1
|
Che H, Zhang X, Cao L, Huang W, Lu Q. LINC01614 Promotes Oral Squamous Cell Carcinoma by Regulating FOXC1. Genes (Basel) 2024; 15:1461. [PMID: 39596660 PMCID: PMC11593781 DOI: 10.3390/genes15111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) are pivotal mediators during the development of carcinomas; however, it remains to be investigated whether lncRNAs are implicated in oral squamous cell carcinoma (OSCC). Methods: In this study, quantitative real-time PCR was conducted for detecting the expression of LINC01614 in OSCC cell lines. The biological functions of LINC01614 were assessed by loss- and gain-of-function experiments conducted both in vivo and in vitro. Cellular proliferation, migration, and invasion were investigated herein, and dual luciferase reporter assays were additionally performed to explore the relationships among LINC01614, miR-138-5p, and Forkhead box C1 (FOXC1). Results: The research presented herein revealed that OSCC cells express high levels of LINC01614. Functional experiments employing cellular and animal models demonstrated that LINC01614 knockdown repressed the malignant phenotypes of OSCC cells, including their growth, invasiveness, and migration. Further investigation revealed that LINC01614 absorbs miR-138-5p miRNA by functioning as a competing endogenous RNA to downregulate the abundance of FOXC1. Conclusions: The findings revealed that LINC01614 contributes to the progression of OSCC by targeting the FOXC1 signaling pathway. The study provides insights into a novel mechanistic process to regulate the development of OSCC, and established a possible target for the therapeutic management of OSCC.
Collapse
Affiliation(s)
- Hongze Che
- School of Dentistry, Beihua University, Jilin 132013, China
| | - Xun Zhang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130021, China
| | - Luo Cao
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130021, China
| | - Wenjun Huang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130021, China
| | - Qing Lu
- VIP Integrated Department, Stomatological Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Zhang H, Yang B. ADAM12 Silencing Mediated by FOXC2 Represses Meningioma Progression Through Inactivating the JAK1/STAT3/VEGFA Pathway. Biochem Genet 2024:10.1007/s10528-024-10893-4. [PMID: 39066954 DOI: 10.1007/s10528-024-10893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Meningioma is a prevalently intracranial tumor, and the malignant type is aggressive with high recurrence. A Disintegrin and Metalloprotease 12 (ADAM12) is a common oncogene and differentially expressed in meningioma. However, its roles and mechanisms in meningioma development remain obscure. The differentially expressed genes in meningioma were analyzed by GEO (GSE77259 and GSE43290) datasets and weighted gene co-expression network analysis (WGCNA) based on GSE16581. ADAM12 expression was measured via qRT-PCR and western blot. The correlation between ADAM12 and FOXC2 was predicted through JASPER tool and identified via luciferase reporter analysis. Cell proliferation, migration and invasion were investigated using CCK-8, EdU, transwell assays. The JAK1/STAT3/VEGFA signaling was activated by IL-6, and analyzed via western blot. The differentially expressed ADAM12 in meningioma was screened by WGCNA and GEO analyses. ADAM12 silencing repressed meningioma cell proliferation, and decreased migration and invasion. The transcription factor FOXC2 expression was enhanced in meningioma based on GSE77259 and GSE43290 datasets, and positively induced ADAM12 transcription. The JAK1/STAT3/VEGFA signaling was inactivated due to ADAM12 silencing and activated via IL-6. Upregulation of FOXC2 promoted cell proliferation, migration and invasion, and these effects were reversed by silencing ADAM12. ADAM12 knockdown mediated via FOXC2 silencing restrained proliferation, migration and invasion of meningioma cells through inactivating the JAK1/STAT3/VEGFA pathway.
Collapse
Affiliation(s)
- Huaming Zhang
- Department of Neurosurgery, China Resources Wisco General Hospital, Wuhan University of Science and Technology, No. 209 Yejin Avenue, Qingshan District, Wuhan, 430080, Hubei, China.
| | - Bing Yang
- Department of Neurology, Wuhan Eighth Hospital, Wuhan, 430014, Hubei, China
| |
Collapse
|
3
|
Behyari M, Behyari M. Expression of Intragenic LCAL4 Long Non-Coding RNAs as a Potential Diagnostic and Prognostic Marker in Female Breast Cancer. J Family Reprod Health 2024; 18:129-139. [PMID: 39011411 PMCID: PMC11246735 DOI: 10.18502/jfrh.v18i2.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Objective In breast cancer early detection is associated with reduced mortality and it is essential to identify new biomarkers for early detection and appropriate management of cancer patients with the best response to treatment. Long non-coding RNAs (LncRNAs) have attracted much attention as potential diagnostic, prognostic, or predictive biomarkers due to their high specificity, easy access to non-invasive methods, and their aberrant expression under various pathological and physiological conditions. Have attracted the aim of this study is to investigate the expression profile of intragenic non-coding LncRNAs LCAL4 as a biomarker as potential diagnostic and prognostic biomarkers in cancer. Materials and methods In this research, 62 tissue samples were obtained from patients undergoing therapeutic surgery in Khatam al-Anbia Hospital and the normal peripheral tissue that was removed for prevention was used as a control by Real-time PCR method. Results The expression pattern of LCAL4 long non-coding RNA gene is significantly different between two groups of healthy control samples and samples obtained from patients with different breast cancer subtypes, Also its expression between samples obtained from different subgroups and different stages showed significant differences. Conclusion The studied LncRNAs can act as a factor to identify tumor tissue from healthy tissue, and the diagnosis of cancer grades can be different depending on the type of LncRNA. These results can be proposed in the introduction of LncRNA LCAL4 as a new marker in the diagnosis of breast cancer. In addition, by interpreting the results, it can be concluded that these LncRNAs can be considered as influential factors in the process of breast cancer.
Collapse
Affiliation(s)
- Maryam Behyari
- Department of Biology, School of Sciences, University of Tehran, Tehran, Iran
| | - Mahla Behyari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Tian X, Hu D, Wang N, Zhang L, Wang X. LINC01614 is a promising diagnostic and prognostic marker in HNSC linked to the tumor microenvironment and oncogenic function. Front Genet 2024; 15:1337525. [PMID: 38655053 PMCID: PMC11035733 DOI: 10.3389/fgene.2024.1337525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Tumor initiation and metastasis influence tumor immune exclusion and immunosuppression. Long non-coding RNA (lncRNA) LINC01614 is associated with the prognosis and metastasis of several cancers. However, the relationship between LINC01614 and cancer immune infiltration and the biofunction of LINC01614 in head and neck squamous cell carcinoma (HNSC) remain unclear. Methods The Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets were used to analyze the expression difference and diagnostic value of LINC01614 in normal and tumor tissues. The correlation of pan-cancer prognosis and tumor stage of LINC01614 was analyzed based on the TCGA database. The pan-cancer association of LINC01614 expression with the tumor microenvironment (TME) including immune infiltration, expression of immune-related genes, and genomic instability parameters, was analyzed using the Spearman correlation method. The correlation between LINC01614 and tumor stemness evaluation indicators, RNA methylation-related genes, and drug resistance was also analyzed. The functional analysis of LINC01614 was performed using the clusterProfiler R package. The protein-protein interaction (PPI) network and ceRNA network of LINC01614 co-expressed genes and miRNA were constructed and visualized by STRING and Cytoscape, respectively. Finally, the cell location and influence of LINC01614 on cell proliferation and metastasis of HNSC cell lines were evaluated using FISH, CCK-8, wound-healing assay, and transwell assay. Results LINC01614 was found to be overexpressed in 23 cancers and showed a highly sensitive prediction value in nine cancers (AUC >0.85). LINC01614 dysregulation was associated with tumor stage in 12 cancers and significantly influenced the survival outcomes of 26 cancer types, with only Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), uterine corpus endometrial carcinoma (UCEC), and bladder urothelial carcinoma (BLCA) showing a benign influence. LINC01614 was also associated with immune cell infiltration, tumor heterogeneity, cancer stemness, RNA methylation modification, and drug resistance. The potential biological function of LINC01614 was verified in HNSC, and it was found to play important roles in proliferation, immune infiltration, immunotherapy response, and metastasis of HNSC. Conclusion LINC01614 may serve as a cancer diagnosis and prognosis biomarker and an immunotherapy target for specific cancers.
Collapse
Affiliation(s)
- Xiong Tian
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dali Hu
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lele Zhang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xuequan Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
5
|
Wasson MCD, Venkatesh J, Cahill HF, McLean ME, Dean CA, Marcato P. LncRNAs exhibit subtype-specific expression, survival associations, and cancer-promoting effects in breast cancer. Gene 2024; 901:148165. [PMID: 38219875 DOI: 10.1016/j.gene.2024.148165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in cancer progression, influencing processes such as invasion, metastasis, and drug resistance. Their reported cell type-dependent expression patterns suggest the potential for specialized functions in specific contexts. In breast cancer, lncRNA expression has been associated with different subtypes, highlighting their relevance in disease heterogeneity. However, our understanding of lncRNA function within breast cancer subtypes remains limited, warranting further investigation. We conducted a comprehensive analysis using the TANRIC dataset derived from the TCGA-BRCA cohort, profiling the expression, patient survival associations and immune cell type correlations of 12,727 lncRNAs across subtypes. Our findings revealed subtype-specific associations of lncRNAs with patient survival, tumor infiltrating lymphocytes and other immune cells. Targeting of lncRNAs exhibiting subtype-specific survival associations and expression in a panel of breast cancer cells demonstrated a selective reduction in cell proliferation within their associated subtype, supporting subtype-specific functions of certain lncRNAs. Characterization of HER2 + -specific lncRNA LINC01269 and TNBC-specific lncRNA AL078604.2 showed nuclear localization and altered expression of hundreds of genes enriched in cancer-promoting processes, including apoptosis, cell proliferation and immune cell regulation. This work emphasizes the importance of considering the heterogeneity of breast cancer subtypes and the need for subtype-specific analyses to fully uncover the relevance and potential impact of lncRNAs. Collectively, these findings demonstrate the contribution of lncRNAs to the distinct molecular, prognostic, and cellular composition of breast cancer subtypes.
Collapse
Affiliation(s)
| | | | - Hannah F Cahill
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Meghan E McLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Cheryl A Dean
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada; Nova Scotia Health Authority, Halifax, NS B3H1V8, Canada.
| |
Collapse
|
6
|
Jia J, Guo P, Zhang L, Kong W, Wang F. LINC01614 Promotes Colorectal Cancer Cell Growth and Migration by Regulating miR-217-5p/HMGA1 Axis. Anal Cell Pathol (Amst) 2023; 2023:6833987. [PMID: 39282156 PMCID: PMC11401691 DOI: 10.1155/2023/6833987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 09/18/2024] Open
Abstract
Colorectal cancer (CRC) substantially contributes to cancer-related deaths worldwide. Recently, a long non-coding RNA (lncRNA), LINC01614, has emerged as a vital gene regulator in cancer progression. Yet, how LINC01614 affects CRC progression remains enigmatic. Here, we defined LINC01614 expression in CRC, investigated the performance of CRC cells lacking LINC01614, and elucidated the underpinning mechanism. We observed that LINC01614 was upregulated in both CRC tissues and cell lines. LINC01614 knockdown repressed the proliferation and metastasis capacity of CRC cell lines. Consistently, an in vivo LINC01614 deficiency model exhibited slow tumor growth rate. Moreover, luciferase reporter assay, RNA pull-down, and immunoprecipitation confirmed that LINC01614 targeted miR-217-5p. LINC01614 knockdown reduced the expression of HMGA1 and N-cadherin, while increasing that of E-cadherin, resulting in decreased viability, proliferation, migration, and invasion capacity of CRC cells. Our results demonstrate that LINC01614 regulates CRC progression by modulating the miR-217-5p/HMGA1 axis, thus holding great potential as a prognostic biomarker for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Jiwei Jia
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Pei Guo
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Li Zhang
- Department of Pathology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Wenqing Kong
- Central Ward Operating Room, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Fangfang Wang
- Outpatient Operating Room, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| |
Collapse
|
7
|
Li Y, Xu J, Li L, Bai L, Wang Y, Zhang J, Wang H. Inhibition of Nicotinamide adenine dinucleotide phosphate oxidase 4 attenuates cell apoptosis and oxidative stress in a rat model of polycystic ovary syndrome through the activation of Nrf-2/HO-1 signaling pathway. Mol Cell Endocrinol 2022; 550:111645. [PMID: 35413388 DOI: 10.1016/j.mce.2022.111645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder in reproductive-aged women. In this study, a rat model of PCOS was established by subcutaneous injection of dehydroepiandrosterone (DHEA). NOX4 was highly expressed in PCOS rat ovaries, while its specific role in PCOS remains unclear. Lentivirus-mediated shRNA targeting NOX4 inhibited oxidative stress by reducing ROS, 4-HNE and MDA levels, and increasing SOD and GPX activities in rat ovaries. NOX4 deficiency increased Bcl-2 levels and decreased Bax, cleaved caspase-3 and cleaved caspase-9 levels and DHEA-induced cell apoptosis in rat ovaries. Similar to the in vivo results, NOX4 silencing inhibited oxidative stress and cell apoptosis in DHEA-treated rat granulosa cells. Moreover, NOX4 silencing promoted Nrf-2 translocation, and the expression of Nrf-2 and HO-1 both in vivo and in vitro. Thus, NOX4 deficiency may ameliorate PCOS in rats by reducing oxidative stress and cell apoptosis via activating the Nrf-2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jia Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lingxia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lu Bai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yunping Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| | - Haixu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
8
|
Hou Y, Zhou M, Li Y, Tian T, Sun X, Chen M, Xu W, Lu M. Risk SNP-mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol Carcinog 2022; 61:797-811. [PMID: 35687049 DOI: 10.1002/mc.23422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
As potential biomarkers and therapeutic targets, long noncoding RNAs (lncRNAs) are involved in the tumorigenesis of various tumors. Genetic variation in long noncoding regions can lead to lncRNA dysfunction and even cancer. Nevertheless, studies on the association between lncRNA-associated single-nucleotide polymorphisms (SNPs) and the risk of head and neck squamous cell carcinoma (HNSCC) remain inadequate. Here, we aimed to explore the association between SNPs in LINC01614 and HNSCC risk, and the potential role of LINC01614 in tumorigenesis. In this study, we found that rs16854802 A > G (odds ratio [OR] = 1.42, 95% confidence interval [CI]: 1.22-1.77, p < 0.001) and rs3113503 G > C (OR = 1.38, 95% CI: 1.15-1.64, p < 0.001) in LINC01614 increased the risk of HNSCC in the Chinese population. Functional bioinformatic analysis and luciferase reporter assay revealed that rs3113503 G > C variant disrupted the binding of miRNA-616-3p to LINC01614, which resulted in the increased expression of LINC01614. Further analysis of the TCGA database demonstrated that the upregulated LINC01614 in HNSCC cancer tissues was associated with poor prognostic in HNSCC patients. In vitro experiments showed that knockdown of LINC01614 inhibited the proliferation, invasion, and migration ability of HNSCC cells. Mechanistically, allele C of rs3113503 in LINC01614 was more effective than allele G in activating the PI3K/AKT signaling pathway. Moreover, the reduced expression of LINC01614 also inhibited the activation of the PI3K/AKT signaling pathway. In summary, our findings revealed that the risk SNP rs3113503 G > C in LINC01614 altered the binding to miR-616-3p, which led to increased LINC01614 expression and promoted HNSCC progression by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yaxuan Hou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tian
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xun Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Guidance Center for Social Psychological Service, Wuhan Mental Health Center, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmao Xu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Public Health, Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Zhu H, Jiang W, Zhu H, Hu J, Tang B, Zhou Z, He X. Elevation of ADAM12 facilitates tumor progression by enhancing metastasis and immune infiltration in gastric cancer. Int J Oncol 2022; 60:51. [PMID: 35315496 PMCID: PMC8973920 DOI: 10.3892/ijo.2022.5341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
A disintegrin and metalloprotease 12 (ADAM12), an essential transmembrane protein with metalloprotease, cell binding and intracellular signal-regulating capabilities, has been reported to play a crucial role in various types of cancers. However, the biological function of ADAM12 in gastric cancer (GC) remains unclear. Bioinformatic and experimental analyses were used to determine the expression level and prognostic value of ADAM12 in GC. The level of DNA methylation and the competing endogenous RNA (ceRNA) network was identified using MethSurv, Starbase3.0, miRNet2.0 and experimental analyses. Then, the co-expression profiles of ADAM12 were determined and subjected to enrichment analysis using the LinkedOmics database. The protein-protein interaction network and the docking model of ADAM12 were constructed using the GeneMANIA, STRING, and HDOCK webservers. The role of ADAM12 in tumor metastasis and immune infiltration was investigated using in vitro assays and TIMER database exploration. It was found that ADAM12 was overexpressed and was correlated with a poor prognosis of GC patients. In addition, the aberrant DNA methylation status and ceRNA regulation may contribute to the upregulation of ADAM12 in GC. Moreover, the enrichment analysis revealed that ADAM12 is involved in multiple vital biological functions and pathways, such as 'macrophage activation', 'extracellular matrix binding' and 'ECM-receptor interaction'. Subsequently, the protein-protein interaction network and molecular docking model demonstrated that follistatin like 3 (FSTL3) is a potential binding partner of ADAM12. Finally, it was demonstrated that ADAM12 promotes tumor metastasis, immune infiltration and M2 macrophage polarization in GC. In summary, these results highlight the potential of ADAM12 to be used as a therapeutic target for GC.
Collapse
Affiliation(s)
- Hai Zhu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Haixing Zhu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jinwei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Bingge Tang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Zhiqiang Zhou
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xinyang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
10
|
Yan S, Xu J, Liu B, Ma L, Tan H, Fang C. Integrative bioinformatics analysis identifies LINC01614 as a potential prognostic signature in esophageal cancer. Transl Cancer Res 2022; 10:1804-1812. [PMID: 35116503 PMCID: PMC8798299 DOI: 10.21037/tcr-20-2529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
Background Esophageal cancer (EC) is one of the most common gastrointestinal cancers and the incidence is on the increase in recent years. The aim of the present study was to assess novel long non-coding RNA (lncRNA) biomarkers for the prognosis of EC through the analysis of gene expression microarrays. Methods Three datasets (GSE53622, GSE53624, and GSE53625) were downloaded from the Gene Expression Omnibus (GEO) database and EC patients’ clinical information were from The Cancer Genome Atlas (TCGA) databases. Differentially expressed genes (DEGs) were screened by comparing tumor tissues with normal tissues using limma R package. The Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database was used to obtain the novel lncRNAs and their co-expression genes in EC and these were visualized with the Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) database was used to analyze the functions enrichment of selected DEGs. Cell Counting Kit-8 (CCK8) and Transwell assays were used to further confirm the function of target lncRNAs. Results We identified 24 differentially expressed (DE) lncRNAs and 659 DE mRNAs from the intersection of GEO and TCGA databases. And we found that only LINC01614 was concerned with a candidate prognostic signature in EC. “Extracellular matrix (ECM)-receptor interaction” and “PI3K-Akt signaling pathway” were observed, and we constructed a lncRNA-mRNA co-expression network for EC that includes LINC01614 and 64 mRNAs. The results of CCK8 and Transwell assays showed that suppression of LINC01614 inhibited EC cell proliferation and migration. Conclusions Our study might provide LINC01614 as a novel lncRNA biomarker for diagnosis and prognosis in EC.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jichong Xu
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Ma
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huaqiao Tan
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Fang
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Lai D, Tan L, Zuo X, Liu D, Jiao D, Wan G, Lu C, Shen D, Gu X. Prognostic Ferroptosis-Related lncRNA Signatures Associated With Immunotherapy and Chemotherapy Responses in Patients With Stomach Cancer. Front Genet 2022; 12:798612. [PMID: 35047016 PMCID: PMC8762254 DOI: 10.3389/fgene.2021.798612] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is associated with the prognosis and therapeutic responses of patients with various cancers. LncRNAs are reported to exhibit antitumor or oncogenic functions. Currently, few studies have assessed the combined effects of ferroptosis and lncRNAs on the prognosis and therapy of stomach cancer. In this study, transcriptomic and clinical data were downloaded from TCGA database, and ferroptosis-related genes were obtained from the FerrDb database. Through correlation analysis, Cox analysis, and the Lasso algorithm, 10 prognostic ferroptosis-related lncRNAs (AC009299.2, AC012020.1, AC092723.2, AC093642.1, AC243829.4, AL121748.1, FLNB-AS1, LINC01614, LINC02485, LINC02728) were screened to construct a prognostic model, which was verified in two test cohorts. Risk scores for patients with stomach cancer were calculated, and patients were divided into two risk groups. The low-risk group, based on the median value, had a longer overall survival time in the KM curve, and a lower proportion of dead patients in the survival distribution curve. Potential mechanisms and possible functions were revealed using GSEA and the ceRNA network. By integrating clinical information, the association between lncRNAs and clinical features was analyzed and several features affecting prognosis were identified. Then, a nomogram was developed to predict survival rates, and its good predictive performance was indicated by a relatively high C-index (0.67118161) and a good match in calibration curves. Next, the association between these lncRNAs and therapy was explored. Patients in the low-risk group had an immune-activating environment, higher immune scores, higher TMB, lower TIDE scores, and higher expression of immune checkpoints, suggesting they might receive a greater benefit from immune checkpoint inhibitor therapy. In addition, a significant difference in the sensitivity to mitomycin. C, cisplatin, and docetaxel, but not etoposide and paclitaxel, was observed. In summary, this model had guiding significance for prognosis and personalized therapy. It helped screen patients with stomach cancer who might benefit from immunotherapy and guided the selection of personalized chemotherapeutic drugs.
Collapse
Affiliation(s)
- Donlin Lai
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lin Tan
- The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Xiaojia Zuo
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - DingSheng Liu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Deyi Jiao
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dongjie Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
12
|
Sheng W, Zhou W, Cao Y, Zhong Y. Revealing the Role of lncRNA CCDC144NL-AS1 and LINC01614 in Gastric Cancer via Integrative Bioinformatics Analysis and Experimental Validation. Front Oncol 2022; 11:769563. [PMID: 35083139 PMCID: PMC8784853 DOI: 10.3389/fonc.2021.769563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators in the pathophysiology of gastric cancer, and lncRNAs have been regarded as potential biomarkers and therapeutic targets for gastric cancer. The present study performed the WGCNA analysis of the GSE70880 dataset and aimed to identify novel lncRNAs associated with gastric cancer progression. Based on the WGCNA, the lncRNAs and mRNA co-expression network were constructed. A total of four modules were identified and the eigengenes in different modules were involved in various key signaling pathways. Furthermore, the co-expression networks were constructed between the lncRNAs and mRNA; this leads to the identification of 6 modules, which participated in various cellular pathways. The survival analysis showed that high expression of CCDC144NL antisense RNA 1 (CCDC144NL-AS1) and LINC01614 was positively correlated with the poor prognosis of patients with gastric cancer. The in vitro validation results showed that CCDC144NL-AS1 and LINC01614 were both up-regulated in the gastric cancer cells. Silence of CCDC144NL-AS1 and LINC01614 both significantly suppressed the cell proliferation and migration of gastric cancer cells, and also promoted the chemosensitivity of gastric cancer cells to 5-fluorouracil. Collectively, our results suggested that the newly identified two lncRNAs (CCDC144NL-AS1 and LINC01614) may act as oncogenes in gastric cancer.
Collapse
Affiliation(s)
- Weiwei Sheng
- Physical Examination Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Weihong Zhou
- Physical Examination Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yundi Cao
- Department of Oncology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuejiao Zhong
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Yi Q, Xie W, Sun W, Sun W, Liao Y. A Concise Review of MicroRNA-383: Exploring the Insights of Its Function in Tumorigenesis. J Cancer 2022; 13:313-324. [PMID: 34976192 PMCID: PMC8692686 DOI: 10.7150/jca.64846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that commonly have 18-22 nucleotides and play important roles in the regulation of gene expression via directly binding to the 3'-UTR of target mRNAs. Approximately 50% of human genes are regulated by miRNAs and they are involved in many human diseases, including various types of cancers. Recently, microRNA-383 (miR-383) has been identified as being aberrantly expressed in multiple cancers, such as malignant melanoma, colorectal cancer, hepatocellular cancer, and glioma. Increasing evidence suggests that miR-383 participates in tumorigenic events including proliferation, apoptosis, invasion, and metastasis as well as drug resistance. Although downstream targets including CCND1, LDHA, VEGF, and IGF are illustrated to be regulated by miR-383, its roles in carcinogenesis are still ambiguous and the underlying mechanisms are still unclear. Herein, we review the latest studies on miR-383 and summarize its functions in human cancers and other diseases. The goal of this review is to provide new strategies for targeted therapy and further investigations.
Collapse
Affiliation(s)
- Qian Yi
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China.,Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
14
|
Wang Z, Yan H, Cheng D, Xu L, Shen T, Chen Y, Han R, Xue Y. Novel lncRNA LINC01614 Facilitates Bladder Cancer Proliferation, Migration and Invasion Through the miR-217/RUNX2/Wnt/β-Catenin Axis. Cancer Manag Res 2021; 13:8387-8397. [PMID: 34795524 PMCID: PMC8593351 DOI: 10.2147/cmar.s330019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background LncRNA plays a vital role in tumorigenesis and development. This study aimed to explore the novel lncRNA affecting bladder cancer progression. Methods The open-access data of bladder cancer patients, including transcriptome profiles and corresponding clinical information were all obtained from The Cancer Genome Atlas database. All the statistical analysis were performed using R software, SPSS and GraphPad Prism 8. CCK8, colony formation, apoptosis detection and tumorigenicity assay were used to assess cell proliferation ability. Transwell assay and wound-healing assay were used to evaluate cell metastasis potential. Results Our result showed that the lncRNA LINC01614 was highly expressed in bladder cancer tissue and cell lines. Meanwhile, patients with high LINC01614 expression level tend to have poor clinical features and shorter survival time. Further experiments demonstrated that the inhibition of LINC01614 could significantly hamper the proliferation and invasion of bladder cancer cells. Then, we found that the LINC01614 could regulate RUNX2 expression through miR-137. GSEA analysis indicated that the Wnt/β-catenin signaling pathway might be the downstream pathway of LINC01614. Further experiments showed that the LINC01614 act as an oncogene in bladder cancer partly depending on the RUNX2/Wnt/β-catenin axis, making it an underlying therapeutic target. Conclusion In all, LINC01614 facilitates bladder cancer cells proliferation, migration and invasion through the miR-217/RUNX2/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Huilin Yan
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Dingcai Cheng
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Lei Xu
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Tianming Shen
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Yi Chen
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Rongbo Han
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Yanshi Xue
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| |
Collapse
|
15
|
Wu H, Zhou J, Chen S, Zhu L, Jiang M, Liu A. Survival-Related lncRNA Landscape Analysis Identifies LINC01614 as an Oncogenic lncRNA in Gastric Cancer. Front Genet 2021; 12:698947. [PMID: 34691143 PMCID: PMC8526963 DOI: 10.3389/fgene.2021.698947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) reportedly play important roles in biomarker and tumorigenesis of gastric cancer (GC). This study aimed to determine the potential application of prognostic lncRNA signature and identified the role of LINC01614 in carcinogenesis in GC. Material and Methods: Data accessed from the Cancer Genome Atlas database was used to construct a lncRNA signature. Joint effect analysis of the signature and clinical parameters was performed to verify the clinical value of the signature. Co-expression analysis was conducted for prognostic lncRNAs and protein-coding genes. Moreover, the relative expression of LINC01614 was validated in GC tissues and cell lines. In vitro and in vivo experiments were conducted to analyze the biological functions of the newly identified gene in GC cells. Results: A seven-lncRNA (LINC01614, LINC01537, LINC01210, OVAAL, LINC01446, CYMP-AS1, and SCAT8) signature was identified as a promising prognostic signature in GC. Results indicated that the seven-lncRNA was involved in tumorigenesis and progression pathways. LINC01614 expression was identified and found to be upregulated in GC tissues and cells. The study findings revealed that LINC01614 promoted cell proliferation, migration, invasion, and epithelial-mesenchymal transition. Knockdown of LINC01614 arrested cell cycle distribution at the G2/M phase. Further, LINC01614 also promoted tumor growth in vivo. Conclusion: We developed an independent seven-lncRNA biomarker for prognostic prediction and identified LINC01614 as an oncogenic lncRNA in GC.
Collapse
Affiliation(s)
- Huijie Wu
- Department of Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jingyuan Zhou
- Department of Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Songda Chen
- Department of Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lingyu Zhu
- Department of Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengjie Jiang
- Department of Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Aiqun Liu
- Department of Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
16
|
Dong X, Jin C, Chen D, Chen Y, Ye ZQ, Zhang X, Huang X, Zhang W, Gu DN. Genomic Instability-Related LncRNA Signature Predicts the Prognosis and Highlights LINC01614 Is a Tumor Microenvironment-Related Oncogenic lncRNA of Papillary Thyroid Carcinoma. Front Oncol 2021; 11:737867. [PMID: 34604079 PMCID: PMC8481916 DOI: 10.3389/fonc.2021.737867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Genomic instability (GI) is among the top ten characteristics of malignancy. Long non-coding RNAs (lncRNAs) are promising cancer biomarkers that are reportedly involved in GI. So far, the clinical value of GI-related lncRNAs (GIlncs) in papillary thyroid cancer (PTC) has not been clarified. Methods Integrative analysis of lncRNA expression and somatic mutation profiles was performed to identify GIlncs. Analysis of differentially expressed lncRNAs in the group with high- and low- cumulative number of somatic mutations revealed significant GIlncs in PTC. Univariate and multivariate Cox proportional hazard regression analyses were performed to identify hub-GIlncs. Results A computational model based on four lncRNAs (FOXD2-AS1, LINC01614, AC073257.2, and AC005082.1) was identified as a quantitative index using an in-silicon discovery cohort. GILS score was significantly associated with poor prognosis, as validated in the TCGA dataset and further tested in our local RNA-Seq cohort. Moreover, a combination of clinical characteristics and the composite GILS-clinical prognostic nomogram demonstrates satisfactory discrimination and calibration. Furthermore, the GILS score and FOXD2-AS1, LINC01614, AC073257.2, and AC005082.1 were also associated with driver mutations and multiple clinical-pathological variables, respectively. Moreover, RNA-Seq confirmed the expression patterns of FOXD2-AS1, LINC01614, AC073257.2, and AC005082.1 in PTC and normal thyroid tissues. Biological experiments demonstrated that downregulated or overexpressed LINC01614 affect PTC cell proliferation, migration, and invasion in vitro. Activation of the stromal and immune cell infiltration was also observed in the high LINC01614 group in the PTC microenvironment. Conclusion In summary, we identified a signature for clinical outcome prediction in PTC comprising four lncRNAs associated with GI. A better understanding of the GI providing an alternative evaluation of the progression risk of PTC. Our study also demonstrated LINC01614 as a novel oncogenic lncRNA and verified its phenotype in PTC.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danxiang Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Qiang Ye
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoli Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dian-Na Gu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Yadav G, Kulshreshtha R. Metastasis associated long noncoding RNAs in glioblastoma: Biomarkers and therapeutic targets. J Cell Physiol 2021; 237:401-420. [PMID: 34533835 DOI: 10.1002/jcp.30577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and therapeutically challenging Grade IV tumor of the brain. Although the possibility of distant metastasis is extremely rare, GBM is known to cause intracranial metastasis forming aggressive secondary lesions resulting in a dismal prognosis. Metastasis also plays an important role in tumor dissemination and recurrence making GBM largely incurable. Recent studies have indicated the importance of long noncoding RNAs (lncRNAs) in GBM metastasis. lncRNAs are a class of regulatory noncoding RNAs (>200 nt) that interact with DNA, RNA, and proteins to regulate various biological processes. This is the first comprehensive review summarizing the lncRNAs associated with GBM metastasis and the underlying molecular mechanism involved in migration/invasion. We also highlight the complex network of lncRNA/miRNA/protein that collaborate/compete to regulate metastasis-associated genes. Many of these lncRNAs also show attractive potential as diagnostic/prognostic biomarkers. Finally, we discuss various therapeutic strategies and potential applications of lncRNAs as therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
18
|
Lou S, Huang X, Tian X, Wang Z, Lin A, Dai H, Zhou J, Ruan J, Yuan L, Wang J. Investigation of the relationship between CMYC gene polymorphisms and glioma susceptibility in Chinese children. Cancer Invest 2021; 39:819-825. [PMID: 34325590 DOI: 10.1080/07357907.2021.1955374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glioma is a common central nervous system tumors in children. CMYC has a range of functions that are disrupted in various tumor cells, and may contribute to the occurrence and development of glioma. Two CMYC single nucleotide polymorphisms (rs4645943C > T and rs2070583 A > G) were genotyped in 190 cases and 248 controls from Wenzhou and Guangzhou hospitals. After adjusting for age and sex, odds ratio and 95% confidence interval values were calculated by logistic regression to evaluate the correlation between CMYC gene polymorphisms and glioma risk; no significant associations were detected. These results require future validation in a larger sample cohort.
Collapse
Affiliation(s)
- Susu Lou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaokai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoqian Tian
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zhen Wang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ao Lin
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Hanqi Dai
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jingying Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Juxiang Wang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
19
|
Wu C, Wang Z, Tian X, Wang J, Zhang Y, Wu B. Long non-coding RNA DDX11-AS1 promotes esophageal carcinoma cell proliferation and migration through regulating the miR-514b-3p/RBX1 axis. Bioengineered 2021; 12:3772-3786. [PMID: 34281459 PMCID: PMC8806645 DOI: 10.1080/21655979.2021.1940617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most aggressive malignancies with extremely high morbidity and mortality. At present, limited advancement in ESCA treatment has achieved. Therefore, it is urgent to explore the pathogenesis and progression mechanism of ESCA to provide the basis for the formulation of novel therapeutic strategies. Previous studies have found that long non-coding RNA (lncRNA) DDX11-AS1 expression enhances the paclitaxel resistance of ESCA cells. However, the mechanisms underlying the drug resistance conferred by lncRNA DDX11-AS1 in ESCA remains to be elucidated. Our research aims to clarify the role and mechanism of lncRNA DDX11-AS1 in regulating the progression of ESCA. We found that the expression of lncRNA DDX11-AS1 in ESCA tissues and cell lines was significantly upregulated. Subsequently, silencing lncRNA DDX11-AS1 significantly inhibited the proliferation, migration and invasion of ESCA cells, and induced the level of cell apoptosis. In terms of mechanism, our data showed that miR-514b-3p/RING box protein 1 (RBX1) axis played a crucial role in the oncogenic function of lncRNA DDX11-AS1. LncRNA DDX11-AS1 expression impaired the inhibitory function of miR-514b-3p on RBX1 through sponging effect. Taken together, our data support the notion that lncRNA DDX11-AS1 promotes the progression of ESCA through miR-514b-3p/RBX1 axis. Our research uncovers the novel regulatory role of lncRNA DDX11-AS1 in ESCA and lays a theoretical basis for developing novel treatment strategy of ESCA.
Collapse
Affiliation(s)
- Chao Wu
- Department of Anorectal Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhibin Wang
- Department of Oncology, the Fifth Hospital of Wuhan, Wuhan, Hubei, China
| | - Xuetao Tian
- Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianqiang Wang
- Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Hepatobiliary Hernia and Vascular Surgery, Huazhong University of Science and Technology, Wuhan, Zhejiang, China
| | - Yuesong Zhang
- Department of Anorectal Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biao Wu
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thoracic Surgery, Ningbo Yinzhou NO.2 Hospital, Ningbo, China
| |
Collapse
|
20
|
Wang Y, Zhang J, Cao H, Han F, Zhang H, Xu E. Methylation status of ADAM12 promoter are associated with its expression levels in colorectal cancer. Pathol Res Pract 2021; 221:153449. [PMID: 33930608 DOI: 10.1016/j.prp.2021.153449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a kind of malignant tumor of digestive system severely affecting human health. The occurrence of CRC is a polygenic and multi-step complex process involving genetic and epigenetic alterations. ADAM12 (a disintegrin and metalloproteases 12), is a gene that was commonly hypermethylated in esophageal cancer using whole-genome methylation microarray in our previous study. METHODS We detected the methylation frequencies of the CpG island in ADAM12 promoter using bisulfite-pyrosequencing in CRC cell lines and tissue samples. The expression of ADAM12 was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). A systematic and comprehensive analysis of relationship of DNA hypermethylation and ADAM12 expression in CRC was performed in our samples and TCGA database. RESULTS The expression of ADAM12 in hypermethylated cell lines was significantly lower than that in hypomethylated cell lines, and demethylation agent 5-Aza-dC could demethylate ADAM12 promoter region and reactivate ADAM12 expression effectively. In 74 pairs of colorectal cancer and normal tissues, bisulfite-pyrosequencing results showed significantly hypermethylation of ADAM12 in CRC compared with adjacent normal mucosa, accompanied with lower expression of ADAM12 in CRC tissues compared to that of the normal tissues. In addition, there was a statistically significant negative correlation between ADAM12 protein expression and methylation levels (rho =-0.28, p = 0.015). CONCLUSION Promoter hypermethylation was probably a mechanism of ADAM12 epigenetic silencing in CRC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jing Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China.
| | - Hui Cao
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathology and Pathophysiology, Cheng Du Medical College, Chengdu 610500, China.
| | - Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Enping Xu
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Luo X, Tu T, Zhong Y, Xu S, Chen X, Chen L, Yang F. AGAP2-AS1 May Promote the Occurrence and Development of Glioblastoma by Sponging miR-9-5p: Evidence From a ceRNA Network. Front Oncol 2021; 11:607989. [PMID: 33889541 PMCID: PMC8056072 DOI: 10.3389/fonc.2021.607989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/19/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM), the primary malignant brain tumor, is typically associated with a poor prognosis and poor quality of life, mainly due to the lack of early diagnostic biomarkers and therapeutic targets. However, gene sequencing technologies and bioinformatics analysis are currently being actively utilized to explore potential targets for the diagnosis and management of malignancy. Herein, based on a variety of bioinformatics tools for the reverse prediction of target genes associated with the prognosis of GBM, a ceRNA network of AGAP2-AS1-miR-9-5p-MMP2/MMP9 was constructed, and a potential therapeutic target for GBM was identified. Enrichment analysis predicted that the ceRNA regulatory network participates in the processes of cell proliferation, differentiation, and migration.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yali Zhong
- Graduate School of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shangyi Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiangzhou Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fubing Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Yan S, Xu J, Liu B, Ma L, Feng H, Tan H, Fang C. Long non-coding RNA BCAR4 aggravated proliferation and migration in esophageal squamous cell carcinoma by negatively regulating p53/p21 signaling pathway. Bioengineered 2021; 12:682-696. [PMID: 33602031 PMCID: PMC8291806 DOI: 10.1080/21655979.2021.1887645] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA breast cancer antiestrogen resistance 4 (lncRNA BCAR4) is an independent factor on the survival prognosis of patients with multiple cancers. However, the role of lncRNA BCAR4 in esophageal squamous cell cancer (ESCC) remains unknown. Here, we unraveled that lncRNA BCAR4 was upregulated in ESCC and predicted poor prognosis. Functionally, lncRNA BCAR4 knockdown induced cell apoptosis and G1/S arrest, while inhibited cell proliferation and migration in vitro; conversely, overexpressing lncRNA BCAR4 promoted proliferation and metastasis. Mechanistically, lncRNA BCAR4 sponged miR-139-3p to upregulate ELAVL1, thereby inhibiting p53/p21 pathway in ESCC cells. In conclusion, lncRNA BCAR4 promotes ESCC tumorigenesis via regulating p53/p21 signaling pathway and develops a brand-new biomarker and medicine target for ESCC.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Interventional Radiology, Tongji Hospital of Tongji University , Shanghai, China
| | - Jichong Xu
- Department of Interventional Radiology, Tongji Hospital of Tongji University , Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Lin Ma
- Department of Interventional Radiology, Tongji Hospital of Tongji University , Shanghai, China
| | - Hao Feng
- Department of Interventional Radiology, Tongji Hospital of Tongji University , Shanghai, China
| | - Huaqiao Tan
- Department of Interventional Radiology, Tongji Hospital of Tongji University , Shanghai, China
| | - Chun Fang
- Department of Interventional Radiology, Tongji Hospital of Tongji University , Shanghai, China
| |
Collapse
|
23
|
Zheng Y, Xie J, Xu X, Yang X, Zhou Y, Yao Q, Xiong Y. LncRNA DDX11-AS1 Exerts Oncogenic Roles in Glioma Through Regulating miR-499b-5p/RWDD4 Axis. Onco Targets Ther 2021; 14:157-164. [PMID: 33447057 PMCID: PMC7802781 DOI: 10.2147/ott.s278986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNA) exert essential functions during tumorigenesis. However, how lncRNAs participate in glioma development remains poorly researched. This study aimed to determine how DDX11-AS1 affects glioma progression. Methods Gene expression was analyzed by qRT-PCR. Survival rate curve was plotted in 56 glioma patients. Loss-of-function assays were performed to analyze proliferation, migration, and invasion through CCK8, colony formation, and transwell assays. Luciferase assay and RNA pulldown assays were conducted to illustrate the underlying molecular mechanism. Results DDX11-AS1 expression was upregulated in glioma tissues and cells. DDX11-AS1 overexpression was linked with poor prognostic value. DDX11-AS1 knockdown suppressed proliferation, migration, and invasion while inducing apoptosis. DDX11-AS1 interacted with miR-499b-5p to eliminate it, leading to upregulation of RWDD4 expression. RWDD4 was upregulated in glioma while miR-499b-5p was downregulated. Conclusion DDX11-AS1 upregulation promotes glioma progression through acting as a competing endogenous RNA for miR-499b-5p to upregulate RWDD4.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Neurology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Jing Xie
- Department of Dermatology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Xiaomin Xu
- Department of Neurology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Xiaoguo Yang
- Department of Neurology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Yi Zhou
- Department of Neurosurgery, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Qiong Yao
- Department of Neurology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Ye Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
24
|
Long non-coding RNAs as epigenetic mediator and predictor of glioma progression, invasiveness, and prognosis. Semin Cancer Biol 2020; 83:536-542. [PMID: 32920124 DOI: 10.1016/j.semcancer.2020.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Gliomas are aggressive brain tumors with high mortality rate. Over the past several years, non-coding RNAs, specifically the long non-coding RNAs (lncRNAs), have emerged as biomarkers of considerable interest. Emerging data reveals distinct patterns of expressions of several lncRNAs in the glioma tissues, relative to their expression in normal brains. This has led to the speculation for putative exploitation of lncRNAs as diagnostic biomarkers as well as biomarkers for targeted therapy. With a focus on lncRNAs that have shown promise as epigenetic biomarkers in the proliferation, migration, invasion, angiogenesis and metastasis in various glioma models, we discuss several such lncRNAs. The data from cell line / animal model-based studies as well as analysis from human patient samples is presented for the most up-to-date information on the topic. Overall, the information provided herein makes a compelling case for further evaluation of lncRNAs in clinical settings.
Collapse
|