1
|
Zheng Z, Zhai Y, Yan X, Wang Z, Zhang H, Xu R, Liu X, Cai J, Zhang Z, Shang Y, Zhang J, Yin J. Functions and Clinical Applications of Exosomes in Gastric Cancer. Int J Biol Sci 2025; 21:2330-2345. [PMID: 40083701 PMCID: PMC11900809 DOI: 10.7150/ijbs.98087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025] Open
Abstract
Gastric cancer is a common and highly invasive type of malignant tumor, the pathogenesis of which remains unclarified. However, exosomes are now known to play important roles in gastric cancer development and treatment. Cells use exosomes for the packaging and transportation of a variety of bioactive molecules, such as proteins, double-stranded DNA, and micro-ribonucleic acids, to other sites. Exosome-specific membrane structures and exosomal contents are widely involved in processes that facilitate material exchange and intercellular communication between gastric cancer cells. They help in forming a pre-metastatic microenvironment, promoting the proliferation and apoptosis of gastric cancer cells, and driving invasion, metastasis, and resistance to anti-tumor drugs. In this review, we aimed to summarize the findings of research articles indexed in the PubMed, Web of Science, and Embase databases and published up to May 31, 2024, on the role of exosomes in the pathogenesis of gastric cancer and their potential clinical applications in its treatment. Thus, research on exosomes may lead to breakthroughs in the early diagnosis of gastric cancer and identification of novel treatments.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Yuhao Zhai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Xiaosheng Yan
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Zimeng Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Haiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoye Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Jun Cai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Yuxi Shang
- Department of Hematology, Fuxing Hospital, Eighth Clinical Medical College, Capital Medical University, Beijing, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Beijing Institute of Clinical Medicine, Beijing, China
| |
Collapse
|
2
|
Moni ZA, Hasan Z, Alam MS, Roy N, Islam F. Diagnostic and Prognostic Significance of Exosomes and Their Components in Patients With Cancers. Cancer Med 2025; 14:e70569. [PMID: 39757782 DOI: 10.1002/cam4.70569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Cancer is the second leading cause of human mortality worldwide. Extracellular vesicles (EVs) from liquid biopsy samples are used in early cancer detection, characterization, and surveillance. Exosomes are a subset of EVs produced by all cells and present in all body fluids. They play an important role in the development of cancer because they are active transporters capable of carrying the contents of any type of cell. The objective of this review was to provide a brief overview of the clinical implication of exosomes or exosomal components in cancer diagnosis and prognosis. METHODS An extensive review of the current literature of exosomes and their components in cancer diagnosis and prognosis were carried out in the current study. RESULTS Tumor cells release exosomes that contribute to the formation of the pre-metastatic microenvironment, angiogenesis, invasion, and treatment resistance. On the contrary, tumor cells release more exosomes than normal cells, and these tumor-specific exosomes can carry the genomic and proteomic signature contents of the tumor cells, which can act as tools for the diagnosis and prognosis of patients with cancers. CONCLUSION This information may help clinicians to improve the management of cancer patients in clinical settings in the future.
Collapse
Affiliation(s)
- Zinnat Ara Moni
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Zahid Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Shaheen Alam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Nitai Roy
- Department of Biochemistry and Molecular Biology, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Chang J, Zhang L, Li Z, Qian C, Du J. Exosomal non-coding RNAs (ncRNAs) as potential biomarkers in tumor early diagnosis. Biochim Biophys Acta Rev Cancer 2024; 1879:189188. [PMID: 39313040 DOI: 10.1016/j.bbcan.2024.189188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Exosomes, extracellular vesicles carrying a cargo rich in various non-coding RNAs (ncRNAs), have emerged as crucial mediators of intercellular communication. Their stability, abundance, and specificity make exosomal ncRNAs promising candidates for biomarker discovery. The discovery of exosomal ncRNAs has unveiled a novel avenue for the exploration of biomarkers in tumor early diagnosis. This review consolidates current knowledge on the role of exosomal ncRNAs as potential biomarkers in the early detection of various tumors. We provide an overview of recent studies demonstrating the diagnostic potential of exosomal ncRNAs across multiple cancer types, highlighting their sensitivity, specificity, and feasibility for early detection. This review underscores the potential of exosomal ncRNAs as non-invasive biomarkers for early tumor diagnosis, paving the way for improved clinical outcomes through timely intervention and personalized management strategies.
Collapse
Affiliation(s)
- Jingyue Chang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Lingquan Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Zeting Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Chungen Qian
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen 518172, Guangdong, China.
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| |
Collapse
|
4
|
Zabeti Touchaei A, Norollahi SE, Najafizadeh A, Babaei K, Bakhshalipour E, Vahidi S, Samadani AA. Therapeutic combinations of exosomes alongside cancer stem cells (CSCs) and of CSC-derived exosomes (CSCEXs) in cancer therapy. Cancer Cell Int 2024; 24:334. [PMID: 39369258 PMCID: PMC11453077 DOI: 10.1186/s12935-024-03514-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Exosomes which are membrane vesicles released by cells have gained significant interest in the field of cancer therapy as a novel means of intercellular communication. Their role in immune activation and their pathophysiological functions in cancer therapy have been recognized. Exosomes carry diverse bioactive components including proteins, mRNA, microRNAs, and bioactive lipids. These molecules have therapeutic potential in promoting tissue regeneration, supporting stem cell activity, preventing cell death, modulating immune responses, and promoting the growth of new blood vessels. However, the precise roles of exosomes derived from mesenchymal stem cells (MSCs) in the treatment of various cancers are still not fully understood. Consequently, cancer stem cells (CSCs) can self-renew and differentiate into various cell types. Understanding the mechanisms that sustain their persistence is crucial for developing effective therapies. Exosomes have recently gained interest as vehicles for intercellular communication between CSCs and non-CSCs, influencing cancer progression and the microenvironment. Research is ongoing on the utilization of exosomes derived from cancer stem cells (CSC-Exosome) for cancer treatment. The composition of extracellular vesicles is influenced by the specific type and condition of the cells from which they are secreted. Circulating exosomes contain stable RNA molecules such as mRNAs, microRNAs, and long non-coding RNAs (lncRNAs). In this review, we will explore the significance of exosomes and their diverse cellular combinations in the context of cancer therapy.
Collapse
Affiliation(s)
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
7
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
8
|
Wang C, Song CM, Liu S, Chen LM, Xue SF, Huang SH, Lin H, Liu GH. ZFX-mediated upregulation of CEBPA-AS1 contributes to acute myeloid leukemia progression through miR-24-3p/CTBP2 axis. Cell Biol Toxicol 2023; 39:2631-2645. [PMID: 36715854 DOI: 10.1007/s10565-023-09792-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Emerging reports demonstrated that long non-coding RNAs (lncRNAs) play a role in the pathogenesis and metastasis of cancers. However, the biological functions and underlying mechanisms of LncRNA CEBPA-AS1 in acute myeloid leukemia (AML) remain largely elusive. The level of CEBPA-AS1 was examined in AML clinical tissues and cell lines via fluorescence in situ hybridization (FISH) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In vivo and in vitro functional tests were applied to identify the pro-oncogenic role of CEBPA-AS1 in AML development. The overexpressed CEBPA-AS1 was linked to poor survival in AML patients. Moreover, the relationships among CEBPA-AS1, Zinc Finger Protein X-Linked (ZFX), and miR-24-3p were predicted by bioinformatics and validated by RNA immunoprecipitation (RIP) and luciferase reporter assays. Our findings unveiled that transcription factor ZFX particularly interacted with the promoter of CEBPA-AS1 and activated CEBPA-AS1 transcription. Downregulation of CEBPA-AS1 inhibited the proliferation and invasion while promoted apoptosis of AML cells in in vitro, as well as in vivo, xenograft tumor growth was modified. However, overexpression of CEBPA-AS1 observed the opposite effects. Furthermore, CEBPA-AS1 acted as a competitive endogenous RNA (ceRNA) of miR-24-3p to attenuate the repressive effects of miR-24-3p on its downstream target CTBP2. Taken together, this study emphasized the pro-oncogenic role of CEBPA-AS1 in AML and illustrated its connections with the upstream transcription factor ZFX and the downstream regulative axis miR-24-3p/CTBP2, providing important insights to the cancerogenic process in AML.
Collapse
Affiliation(s)
- Chengyi Wang
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Chao-Min Song
- Department of Neonatology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Shan Liu
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Lu-Min Chen
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Shu-Fang Xue
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Si-Han Huang
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Han Lin
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Fujian Children's Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guang-Hua Liu
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China.
- Fujian Children's Hospital, Fuzhou, China.
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
9
|
Xue J, Qin S, Ren N, Guo B, Shi X, Jia E. Extracellular vesicle biomarkers in circulation for the diagnosis of gastric cancer: A systematic review and meta‑analysis. Oncol Lett 2023; 26:423. [PMID: 37664665 PMCID: PMC10472029 DOI: 10.3892/ol.2023.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/14/2023] [Indexed: 09/05/2023] Open
Abstract
The prognosis of a gastric cancer (GC) diagnosis is poor due to the current lack of effective early diagnostic methods. Extracellular vesicle (EV) biomarkers have previously demonstrated strong diagnostic efficiency for certain types of cancer, including pancreatic and lung cancer. The present review aimed to summarize the diagnostic value of circulating EV biomarkers for early stage GC. The PubMed, Medline and Web of Science databases were searched from May 1983 to September 18, 2022. All studies that reported the diagnostic performance of EV biomarkers for GC were included for analysis. Overall, 27 studies were selected containing 2,831 patients with GC and 2,117 controls. A total of 58 EV RNAs were reported in 26 studies, including 39 microRNAs (miRNAs), 10 long non-coding RNAs (lncRNAs), five circular RNAs, three PIWI-interacting RNAs and one mRNA, in addition to one protein in the remaining study. Meta-analysis of the aforementioned studies demonstrated that the pooled sensitivity, specificity and AUC value of the total RNAs were 84, 67% and 0.822, respectively. The diagnostic values of miRNAs were consistent with the total RNA, as the pooled sensitivity, specificity and AUC value were 84, 67% and 0.808, respectively. The pooled sensitivity, specificity and AUC values of lncRNAs were 89, 69% and 0.872, respectively, markedly higher compared with that of miRNAs. A total of five studies reported the diagnostic performance of EV RNA panels for early stage GC and reported powerful diagnostic values with a pooled sensitivity, specificity and AUC value of 80, 77% and 0.879, respectively. Circulating EV RNAs could have the potential to be used in the future as effective, noninvasive biomarkers for early GC diagnosis. Further research in this field is necessary to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Shaoyou Qin
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Na Ren
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, P.R. China
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| |
Collapse
|
10
|
Silva JMC, Teixeira EB, Mourão RMDS, Ferraz RS, Moreira FC, de Assumpção PP, Calcagno DQ. The landscape of lncRNAs in gastric cancer: from molecular mechanisms to potential clinical applications. Front Pharmacol 2023; 14:1237723. [PMID: 37670949 PMCID: PMC10476871 DOI: 10.3389/fphar.2023.1237723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Gastric cancer (GC) is a highly prevalent and deadly malignant neoplasm worldwide. Currently, long non-coding RNAs (lncRNAs) have recently been identified as crucial regulators implicated in GC development and progression. Dysregulated expression of lncRNAs is commonly associated with enhanced tumor migration, invasiveness, and therapy resistance, highlighting their potential as promising targets for clinical applications. This review offers a comprehensive historical overview of lncRNAs in GC, describes the molecular mechanisms, and discusses the prospects and challenges of establishing lncRNAs as precision biomarkers.
Collapse
Affiliation(s)
| | | | | | - Rafaella Sousa Ferraz
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem, Pará, Brazil
| | | | | | | |
Collapse
|
11
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Rahdan F, Bina F, Norouz Dolatabadi E, Shaterabadi D, Khatami SH, Karami Y, Dorosti N, Taheri-Anganeh M, Asadi P, Soltani R, Pashaei MR, Movahedpour A. MicroRNA electrochemical biosensors for pancreatic cancer. Clin Chim Acta 2023; 548:117472. [PMID: 37419303 DOI: 10.1016/j.cca.2023.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers worldwide. MicroRNAs (miRs) are sensitive molecular diagnostic tools that can serve as highly accurate biomarkers in many disease states in general and cancer specifically. MiR-based electrochemical biosensors can be easily and inexpensively manufactured, making them suitable for clinical use and mass production for point-of-care use. This paper reviews nanomaterial-enhanced miR-based electrochemical biosensors in pancreatic cancer detection, analyzing both labeled and label-free approaches, as well as enzyme-based and enzyme-free methods.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Bina
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Norouz Dolatabadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousof Karami
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rahmatollah Soltani
- Clinical Education Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
13
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
14
|
Exosomal LncRNAs in Gastrointestinal Cancer: Biological Functions and Emerging Clinical Applications. Cancers (Basel) 2023; 15:cancers15030959. [PMID: 36765913 PMCID: PMC9913195 DOI: 10.3390/cancers15030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Due to the lack of specific and effective biomarkers and therapeutic targets, the early diagnosis and treatment of gastrointestinal cancer remain unsatisfactory. As a type of nanosized vesicles derived from living cells, exosomes mediate cell-to-cell communication by transporting bioactive molecules, thus participating in the regulation of many pathophysiological processes. Recent evidence has revealed that several long non-coding RNAs (lncRNAs) are enriched in exosomes. Exosomes-mediated lncRNAs delivery is critically involved in various aspects of gastrointestinal cancer progression, such as tumor proliferation, metastasis, angiogenesis, stemness, immune microenvironment, and drug resistance. Exosomal lncRNAs represent promising candidates to act as the diagnosis biomarkers and anti-tumor targets. This review introduces the major characteristics of exosomes and lncRNAs and describes the biological functions of exosomal lncRNAs in gastrointestinal cancer development. The preclinical studies on using exosomal lncRNAs to monitor and treat gastrointestinal cancer are also discussed, and the opportunities and challenges for translating them into clinical practice are evaluated.
Collapse
|
15
|
Vosough P, Khatami SH, Hashemloo A, Tajbakhsh A, Karimi-Fard F, Taghvimi S, Taheri-Anganeh M, Soltani Fard E, Savardashtaki A, Movahedpour A. Exosomal lncRNAs in gastrointestinal cancer. Clin Chim Acta 2023; 540:117216. [PMID: 36592922 DOI: 10.1016/j.cca.2022.117216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC.
Collapse
Affiliation(s)
- Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
16
|
Roshani M, Baniebrahimi G, Mousavi M, Zare N, Sadeghi R, Salarinia R, Sheida A, Molavizadeh D, Sadeghi S, Moammer F, Zolfaghari MR, Mirzaei H. Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Front Oncol 2022; 12:1014949. [PMID: 36591473 PMCID: PMC9795196 DOI: 10.3389/fonc.2022.1014949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Noushid Zare
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Khan N, Umar MS, Haq M, Rauf T, Zubair S, Owais M. Exosome-encapsulated ncRNAs: Emerging yin and yang of tumor hallmarks. Front Genet 2022; 13:1022734. [PMID: 36338993 PMCID: PMC9632295 DOI: 10.3389/fgene.2022.1022734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Tumorigenesis is a multifaceted process, where multiple physiological traits serving as cancer’s distinctive characteristics are acquired. “Hallmarks of cancer” is a set of cognitive abilities acquired by human cells that are pivotal to their tumor-forming potential. With limited or no protein-coding ability, non-coding RNAs (ncRNAs) interact with their target molecules and yield significant regulatory effects on several cell cycle processes. They play a “yin” and “yang” role, thereby functioning both as oncogenic and tumor suppressor and considered important in the management of various types of cancer entities. ncRNAs serve as important post-transcriptional and translational regulators of not only unrestricted expansion and metastasis of tumor cells but also of various biological processes, such as genomic mutation, DNA damage, immune escape, and metabolic disorder. Dynamical attributes such as increased proliferative signaling, migration, invasion, and epithelial–mesenchymal transition are considered to be significant determinants of tumor malignancy, metastatic dissemination, and therapeutic resistance. Furthermore, these biological attributes engage tumor cells with immune cells within the tumor microenvironment to promote tumor formation. We elaborate the interaction of ncRNAs with various factors in order to regulate cancer intra/intercellular signaling in a specific tumor microenvironment, which facilitates the cancer cells in acquiring malignant hallmarks. Exosomes represent a means of intercellular communication and participate in the maintenance of the tumor hallmarks, adding depth to the intricate, multifactorial character of malignant neoplasia. To summarize, ncRNAs have a profound impact on tumors, affecting their microcirculation, invasiveness, altered metabolism, microenvironment, and the capacity to modify the host immunological environment. Though the significance of ncRNAs in crosstalk between the tumor and its microenvironment is being extensively explored, we intend to review the hallmarks in the light of exosome-derived non-coding RNAs and their impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohamed Haq
- University of Houston, Houston, TX, United States
| | - Talha Rauf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Swaleha Zubair
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- *Correspondence: Mohammad Owais,
| |
Collapse
|
18
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
19
|
Tian J, Luo B. Identification of Three Prognosis-Related Differentially Expressed lncRNAs Driven by Copy Number Variation in Thyroid Cancer. J Immunol Res 2022; 2022:9203796. [PMID: 35642209 PMCID: PMC9148411 DOI: 10.1155/2022/9203796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Thyroid cancer as the malignant tumor with the highest incidence in the endocrine system also shows a fast growth and development. In this work, we developed a new method to identify copy number variation- (CNV-) driven differentially expressed lncRNAs in thyroid cancer for predicting cancer prognosis. The data of RNA sequencing, CNV, methylation, mutation, and clinical details of thyroid cancer were obtained from the Cancer Genome Atlas database (TCGA). Molecular subtypes were clustered by iClusterPlus. Weighted gene co-expression network analysis (WGCNA) was employed to show co-expression modules. DEseq2 was conducted to identify protein coding genes (PCGs) and differentially expressed lncRNAs. CNV was detected using GISTIC 2.0. Three molecular subtypes were identified, and 68 differentially expressed lncRNAs (DElncRNAs) related to cancer were found among different molecular subtypes. CNV of FOXD2-AS1, FAM181A-AS1, and RNF157-AS1 was associated with overall survival and was involved in cancer-related pathways. These three DElncRNAs discovered based on CNV could serve as prognostic biomarkers to predict prognosis for thyroid cancer and new targets to explore molecular drugs.
Collapse
Affiliation(s)
- Jinyi Tian
- Department of General Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing, China
| | - Bin Luo
- Department of General Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing, China
| |
Collapse
|
20
|
Kang F, Jiang F, Ouyang L, Wu S, Fu C, Liu Y, Li Z, Tian Y, Cao X, Wang X, He Q. Potential Biological Roles of Exosomal Long Non-Coding RNAs in Gastrointestinal Cancer. Front Cell Dev Biol 2022; 10:886191. [PMID: 35602607 PMCID: PMC9114804 DOI: 10.3389/fcell.2022.886191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes, a type of extracellular vesicles (EVs), are secreted by almost all cells and contain many cellular constituents, such as nucleic acids, lipids, and metabolites. In addition, they play a crucial role in intercellular communication and have been proved to be involved in the development and treatment of gastrointestinal cancer. It has been confirmed that long non-coding RNAs (lncRNAs) exert a range of biological functions, such as cell metastasis, tumorigenesis, and therapeutic responses. This review mainly focused on the emerging roles and underlying molecular mechanisms of exosome-derived lncRNAs in gastrointestinal cancer in recent years. The biological roles of exosomal lncRNAs in the pathogenesis and therapeutic responses of gastrointestinal cancers were also investigated.
Collapse
Affiliation(s)
- Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Feng Jiang
- Department of Medicine, Xizang Minzu University, Xianyang, China
| | - Lingzi Ouyang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Shangjun Wu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Chencheng Fu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhilan Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yu Tian
- Department of Medicine, Xizang Minzu University, Xianyang, China
| | - Xiaolan Cao
- Department of Medicine, Xizang Minzu University, Xianyang, China
| | - Xiaoping Wang
- Department of Medicine, Xizang Minzu University, Xianyang, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
| |
Collapse
|
21
|
Chen L, Ge C, Feng X, Fu H, Wang S, Zhu J, Linghu E, Zheng X. Identification of Combinations of Plasma lncRNAs and mRNAs as Potential Biomarkers for Precursor Lesions and Early Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1458320. [PMID: 35186077 PMCID: PMC8856804 DOI: 10.1155/2022/1458320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Patients with gastric cancer (GC) are usually first diagnosed at an advanced stage due to the absence of obvious symptoms at an early GC (EGC) stage. Therefore, it is necessary to identify an effective screening method to detect precursor lesions of GC (PLGC) and EGC to increase the 5-year survival rate of patients. Cell-free RNA, as a biomarker, has shown potential in early diagnosis, personalised treatment, and prognosis of cancer. In this study, six RNAs (CEBPA-AS1, INHBA-AS1, AK001058, UCA1, PPBP, and RGS18) were analysed via real-time quantitative polymerase chain reaction (RT-qPCR) using the plasma of patients with EGC and PLGC to identify diagnostic biomarkers. The receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic accuracy. Among the six RNAs, four lncRNAs (CEBPA-AS1, INHBA-AS1, AK001058, and UCA1) were upregulated and two mRNAs (PPBP and RGS18) were downregulated in the plasma of patients with PLGC and EGC. According to the findings of the ROC analysis, the four-RNA combination of INHBA-AS1, AK001058, UCA1, and RGS18 had the highest area under the curve (AUC) value for determining risk of GC in patients with PLGC and the six-RNA combination including CEBPA-AS1, INHBA-AS1, AK001058, UCA1, PPBP, and RGS18 had the highest AUC value for determining the risk of GC in patients with EGC. The results suggest the potential usefulness of noninvasive biomarkers for the molecular diagnosis of GC at earlier stages.
Collapse
Affiliation(s)
- Lu Chen
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiuxue Feng
- Division of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 1000853, China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shasha Wang
- Division of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 1000853, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Enqiang Linghu
- Division of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 1000853, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
22
|
Yun BD, Choi YJ, Son SW, Cipolla GA, Berti FCB, Malheiros D, Oh TJ, Kuh HJ, Choi SY, Park JK. Oncogenic Role of Exosomal Circular and Long Noncoding RNAs in Gastrointestinal Cancers. Int J Mol Sci 2022; 23:ijms23020930. [PMID: 35055115 PMCID: PMC8781283 DOI: 10.3390/ijms23020930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially expressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular activities by physically interacting with microRNAs and proteins and altering their activity. It has also been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells. Exosomes are then discharged into the extracellular environment, where they are taken up by other cells. As a result, exosomal ncRNA cargo is critical for cell-cell communication within the cancer microenvironment. Exosomal ncRNAs can regulate a range of events, such as angiogenesis, metastasis, immune evasion, drug resistance, and epithelial-to-mesenchymal transition. To set the groundwork for developing novel therapeutic strategies against gastrointestinal malignancies, a thorough understanding of circRNAs and lncRNAs is required. In this review, we discuss the function and intrinsic features of oncogenic circRNAs and lncRNAs that are enriched within exosomes.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Ye Ji Choi
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
- Genome-Based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Jong Kook Park
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
23
|
Zhu K, Yang J, Zhu H, Wang Q. Diagnostic value of exosome derived long noncoding RNA in gastric cancer in Chinese population: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e28153. [PMID: 34941064 PMCID: PMC8702263 DOI: 10.1097/md.0000000000028153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Objective to systematically evaluate the diagnostic value of long noncoding RNA (lncRNA) in gastric cancer (GC) in the Chinese population. METHODS PubMed, Web of Science, EMBASE, Cochrane Library, CNKI, and Wanfang Database were searched. According to the search strategy and inclusion and exclusion criteria, 2 staff members screened the relevant kinds of literature from January 2010 to December 2020 and extracted the relevant data. Revman5.3, Meta-Disc1.4, and Stata15.1 software were used to analyze the relationship between lncRNA from exosomes and the diagnosis of GC. The combined values of sensitivity (SEN), specificity (SPE), positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio (DOR) and their corresponding 95% confidence intervals (CIs) were calculated. The summary receiver operating characteristic curve was drawn and the area under the ROC curve (AUC) value was calculated. RESULTS In 9 studies, 1314 samples were included, including 792 cases in the case group and 522 cases in the control group. The combined SEN was 0.82 (95% CI: 0.77-0.86), the combined SPE was 0.78 (95% CI: 0.72-0.83), the combined positive likelihood ratio was 3.7 (95% CI: 2.9-4.6), the negative likelihood ratio was 0.23 (95% CI: 0.18-0.29), and the DOR was 16 (95% CI: 12-23), AUC was 0.87 (95% CI: 0.84-0.90). Subgroup analysis showed that the SEN, SPE, likelihood ratio, DOR, and AUC of plasma-derived lncRNA in the diagnosis of GC were better than those of serum. CONCLUSIONS Exosome-derived lncRNA may be a new potential biomarker for the clinical diagnosis of GC.
Collapse
Affiliation(s)
- Kangle Zhu
- Department of Medicine, Xinglin College, Nantong University, China
| | - Jinxian Yang
- Department of Medicine, Xinglin College, Nantong University, China
| | - Huixia Zhu
- Department of Basic Medicine, Medical College, Nantong University, China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, China
| |
Collapse
|
24
|
Hu F, Rao M, Zhang M, Meng Q, Wan M, Zhang X, Ding L, Jiang Y. Long non-coding RNA profiles in plasma exosomes of patients with gastric high-grade intraepithelial neoplasia. Exp Ther Med 2021; 23:1. [PMID: 34815753 PMCID: PMC8593877 DOI: 10.3892/etm.2021.10923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding (lnc) RNAs in circulating exosomes are a new class of promising cancer biomarkers; however, their expression in exosomes derived from gastric high-grade intraepithelial neoplasia (GHGIN) has not been reported. In the present study, differentially expressed (DE) lncRNAs were analyzed in the peripheral blood collected from 5 patients with GHGIN and 5 healthy donors using high-throughput sequencing. Reverse transcription-quantitative PCR analysis was performed on 6 randomly selected DE lncRNAs to validate the reliability of the sequencing results. The potential roles of the DE lncRNAs in GHGIN were investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses. A total of 25,145 lncRNAs were identified in all the samples and 83 DE lncRNAs were further screened, including 76 upregulated and 7 downregulated DE lncRNAs. GO and KEGG analyses predicted that the DE lncRNAs played notable roles in ‘protein/macromolecule glycosylation’, ‘regulation of protein ubiquitination’, ‘renin-angiotensin system’ and ‘MAPK signaling pathways’. A lncRNA-micro (mi)RNA-mRNA interaction network was constructed and used to perform association analyses. It was found that 83 lncRNAs were abnormally expressed in GHGIN, with some potential functions associated with gastric cancer. Furthermore, the lncRNA-miRNA-mRNA interaction network indicated that 7 DE lncRNAs may play a notable role in the occurrence and development of GHGIN. The results of the present study showed the expression profiles of lncRNAs in human GHGIN, elucidated some of the molecular changes associated with GHGIN and improved the understanding of the molecular mechanisms underlying GHGIN and gastric cancer.
Collapse
Affiliation(s)
- Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Min Rao
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Manli Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Qingqing Meng
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xiuna Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Lili Ding
- Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
25
|
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S, Liu YS. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Qun-Yan Xiang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jie-Yu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
26
|
Ranjan S, Jain S, Bhargava A, Shandilya R, Srivastava RK, Mishra PK. Lateral flow assay-based detection of long non-coding RNAs: A point-of-care platform for cancer diagnosis. J Pharm Biomed Anal 2021; 204:114285. [PMID: 34333453 DOI: 10.1016/j.jpba.2021.114285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow assay (LFA) is a flexible, simple, low-costpoint-of-care platform for rapid detection of disease-specific biomarkers. Importantly, the ability of the assay to capture the circulating bio-molecules has gained significant attention, as it offers a potential minimal invasive system for early disease diagnosis and prognosis. In the present article, we review an innovative concept of LFA-based detection of circulating long non-coding RNAs (lncRNAs), one of the key regulators of fundamental biological processes. In addition, their disease-specific expression pattern and presence in biological fluids at differential levels make them excellent biomarker candidates for cancer detection. Our article also provides an update on the requirements for developing and improving such systems and discusses the key aspects of material selection, operational concepts, principles and conceptual design. We assume that the reviewed points will be helpful to improve the diagnostic applicability of LFA based lncRNA detection in cancer diagnosis.
Collapse
Affiliation(s)
- Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Jain
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
27
|
Shi W, Li X, Su X, Wen H, Chen T, Wu H, Liu M. The role of multiple metabolic genes in predicting the overall survival of colorectal cancer: A study based on TCGA and GEO databases. PLoS One 2021; 16:e0251323. [PMID: 34398900 PMCID: PMC8367004 DOI: 10.1371/journal.pone.0251323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/25/2021] [Indexed: 12/22/2022] Open
Abstract
The recent advances in gene chip technology have led to the identification of multiple metabolism-related genes that are closely associated with colorectal cancer (CRC). Nevertheless, none of these genes could accurately diagnose or predict CRC. The prognosis of CRC has been made by previous prognostic models constructed by using multiple genes, however, the predictive function of multi-gene prognostic models using metabolic genes for the CRC prognosis remains unexplored. In this study, we used the TCGA-CRC cohort as the test dataset and the GSE39582 cohort as the experimental dataset. Firstly, we constructed a prognostic model using metabolic genes from the TCGA-CRC cohort, which were also associated with CRC prognosis. We analyzed the advantages of the prognostic model in the prognosis of CRC and its regulatory mechanism of the genes associated with the model. Secondly, the outcome of the TCGA-CRC cohort analysis was validated using the GSE39582 cohort. We found that the prognostic model can be employed as an independent prognostic risk factor for estimating the CRC survival rate. Besides, compared with traditional clinical pathology, it can precisely predict CRC prognosis as well. The high-risk group of the prognostic model showed a substantially lower survival rate as compared to the low-risk group. In addition, gene enrichment analysis of metabolic genes showed that genes in the prognostic model are enriched in metabolism and cancer-related pathways, which may explain its underlying mechanism. Our study identified a novel metabolic profile containing 11 genes for prognostic prediction of CRC. The prognostic model may unravel the imbalanced metabolic microenvironment, and it might promote the development of biomarkers for predicting treatment response and streamlining metabolic therapy in CRC.
Collapse
Affiliation(s)
- Weijun Shi
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xincan Li
- Department of General Medicine, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xu Su
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Hexin Wen
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianwen Chen
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huazhang Wu
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
- * E-mail: (HW); (ML)
| | - Mulin Liu
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- * E-mail: (HW); (ML)
| |
Collapse
|
28
|
Heydari R, Abdollahpour-Alitappeh M, Shekari F, Meyfour A. Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Rev Mol Diagn 2021; 21:939-962. [PMID: 34308738 DOI: 10.1080/14737159.2021.1954909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
29
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
30
|
Wu X, Ren Y, Yao R, Zhou L, Fan R. Circular RNA circ-MMP11 Contributes to Lapatinib Resistance of Breast Cancer Cells by Regulating the miR-153-3p/ANLN Axis. Front Oncol 2021; 11:639961. [PMID: 34295807 PMCID: PMC8290203 DOI: 10.3389/fonc.2021.639961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Drug-resistance is a major obstacle to the treatment of breast cancer. Circular RNA (circRNA) circ-MMP11 has been reported to be promoting the progression of breast cancer. This study is designed to explore the role and mechanism of circ-MMP11 in lapatinib resistance in breast cancer. Methods Circ-MMP11, microRNA-153-3p (miR-153-3p), and Anillin (ANLN) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, number of colonies, apoptosis, migration, and invasion were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation, flow cytometry, and transwell assays, respectively. Exosomes were exerted and detected by differential centrifugation and a transmission electron microscope. The protein levels of CD63, CD9, and ANLN were assessed by western blot assay. The binding relationship between miR-153-3p and circ-MMP11 or ANLN was predicted by circinteractome or starbase, and then verified by a dual-luciferase reporter assay and RNA pull-down assay. The biological role of circ-MMP11 on breast cancer tumor growth and drug resistance was detected by the xenograft tumor model in vivo. Results Circ-MMP11 and ANLN were highly expressed, and miR-153-3p was decreased in LR breast cancer tissues and cells. Circ-MMP11 could be transported by exosomes. Furthermore, circ-MMP11 knockdown promoted lapatinib sensitivity by repressing cell viability, colony number, migration, invasion, and boosting apoptosis in LR breast cancer cells. Circ-MMP11 deficiency improved the drug sensitivity of breast cancer in vivo. Mechanically, circ-MMP11 could regulate ANLN expression through sponging miR-153-3p. Conclusion Circ-MMP11 could be transferred by exosomes in breast cancer cells. And circ-MMP11 functioned as a sponge of miR-153-3p to regulate ANLN expression, thereby promoting lapatinib resistance in breast cancer cells, providing therapeutic targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yi Ren
- Department of Thyroid and Mammary Gland, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Rong Yao
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Leilei Zhou
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Ruihua Fan
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
31
|
Hu F, Liu J, Liu H, Li F, Wan M, Zhang M, Jiang Y, Rao M. Role of Exosomal Non-coding RNAs in Gastric Cancer: Biological Functions and Potential Clinical Applications. Front Oncol 2021; 11:700168. [PMID: 34195097 PMCID: PMC8238120 DOI: 10.3389/fonc.2021.700168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common fatal cancers worldwide. The communication between GC and other cells in the GC microenvironment directly affects GC progression. Recently, exosomes have been revealed as new players in intercellular communication. They play an important role in human health and diseases, including cancer, owing to their ability to carry various bioactive molecules, including non-coding RNAs (ncRNAs). NcRNAs, including micro RNAs, long non-coding RNAs, and circular RNAs, play a significant role in various pathophysiological processes, especially cancer. Increasing evidence has shown that exosomal ncRNAs are involved in the regulation of tumor proliferation, invasion, metastasis, angiogenesis, immune regulation, and treatment resistance in GC. In addition, exosomal ncRNAs have promising potential as diagnostic and prognostic markers for GC. Considering the biocompatibility of exosomes, they can also be used as biological carriers for targeted therapy. This review summarizes the current research progress on exosomal ncRNAs in gastric cancer, focusing on their biological role in GC and their potential as new biomarkers for GC and therapeutics. Our review provides insight into the mechanisms involved in GC progression, which may provide a new point cut for the discovery of new diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jixuan Liu
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Huibo Liu
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Minjie Wan
- Department of Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, Liu Y, Shang L, Li L. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021; 20:71. [PMID: 33926452 PMCID: PMC8081769 DOI: 10.1186/s12943-021-01365-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a common tumour that affects humans worldwide, is highly malignant and has a poor prognosis. Small extracellular vesicles (sEVs), especially exosomes, are nanoscale vesicles released by various cells that deliver bioactive molecules to recipient cells, affecting their biological characteristics, changing the tumour microenvironment and producing long-distance effects. In recent years, many studies have clarified the mechanisms by which sEVs function with regard to the initiation, progression, angiogenesis, metastasis and chemoresistance of GC. These molecules can function as mediators of cell-cell communication in the tumour microenvironment and might affect the efficacy of immunotherapy. Due to their unique physiochemical characteristics, sEVs show potential as effective antitumour vaccines as well as drug carriers. In this review, we summarize the roles of sEVs in GC and highlight the clinical application prospects in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Mengdi Fu
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Wei Chong
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| |
Collapse
|
33
|
Salmond N, Williams KC. Isolation and characterization of extracellular vesicles for clinical applications in cancer - time for standardization? NANOSCALE ADVANCES 2021; 3:1830-1852. [PMID: 36133088 PMCID: PMC9419267 DOI: 10.1039/d0na00676a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 05/08/2023]
Abstract
Extracellular vesicles (EVs) are nanometer sized lipid enclosed particles released by all cell types into the extracellular space and biological fluids in vivo, and into cell culture media in vitro. An important physiological role of EVs is cell-cell communication. EVs interact with, and deliver, their contents to recipient cells in a functional capacity; this makes EVs desirable vehicles for the delivery of therapeutic cargoes. In addition, as EVs contain proteins, lipids, glycans, and nucleic acids that reflect their cell of origin, their potential utility in disease diagnosis and prognostication is of great interest. The number of published studies analyzing EVs and their contents in the pre-clinical and clinical setting is rapidly expanding. However, there is little standardization as to what techniques should be used to isolate, purify and characterize EVs. Here we provide a comprehensive literature review encompassing the use of EVs as diagnostic and prognostic biomarkers in cancer. We also detail their use as therapeutic delivery vehicles to treat cancer in pre-clinical and clinical settings and assess the EV isolation and characterization strategies currently being employed. Our report details diverse isolation strategies which are often dependent upon multiple factors such as biofluid type, sample volume, and desired purity of EVs. As isolation strategies vary greatly between studies, thorough EV characterization would be of great importance. However, to date, EV characterization in pre-clinical and clinical studies is not consistently or routinely adhered to. Standardization of EV characterization so that all studies image EVs, quantitate protein concentration, identify the presence of EV protein markers and contaminants, and measure EV particle size and concentration is suggested. Additionally, the use of RNase, DNase and protease EV membrane protection control experiments is recommended to ensure that the cargo being investigated is truly EV associated. Overall, diverse methodology for EV isolation is advantageous as it can support different sample types and volumes. Nevertheless, EV characterization is crucial and should be performed in a rigorous manor.
Collapse
Affiliation(s)
- Nikki Salmond
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| | - Karla C Williams
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| |
Collapse
|
34
|
Cao F, Hu Y, Chen Z, Han W, Lu W, Xu J, Ding H, Shen X. Circulating long noncoding RNAs as potential biomarkers for stomach cancer: a systematic review and meta-analysis. World J Surg Oncol 2021; 19:89. [PMID: 33771184 PMCID: PMC8004465 DOI: 10.1186/s12957-021-02194-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Recent researches have suggested that long noncoding RNA (lncRNA) is involved in the tumorigenesis and development of stomach cancer (SC). This meta-analysis aimed to identify the diagnostic performance of circulating lncRNAs in SC. Methods All relevant studies were systematically searched through PubMed, Web of Science, Cochrane Library, and EMBASE databases. The diagnostic values of lncRNAs were mainly assessed by pooled sensitivity, specificity, and summary receiver operating characteristic area under the curve (SROC AUC). Meta-DiSc 1.4, Review Manager 5.3, and STATA 12.0 were used for statistical analysis. The protocol for this systematic review was registered on INPLASY (INPLASY202120079) and is available in full on the inplasy.com (10.37766/inplasy2021.2.0079). Results A total of 42 eligible studies were included in this meta-analysis. The pooled sensitivity, specificity, and SROC AUC were 0.78 (95%CI 0.75–0.81), 0.75 (95%CI 0.71–0.78), and 0.83 (95%CI 0.80–0.86), respectively, suggesting that the lncRNAs test had a high accuracy for the diagnosis of SC. Obvious heterogeneity might come from the type of lncRNA through subgroup and meta-regression analysis. Fagan diagram shows the clinical value of lncRNAs test in SC. Conclusions Abnormal expression of circulating lncRNAs exhibits a high efficacy for diagnosing SC, which is promising in clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02194-6.
Collapse
Affiliation(s)
- Fang Cao
- Department of General surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yongwei Hu
- Department of General surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Zaichang Chen
- Department of General surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Wei Han
- Department of General surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Weijie Lu
- Department of General surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jianhao Xu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Houzhong Ding
- Department of General surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| | - Xiaojun Shen
- Department of General surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| |
Collapse
|
35
|
Fan X, Wang Y. Circular RNA circSPATA6 Inhibits the Progression of Oral Squamous Cell Carcinoma Cells by Regulating TRAF6 via miR-182. Cancer Manag Res 2021; 13:1817-1829. [PMID: 33654430 PMCID: PMC7910102 DOI: 10.2147/cmar.s292074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) has become a widely concerned social problem. Circular RNA spermatogenesis-associated protein 6 (circSPATA6) exhibited low expression in OSCC tissues, yet the regulatory mechanism of circSPATA6 remains vague. Methods Levels of circSPATA6, linear SPATA6, microRNA-182 (miR-182), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Migration, invasion, cell cycle arrest, and apoptosis were assessed by Wound-healing, Matrigel invasion, and Flow cytometry assays. The binding relationship between miR-182 and circSPATA6 or TRAF6 was predicted by circRNA interactome or DIANA TOOL and then proved by the dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. TRAF6 protein level was measured by Western blot assay. The biological role of circSPATA6 on OSCC tumor growth was analyzed by xenograft tumor model in vivo. Exosomes were isolated and detected by differential centrifugation and a transmission electron microscope. Results CircSPATA6 and TRAF6 were declined, and miR-182 was elevated in OSCC cells. Functionally, circSPATA6 impeded migration and invasion, and facilitated cell cycle arrest and apoptosis of OSCC cells. Mechanistically, circSPATA6 could modulate TRAF6 expression through sponging miR-182. Moreover, circSPATA6 blocked tumor growth in the OSCC mice model. Exosomal circSPATA6 retarded the growth of OSCC cells. Conclusion CircSPATA6 curbed migration and invasion, and expedited cell cycle arrest and apoptosis in OSCC cells partly through regulating the miR-182/TRAF6 axis. These findings hinted at an underlying circRNA-targeted therapy for OSCC.
Collapse
Affiliation(s)
- Xinhua Fan
- Department of Stomatology, Inner Mongolia Baotou Steel Hospital, Baotou City, Inner Mongolia, People's Republic of China
| | - Ying Wang
- Department of Stomatology, Inner Mongolia Baotou Steel Hospital, Baotou City, Inner Mongolia, People's Republic of China
| |
Collapse
|
36
|
Da M, Jiang H, Xie Y, Jin W, Han S. The Biological Roles of Exosomal Long Non-Coding RNAs in Cancers. Onco Targets Ther 2021; 14:271-287. [PMID: 33488093 PMCID: PMC7814250 DOI: 10.2147/ott.s281175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although it has many treatment strategies, cancer is still one of the most common causes of morbidity and mortality in the world. Exosomes are small extracellular vesicles (EVs) that can be secreted by almost all cells. Exosomes can encapsulate various types of molecules, including lipids, proteins, DNA, messenger RNAs, and non-coding RNAs [microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)]. Exosome release is a way of communication between cells. They act as powerful signaling molecules between cancer cells and the surrounding cells that make up the cancer microenvironment. lncRNAs are a class of non-coding P, with a length of more than 200 bp, which are differentially expressed in many cancers. lncRNAs have been widely regarded as a new medium for cancer behavior. The presence of lncRNAs in circulation can be acellular or encapsulated in exosomal bodies released by cancer cells. Exosomal lncRNAs are functional and can transmit different phenotypic patterns to neighboring cells. Here, we reviewed the molecular mechanism of exosomal lncRNAs in regulating cancer progression, angiogenesis, and chemotherapy resistance, as well as the prospective applications of exosomal lncRNAs in cancer diagnosis, treatment and prognosis. These findings potentially promote the current understanding of exosomal lncRNAs and provide a new research direction for exosomal lncRNAs in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Miao Da
- Department of Nursing, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Hao Jiang
- Department of Nursing, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Yangyang Xie
- Key Laboratory of Diagnosis and Treatment of Digestive System Cancers of Zhejiang Province, Ningbo 315000, Zhejiang, People's Republic of China
| | - Weili Jin
- Department of Gastroenterology, Nanxun District People's Hospital, Huzhou, Zhejiang 313009, People's Republic of China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, Zhejiang, People's Republic of China
| |
Collapse
|
37
|
The Significance of Exosomal RNAs in the Development, Diagnosis, and Treatment of Gastric Cancer. Genes (Basel) 2021; 12:genes12010073. [PMID: 33430032 PMCID: PMC7826966 DOI: 10.3390/genes12010073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. Exosomes, a subset of extracellular vesicles with an average diameter of 100 nm, contain and transfer a variety of functional macromolecules such as proteins, lipids, and nucleic acids. A large number of studies indicated that exosomes can play a significant role in the initiation and development of GC via facilitating intercellular communication between gastric cancer cells and microenvironment. Exosomal RNAs, one of the key functional cargos, are involved in the pathogenesis, development, and metastasis of GC. In addition, recent studies elucidated that exosomal RNAs may serve as diagnostic and prognostic biomarkers or therapeutic targets for GC. In this review, we summarized the function of exosomal RNA in the tumorigenesis, progression, diagnosis, and treatment of GC, which may further unveil the functions of exosome and promote the potentially diagnostic and therapeutic application of exosomes in GC.
Collapse
|
38
|
Zhang J, Piao HY, Wang Y, Lou MY, Guo S, Zhao Y. Development and validation of a three-long noncoding RNA signature for predicting prognosis of patients with gastric cancer. World J Gastroenterol 2020; 26:6929-6944. [PMID: 33311941 PMCID: PMC7701940 DOI: 10.3748/wjg.v26.i44.6929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/06/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most frequently diagnosed gastrointestinal cancers throughout the world. Novel prognostic biomarkers are required to predict the prognosis of GC.
AIM To identify a multi-long noncoding RNA (lncRNA) prognostic model for GC.
METHODS Transcriptome data and clinical data were downloaded from The Cancer Genome Atlas. COX and least absolute shrinkage and selection operator regression analyses were performed to screen for prognosis associated lncRNAs. Receiver operating characteristic curve and Kaplan-Meier survival analyses were applied to evaluate the effectiveness of the model.
RESULTS The prediction model was established based on the expression of AC007991.4, AC079385.3, and AL109615.2 Based on the model, GC patients were divided into “high risk” and “low risk” groups to compare the differences in survival. The model was re-evaluated with the clinical data of our center.
CONCLUSION The 3-lncRNA combination model is an independent prognostic factor for GC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastric Cancer, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Hai-Yan Piao
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Yue Wang
- Department of Gastric Cancer, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Mei-Yue Lou
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, Kumamoto 860-8556, Kumamoto, Japan
| | - Shuai Guo
- Department of Gastric Cancer, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Yan Zhao
- Department of Gastric Cancer, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| |
Collapse
|
39
|
Abdi E, Latifi-Navid S, Abdi F, Taherian-Esfahani Z. Emerging circulating MiRNAs and LncRNAs in upper gastrointestinal cancers. Expert Rev Mol Diagn 2020; 20:1121-1138. [DOI: 10.1080/14737159.2020.1842199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Abdi
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Zahra Taherian-Esfahani
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
40
|
Zhong Y, Wang D, Ding Y, Tian G, Jiang B. Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5p. Biotechnol Lett 2020; 43:339-351. [PMID: 33123829 DOI: 10.1007/s10529-020-03036-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Chemoresistance is one of the major obstacles for gastric cancer (GC) treatment. Exosome-mediated transfer of circular RNAs (circRNAs) is associated with the drug-resistance in GC. Circ_0032821 has been reported as an oncogene in GC. This study is designed to explore the function and mechanism of Exosomal circ_0032821 in oxaliplatin (OXA) resistance of GC. RESULTS Circ_0032821 was highly expressed in OXA-resistant GC cells, and exosomes secreted by OXA-resistant GC cells. Moreover, circ_0032821-containing exosomes secreted by OXA-resistant GC cells could boost OXA resistance, proliferation, migration, and invasion in OXA-sensitive GC cells. The mechanical analysis discovered that circ_0032821 acted as a sponge of miR-515-5p to regulate SOX9 expression. Circ_0032821 silencing and OXA treatment repressed tumor growth in the GC mice model. CONCLUSIONS Exosomal circ_0032821 boosted OXA resistance of GC cells partly by the miR-515-5p/SOX9 axis, hinting a promising therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Yanmei Zhong
- Department of Gastroenterology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, Shandong, China
| | - Dan Wang
- Department of Gastroenterology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, Shandong, China
| | - Yanle Ding
- Department of Gastroenterology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, Shandong, China
| | - Guixin Tian
- Department of Internal Medicine, Changle County Tangwu Town Hospital, Weifang, Shandong, China
| | - Bing Jiang
- Department of Gastroenterology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, Shandong, China.
| |
Collapse
|
41
|
Li S, Wang X. The potential roles of exosomal noncoding RNAs in osteosarcoma. J Cell Physiol 2020; 236:3354-3365. [PMID: 33044018 DOI: 10.1002/jcp.30101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
Clinically, it is difficult to efficaciously screen and diagnose osteosarcoma (OS) in advance due to the low sensitivity and poor specificity of the existing tumor markers. Exosomes (Exos) are nanoscale vesicles containing RNAs, lipids, and proteins with a diameter of 30-100 nm. They are multivesicular bodies formed during the invagination of lysosomal particles in cells and released extracellularly after fusing with cell membranes. Besides, Exos are important carriers of cell-to-cell communication signals and genetic materials in the tumor microenvironment. During tumorigenesis, the tumor cells interplay with immune cells, endothelial cells, and related fibroblasts through Exos and boost cancer development. After altering the surrounding microenvironment, the Exos drive tumor cells to proliferate, speed up angiogenesis, and boost cancers to develop along with body fluid transportation. Currently, Exos are becoming novel noninvasive tumor diagnostic markers with high sensitivity, exerting pivotal impacts in fundamental research and clinical applications. Here, we review the existing literature on the roles of exosomal noncoding RNAs in OS progression and their potential clinical applications as novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China.,School of Fundamental Sciences, Center of 3D Printing and Organ Manufacturing, China Medical University (CMU), Shenyang, China
| | - Xiaohong Wang
- School of Fundamental Sciences, Center of 3D Printing and Organ Manufacturing, China Medical University (CMU), Shenyang, China.,Department of Mechanical Engineering, Center of Organ Manufacturing, Tsinghua University, Beijing, China
| |
Collapse
|
42
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|