promoter. Collectively, the present findings suggested that BCAT1 is upregulated in human HNSCC and regulates HNSCC cell proliferation, invasion, cisplatin sensitivity and c-Myc/GLUT1 signaling.
Collapse
Affiliation(s)
- Hongming Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fei Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenyu Ouyang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuejun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
25
|
Luo L, Sun W, Zhu W, Li S, Zhang W, Xu X, Fang D, Grahn THM, Jiang L, Zheng Y. BCAT1 decreases the sensitivity of cancer cells to cisplatin by regulating mTOR-mediated autophagy via branched-chain amino acid metabolism. Cell Death Dis 2021; 12:169. [PMID: 33568627 PMCID: PMC7876012 DOI: 10.1038/s41419-021-03456-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Cisplatin is one of the most effective chemotherapy drugs and is widely used in the treatment of cancer, including hepatocellular carcinoma (HCC) and cervical cancer, but its therapeutic benefit is limited by the development of resistance. Our previous studies demonstrated that BCAT1 promoted cell proliferation and decreased cisplatin sensitivity in HCC cells. However, the exact role and mechanism of how BCAT1 is involved in cisplatin cytotoxicity remain undefined. In this study, we revealed that cisplatin triggered autophagy in cancer cells, with an increase in BCAT1 expression. The cisplatin-induced up-regulation of BCAT1 decreased the cisplatin sensitivity by regulating autophagy through the mTOR signaling pathway. In addition, branched-chain amino acids or leucine treatment inhibited cisplatin- or BCAT1-mediated autophagy and increased cisplatin sensitivity by activating mTOR signaling in cancer cells. Moreover, inhibition of autophagy by chloroquine increased cisplatin sensitivity in vivo. Also, the knockdown of BCAT1 or the administration of leucine activated mTOR signaling, inhibited autophagy, and increased cisplatin sensitivity in cancer cells in vivo. These findings demonstrate a new mechanism, revealing that BCAT1 decreases cisplatin sensitivity in cancer cells by inducing mTOR-mediated autophagy via branched-chain amino acid leucine metabolism, providing an attractive pharmacological target to improve the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Lifang Luo
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenjing Sun
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weijian Zhu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuhan Li
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenqi Zhang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaohui Xu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Daoquan Fang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tan Hooi Min Grahn
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University Hospital, Lund, 22184, Sweden
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yihu Zheng
- Department of General Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|