1
|
Pan J, Fu B, Huang S, Jiang Y, Zhou X, Zhou M, Yu Z, Geng X, Zhu Y, Zheng H, Gong Y, Huang D, Guo L. Downregulated granzyme M expression: implications for the immune system and prognosis of thyroid cancer. Gene 2025:149494. [PMID: 40228756 DOI: 10.1016/j.gene.2025.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Thyroid carcinoma (THCA), the most prevalent endocrine system cancer, is rising worldwide. Granzyme family member GZMM causes tumor cell inflammation and programmed cell death. However, the role of GZMM in THCA has not been investigated. Bioinformatics analysis and assays showed that THCA GZMM protein levels were down-regulated and associated with certain clinicopathological features. Additionally, univariate and multivariate Cox analysis and ROC curve analysis showed that low GZMM expression was related with poor overall survival and might be employed as a prognostic and diagnostic factor. We used functional tests to examine how GZMM affected angiogenesis, invasion, and migration in vitro. TIMER showed a link between GZMM expression, immune cell infiltration, and tumor purity. Overexpression of GZMM also greatly boosted CD8 + T cell-attracting chemokines. TCGA data analysis yielded a GZMM and epigenetic modification-related gene risk prediction model. Overall, GZMM inhibits tumor invasion, migration, and angiogenesis, and is closely related to the immune microenvironment, significantly associated with poor prognosis in THCA patients.
Collapse
Affiliation(s)
- Jingying Pan
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, China; First College of Clinical Medicine, Nanchang University, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, China
| | | | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liangyun Guo
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Tong F, Lu G, Zang J, Hao D, Xu W, Chen J, Ding Q, Xiong H. FKBP5 associated CD8 T cell infiltration is a novel prognostic biomarker in luminal B breast cancer. J Int Med Res 2023; 51:3000605231211771. [PMID: 37987640 PMCID: PMC10664447 DOI: 10.1177/03000605231211771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE To investigate the relationship between FKBP prolyl isomerase 5 (FKBP5) gene expression and CD8 T cells in tumour progression and immunology of the luminal B subtype of breast cancer (LBBC) using bioinformatics analyses. METHODS The Gene Expression Profiling Interactive Analysis 2, Human Protein Atlas and breast cancer gene-expression miner v4.5 databases were used for data mining and analysing FKBP5, its co-expressed genes and CD8 T cell-related markers. The Tumor IMmune Estimation Resource 2.0 database was used for analysing the correlation and prognosis of FKBP5 and CD8 T cell infiltration level in LBBC. RESULTS Upregulated FKBP5 expression was correlated with improved survival in LBBC. Upregulated FKBP5-related CD8 T cell markers were also demonstrated to be significantly correlated with better survival in LBBC and might play a role in the biological activity of FKBP5. CONCLUSION These findings suggest that FKBP5 and its associated CD8 T cell infiltration are potential benign prognostic indicators for LBBC.
Collapse
Affiliation(s)
- Fei Tong
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Genlin Lu
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Jie Zang
- Department of General Surgery, Zhejiang Putuo Hospital, Zhoushan, Zhejiang Province, China
| | - Dingji Hao
- Department of Thyroid Breast Hernia Surgery, Tonglu County Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Wangjue Xu
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Jida Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qiong Ding
- Department of General Surgery, Zhejiang Putuo Hospital, Zhoushan, Zhejiang Province, China
| | - Hanchu Xiong
- Cancer Centre, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Diray-Arce J, Fourati S, Doni Jayavelu N, Patel R, Maguire C, Chang AC, Dandekar R, Qi J, Lee BH, van Zalm P, Schroeder A, Chen E, Konstorum A, Brito A, Gygi JP, Kho A, Chen J, Pawar S, Gonzalez-Reiche AS, Hoch A, Milliren CE, Overton JA, Westendorf K, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen L, Grubaugh ND, van Bakel H, Wilson M, Rajan J, Steen H, Eckalbar W, Cotsapas C, Langelier CR, Levy O, Altman MC, Maecker H, Montgomery RR, Haddad EK, Sekaly RP, Esserman D, Ozonoff A, Becker PM, Augustine AD, Guan L, Peters B, Kleinstein SH. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep Med 2023; 4:101079. [PMID: 37327781 PMCID: PMC10203880 DOI: 10.1016/j.xcrm.2023.101079] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.
Collapse
Affiliation(s)
- Joann Diray-Arce
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Slim Fourati
- Emory School of Medicine, Atlanta, GA 30322, USA
| | | | - Ravi Patel
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Cole Maguire
- The University of Texas at Austin, Austin, TX 78712, USA
| | - Ana C Chang
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ravi Dandekar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jingjing Qi
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian H Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick van Zalm
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Schroeder
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Ernie Chen
- Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | - Alvin Kho
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jing Chen
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Annmarie Hoch
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carly E Milliren
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | - Charles B Cairns
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsey Rosen
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | | | - Harm van Bakel
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Wilson
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jayant Rajan
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Hanno Steen
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Chris Cotsapas
- Yale School of Medicine, New Haven, CT 06510, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | | | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Matthew C Altman
- Benaroya Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Holden Maecker
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Elias K Haddad
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | - Al Ozonoff
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Alison D Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Leying Guan
- Yale School of Public Health, New Haven, CT 06510, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
4
|
Li W, Zou Z, An N, Wang M, Liu X, Mei Z. A multifaceted and feasible prognostic model of amino acid metabolism-related genes in the immune response and tumor microenvironment of head and neck squamous cell carcinomas. Front Oncol 2022; 12:996222. [DOI: 10.3389/fonc.2022.996222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the role of amino acid metabolism (AAM) in head and neck squamous cell carcinoma (HNSCC) tissues to explore its prognostic value and potential therapeutic strategies. A risk score based on four AAM-related genes (AMG) was constructed that could predict the prognosis of HNSCC. These four genes were up-regulated in HNSCC tissues and might act as oncogenes. Internal validation in The Cancer Genome Atlas (TCGA) by bootstrapping showed that patients with high-risk scores had a poorer prognosis than patients with low-risk scores, and this was confirmed in the Gene Expression Omnibus (GEO) cohort. There were also differences between the high-risk and low-risk groups in clinical information and different anatomical sites such as age, sex, TNM stage, grade stage, surgery or no surgery, chemotherapy, radiotherapy, no radiotherapy, neck lymph node dissection or not, and neck lymphovascular invasion, larynx, overlapping lesion of lip, and oral cavity and pharynx tonsil of overall survival (OS). Immune-related characteristics, tumor microenvironment (TME) characteristics, and immunotherapy response were significantly different between high- and low-risk groups. The four AMGs were also found to be associated with the expression of markers of various immune cell subpopulations. Therefore, our comprehensive approach revealed the characterization of AAM in HNSCC to predict prognosis and guide clinical therapy.
Collapse
|
6
|
Zhang S, Zhang W, Zhang J. Comprehensive analysis of immune cell infiltration and significant genes in head and neck squamous cell carcinoma. Oral Oncol 2022; 126:105755. [PMID: 35144208 DOI: 10.1016/j.oraloncology.2022.105755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Immunotherapy directed at the tumor microenvironment is effective in the treatment of head and neck squamous cell carcinoma (HNSCC). In contrast, there has been a paucity of research on the relationship between the HNSCC microenvironment and prognostic outcome. Meanwhile, tumor immune cell infiltration (ICI) has emerged as a critical step in immunotherapy. METHODS Two algorithms, CIBERSORT and ESTIMATE, were performed to evaluate the ICI view of 885 HNSCC patients using three databases: the Cancer Genome Atlas (TCGA), Arrayexpress, and Gene Expression Omnibus (GEO). RESULTS Different ICI subtypes were identified. Following that, 57 different expression genes (DEGs) were discovered. The ICI scores of all patients were calculated using the Principal Component Analysis (PCA) algorithm. Additionally, an immune-related prognostic signature was developed and validated using 17 of 57 DEGs. Patients with a low-ICI or low-risk score had a higher infiltration immune-activated related cells and higher expression of most immune checkpoint-related molecules, indicating a better prognosis. Furthermore, using the pRRophetic algorithm, the sensitivities of many chemotherapeutic drugs were significantly different between two ICI subtypes or two risk groups. Moreover, a nomogram incorporating the ICI score, risk score, and clinical characteristics was developed and was capable of accurately predicting outcomes. CONCLUSION The ICI score and 17-gene signature could improve HNSCC survival prediction, promote individual treatment strategies, and provide promising novel immunotherapy biomarkers.
Collapse
Affiliation(s)
- Shoujing Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Wenyi Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Jian Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China.
| |
Collapse
|