1
|
Zheng X, Zhang X, Li D, Wang Z, Zhang J, Li J, Li Y. Integrative bioinformatics and experimental analyses identify U2SURP as a novel lactylation-related prognostic signature in esophageal carcinoma. Immunol Res 2025; 73:45. [PMID: 39900790 DOI: 10.1007/s12026-024-09589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025]
Abstract
The lactylation modification has been implicated in several cancer types; however, the role of lactylation modification-related genes in esophageal carcinoma (EC) remains underexplored. Utilizing a set of 16 lactylation modification-related genes, cohorts of patients with EC were stratified into two distinct clusters, characterized by significant disparities in both survival outcomes and the immune microenvironment. An extensive bioinformatics analysis unveiled 382 differentially expressed genes (DEGs) between these two clusters. A subsequent univariate Cox regression analysis identified 24 DEGs specifically associated with lactylation, forming the basis of a constructed lactylation-related score. The resultant lactylation-related score exhibited notable predictive efficacy for survival and other clinicopathological traits, which was validated through calibration curves, Kaplan-Meier survival curves and the Wilcoxon test. Moreover, the lactylation-related score displayed a close correlation with immune cell infiltration in EC. Notable differential expressions of immune checkpoints and regulators were observed between groups stratified by low and high lactylation scores, with the latter exhibiting a more favorable response to anti-PD-1/PD-L1 therapy. Furthermore, the expression profile of U2 snRNP associated SURP domain containing (U2SURP), a constituent of the lactylation-related score, underwent both ex vivo and in vitro validation. The expression of U2SURP was significantly associated with lactylation levels, histological grade and tumor stage. Notably, knockdown of U2SURP expression inhibited the lactylation levels, immune genes IL-1A and IL-1B, proliferation, migration and invasion of EC cells. In conclusion, the lactylation-related score developed in the present study showed promise in predicting the prognosis and immunotherapeutic responses among patients with EC. Moreover, the identification of U2SUPR as a novel oncogene in EC suggests its potential as a prospective therapeutic target for EC treatment.
Collapse
Affiliation(s)
- Xuan Zheng
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Xiaoru Zhang
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, 063001, China
| | - Dan Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Zhuo Wang
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Jun Zhang
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Jingwu Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
| | - Yufeng Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
| |
Collapse
|
2
|
Qi H, Cao M, Chen Y, Li X, Wang Y, Dai X, Duan X, Lu J. KNTC1 functions as a potential biomarker and oncogene regulating proliferation, migration and apoptosis in gastric cancer. Int Immunopharmacol 2024; 143:113257. [PMID: 39362011 DOI: 10.1016/j.intimp.2024.113257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND As one of the most prevalent cancers, gastric cancer (GC) exhibits a remarkably high morbidity and mortality rate. To date, effective diagnostic and prognostic markers and therapeutic targets for GC are still lacking. Kinetochore associated 1 (KNTC1) is one of the proteins involved in chromosome segregation. However, the diagnostic and prognostic value of KNTC1 and its biological function in GC remain unknown. METHODS In this study, Gene Expression Omnibus (GEO) datasets were utilized to identify differentially expressed genes (DEGs). Prognostic and diagnostic value were assessed by Kaplan-Meier plotter and receiver operating characteristic (ROC) curve. The expression of KNTC1 was verified by q-PCR, immunohistochemistry (IHC) and Western blotting. Subsequently, KNTC1 knockdown was employed to investigate its effect on GC cells. Gene set enrichment analysis (GSEA) revealed a pathway regulated by KNTC1, which was further verified by Western blotting. RESULTS Four highly expressed genes (ESPL1, RAD54L, KNTC1, TACC3) were identified as biomarkers for GC diagnosis and prognosis. Notably, the value of KNTC1 as a biomarker for GC was newly revealed. Single-cell and immune analyses revealed that KNTC1 contributed to the suppression of the GC immune microenvironment. In clinical samples, we demonstrated high expression of KNTC1 in GC tissues. KNTC1 knockdown suppressed proliferation and migration while promoting apoptosis of GC cells. Additionally, KNTC1 may affect GC cells by regulating the PI3K/Akt/mTOR pathway. CONCLUSIONS KNTC1 acts as a potential diagnostic and prognostic marker for GC. It may promote proliferation and migration while inhibiting apoptosis of GC cells via the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Haoran Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Mengyuan Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yanan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoya Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yingfei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
3
|
Yu S, Chen C, Chen M, Liang J, Jiang K, Lou B, Lu J, Zhu X, Zhou D. MAGOH promotes gastric cancer progression via hnRNPA1 expression inhibition-mediated RONΔ160/PI3K/AKT signaling pathway activation. J Exp Clin Cancer Res 2024; 43:32. [PMID: 38268030 PMCID: PMC10809607 DOI: 10.1186/s13046-024-02946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is associated with high mortality and heterogeneity and poses a great threat to humans. Gene therapies for the receptor tyrosine kinase RON and its spliceosomes are attracting increasing amounts of attention due to their unique characteristics. However, little is known about the mechanism involved in the formation of the RON mRNA alternative spliceosome RONΔ160. METHODS Fourteen human GC tissue samples and six normal gastric tissue samples were subjected to label-free relative quantitative proteomics analysis, and MAGOH was identified as a candidate protein for subsequent studies. The expression of MAGOH in clinical specimens was verified by quantitative real-time PCR and western blotting. We then determined the biological function of MAGOH in GC through in vitro and in vivo experiments. RNA pulldown, RNA sequencing and RNA immunoprecipitation (RIP) were subsequently conducted to uncover the underlying mechanism by which MAGOH regulated the formation of RONΔ160. RESULTS Proteomic analysis revealed that MAGOH, which is located at key nodes and participates in RNA processing and mRNA splicing, was upregulated in GC tissue and GC cell lines and was associated with poor prognosis. Functional analysis showed that MAGOH promoted the proliferation, migration and invasion of GC cells in vitro and in vivo. Mechanistically, MAGOH inhibited the expression of hnRNPA1 and reduced the binding of hnRNPA1 to RON mRNA, thereby promoting the formation of RONΔ160 to activate the PI3K/AKT signaling pathway and consequently facilitating GC progression. CONCLUSIONS Our study revealed that MAGOH could promote the formation of RONΔ160 and activate the PI3K/AKT signaling pathway through the inhibition of hnRNPA1 expression. We elucidate a novel mechanism and potential therapeutic targets for the growth and metastasis of GC based on the MAGOH-RONΔ160 axis, and these findings have important guiding significance and clinical value for the future development of effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kecheng Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohua Zhu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Hu HF, Gao GB, He X, Li YY, Li YJ, Li B, Pan Y, Wang Y, He QY. Targeting ARF1-IQGAP1 interaction to suppress colorectal cancer metastasis and vemurafenib resistance. J Adv Res 2023; 51:135-147. [PMID: 36396045 PMCID: PMC10491971 DOI: 10.1016/j.jare.2022.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Acquired resistance to BRAF inhibitor vemurafenib is frequently observed in metastatic colorectal cancer (CRC), and it is a thorny issue that results in treatment failure. As adaptive responses for vemurafenib treatment, a series of cellular bypasses are response for the adaptive feedback reactivation of ERK signaling, which warrant further investigation. OBJECTIVES We identified ARF1 (ADP-ribosylation factor 1) as a novel regulator of both vemurafenib resistance and cancer metastasis, its molecular mechanism and potential inhibitor were investigated in this study. METHODS DIA-based quantitative proteomics and RNA-seq were performed to systematic analyze the profiling of vemurafenib-resistant RKO cells (RKO-VR) and highly invasive RKO cells (RKO-I8), respectively. Co‑immunoprecipitation assay was performed to detect the interaction of ARF1 and IQGAP1 (IQ-domain GTPase activating protein 1). An ELISA-based drug screen system on FDA-approved drug library was established to screen the compounds against the interaction of ARF1-IQGAP1.The biological functions of ARF1 and LY2835219 were determined by transwell, western blotting, Annexin V-FITC/PI staining and in vivo experimental metastasis assays. RESULTS We found that ARF1 strongly interacted with IQGAP1 to activate ERK signaling in VR and I8 CRC cells. Deletion of IQGAP1 or inactivation of ARF1 (ARF-T48S) restored the invasive ability induced by ARF1. As ARF1-IQGAP1 interaction is essential for ERK activation, we screened LY2835219 as novel inhibitor of ARF1-IQGAP1 interaction, which inactivated ERK signaling and suppressed CRC metastasis and vemurafenib-resistance in vitro and in vivo with no observed side effect. Furthermore, LY2835219 in combined treatment with vemurafenib exerted significantly inhibitory effect on ARF1-mediated cancer metastasis than used independently. CONCLUSION This study uncovers that ARF1-IQGAP1 interaction-mediated ERK signaling reactivation is critical for vemurafenib resistance and cancer metastasis, and that LY2835219 is a promising therapeutic agent for CRC both as a single agent and in combination with vemurafenib.
Collapse
Affiliation(s)
- Hui-Fang Hu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gui-Bin Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xuan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Ying Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang-Jia Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - YunLong Pan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing-Yu He
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Xiao F, Long Z, Guo Y, Zhu H, Zhang Z, Xiao Y, Hu G, Yang Q, Huang K, Guo H. MAGOH is correlated with poor prognosis and is essential for cell proliferation in lower-grade glioma. Aging (Albany NY) 2023; 15:5713-5733. [PMID: 37390121 PMCID: PMC10333088 DOI: 10.18632/aging.204823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVE Mago-nashi homolog (MAGOH) has been shown to play a pivotal part in various tumors. However, its specific contribution in lower-grade glioma (LGG) is still unknown. METHODS Pan-cancer analysis was implemented to inspect the expression characteristics and prognostic significance of MAGOH in multiple tumors. The associations between MAGOH expression patterns and the pathological features of LGG were analyzed, as were the connections between MAGOH expression and the clinical traits, prognosis, biological activities, immune features, genomic variations, and responses to treatment in LGG. Additionally, in vitro studies were performed to detect the expression levels and biomedical functions of MAGOH in LGG. RESULTS Abnormally increased levels of MAGOH expression were connected with adverse prognosis in patients with several types of tumors, including LGG. Importantly, we found that levels of MAGOH expression were independent prognostic biomarker of patients with LGG. Increased MAGOH expression was also highly associated with several immune-related markers, immune cell infiltration, immune checkpoint genes (ICPGs), gene mutations, and responses to chemotherapy in patients with LGG. In vitro studies ascertained that abnormally increased MAGOH was essential for cell proliferation in LGG. CONCLUSION MAGOH is a valid predictive biomarker in LGG and may become a novel therapeutic target in these patients.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Zhenli Long
- Queen Marry College, School of Medicine, Nanchang University, Nanchang, China
| | - Yun Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Xin Y, Zhang Y. Paralog-based synthetic lethality: rationales and applications. Front Oncol 2023; 13:1168143. [PMID: 37350942 PMCID: PMC10282757 DOI: 10.3389/fonc.2023.1168143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Tumor cells can result from gene mutations and over-expression. Synthetic lethality (SL) offers a desirable setting where cancer cells bearing one mutated gene of an SL gene pair can be specifically targeted by disrupting the function of the other genes, while leaving wide-type normal cells unharmed. Paralogs, a set of homologous genes that have diverged from each other as a consequence of gene duplication, make the concept of SL feasible as the loss of one gene does not affect the cell's survival. Furthermore, homozygous loss of paralogs in tumor cells is more frequent than singletons, making them ideal SL targets. Although high-throughput CRISPR-Cas9 screenings have uncovered numerous paralog-based SL pairs, the unclear mechanisms of targeting these gene pairs and the difficulty in finding specific inhibitors that exclusively target a single but not both paralogs hinder further clinical development. Here, we review the potential mechanisms of paralog-based SL given their function and genetic combination, and discuss the challenge and application prospects of paralog-based SL in cancer therapeutic discovery.
Collapse
|
7
|
Tang L, Guo C, Li X, Zhang B, Huang L. TAF15 promotes cell proliferation, migration and invasion of gastric cancer via activation of the RAF1/MEK/ERK signalling pathway. Sci Rep 2023; 13:5846. [PMID: 37037864 PMCID: PMC10086039 DOI: 10.1038/s41598-023-31959-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
TATA-box-binding protein-associated Factor 15 (TAF15), a member of the FUS/EWS/TAF15 (FET) family, contributes to the progression of various tumours. However, the role and molecular mechanism of TAF15 in gastric cancer (GC) progression are still unknown. In this study, we found that TAF15 was significantly upregulated in GC tumour tissues and cell lines. Overexpression of TAF15 was associated with a larger tumour size, high pathologic stage and high T stage of GC. TAF15 knockdown suppressed the proliferation, migration and invasion of GC cells in vitro and inhibited the tumour growth in vivo. Additionally, TAF15 knockdown led to the significant reductions in the phosphorylation levels of RAF1, MEK and ERK1/2, while total RAF1, MEK and ERK1/2 exhibited no significant change in GC cell lines. In summary, TAF15 is overexpressed in GC tumour tissues and cell lines, and promotes cell proliferation, migration and invasion in GC via the RAF1/MEK/ERK signaling pathway, which suggests that TAF15 might be a potential molecular diagnostic marker or therapeutic target for GC.
Collapse
Affiliation(s)
- Li Tang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Chengming Guo
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Xu Li
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Bo Zhang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Liuye Huang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Mitra R, Rehman A, Singh KK, Jaganathan BG. Multifaceted roles of MAGOH Proteins. Mol Biol Rep 2023; 50:1931-1941. [PMID: 36396768 DOI: 10.1007/s11033-022-07904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/14/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
MAGOH and MAGOHB are paralog proteins that can substitute each other in the exon junction complex (EJC). The EJC is formed of core components EIF4A3, RBM8A, and MAGOH/MAGOHB. As a part of the EJC, MAGOH proteins are required for mRNA splicing, export, translation and nonsense-mediated mRNA decay (NMD). MAGOH is also essential for embryonic development and normal cellular functioning. The haploinsufficiency of MAGOH results in disorders such as microcephaly and cancer. The present review discusses the discovery of MAGOH, its paralog MAGOHB, their roles in cellular function as part of the EJC, and other cellular roles that are not directly associated with mRNA processing. We also discuss how MAGOH haploinsufficiency in cancer cells can be exploited to develop a novel targeted cancer treatment.
Collapse
Affiliation(s)
- Rumela Mitra
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Ayushi Rehman
- RNA-Binding Proteins (RBPs) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Kusum Kumari Singh
- RNA-Binding Proteins (RBPs) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| |
Collapse
|
9
|
Soederberg A, Meißgeier T, Bosserhoff AK, Linck-Paulus L. MAGOH and MAGOHB Knockdown in Melanoma Cells Decreases Nonsense-Mediated Decay Activity and Promotes Apoptosis via Upregulation of GADD45A. Cells 2022; 11:cells11233859. [PMID: 36497117 PMCID: PMC9738831 DOI: 10.3390/cells11233859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Cutaneous malignant melanoma is a highly proliferative and aggressive skin cancer with a steadily increasing incidence and a low long-term survival rate after metastatic progression. The protein MAGOH and its highly identical homologue MAGOHB are core components of the exon junction complex (EJC), which regulates splicing, stability and translation of mRNAs. The EJC, and especially MAGOH, has been shown to be involved in the development and progression of several cancers. In melanoma, the expression and function of both homologues remain essentially unexplored. This study identifies high MAGOH and MAGOHB protein expression in cutaneous melanoma cell lines and patient derived tissue samples. An siRNA-mediated knockdown of MAGOH significantly inhibits melanoma cell proliferation. The loss of MAGOH does not affect cell cycle progression, but induces apoptosis, an effect that is enhanced by a simultaneous knockdown of MAGOH and MAGOHB. MAGOH and MAGOHB do not influence the expression of the pro-apoptotic protein Bcl-XS or exon skipping. However, the knockdown of MAGOH and MAGOHB strongly decreases nonsense-mediated decay (NMD) activity, leading to an upregulation of the pro-apoptotic protein GADD45A. In conclusion, simultaneous inhibition of MAGOH and MAGOHB expression substantially affects cell survival, indicating both MAGOH homologues as promising new targets for the treatment of melanoma.
Collapse
Affiliation(s)
- Agnes Soederberg
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
| | - Tina Meißgeier
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Lisa Linck-Paulus
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
10
|
Ma H, Wu F, Bai Y, Wang T, Ma S, Guo L, Liu G, Leng G, Kong Y, Zhang Y. Licoricidin combats gastric cancer by targeting the ICMT/Ras pathway in vitro and in vivo. Front Pharmacol 2022; 13:972825. [PMID: 36339587 PMCID: PMC9629146 DOI: 10.3389/fphar.2022.972825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Licoricidin, a type of isoflavonoid, is extracted from the root of Glycyrrhiza glabra. It has been widely proven that licoricidin possesses multiple biological activities, including anti-cancer effects and a powerful antimicrobial effect against Helicobacter pylori (H. pylori). However, the exact mechanism of licoricidin against gastric cancer remains unclear. In this study, we comprehensively explored the effects of licoricidin on MGC-803 gastric cancer cells in vitro and in vivo and further elucidated its mechanism of action. Our results revealed that licoricidin exhibited multiple anti-gastric cancer activities, including suppressing proliferation, inducing apoptosis, arresting the cell cycle in G0/G1 phase, and inhibiting the migration and invasion abilities of MGC-803 gastric cancer cells. In addition to this, a total of 5861 proteins were identified by quantitative proteomics research strategy of TMT labeling, of which 19 differential proteins (two upregulated and 17 downregulated) were screened out. Combining bioinformatics analyses and the reported roles in cancer progression of the 19 proteins, we speculated that isoprenyl carboxyl methyltransferase (ICMT) was the most likely target of licoricidin. Western blot assays and IHC assays subsequently proved that licoricidin significantly downregulated the expression of ICMT, both in MGC-803 cells and in xenograft tumors. Moreover, licoricidin effectively reduced the level of active Ras-GTP and blocked the phosphorylation of Raf and Erk, which may be involved in its anti-gastric cancer effects. In summary, we first demonstrated that licoricidin exerted favorable anti-gastric cancer activities via the ICMT/Ras pathway, which suggests that licoricidin, as a natural product, could be a novel candidate for the management of gastric cancer.
Collapse
Affiliation(s)
- Hanwei Ma
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Pediatric Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fahong Wu
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yinliang Bai
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tianwei Wang
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Shangxian Ma
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liuqing Guo
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Guiyuan Liu
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Guangxian Leng
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yin Kong
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Youcheng Zhang
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Youcheng Zhang,
| |
Collapse
|
11
|
Martin H, Rupkey J, Asthana S, Yoon J, Patel S, Mott J, Pei Z, Mao Y. Diverse Roles of the Exon Junction Complex Factors in the Cell Cycle, Cancer, and Neurodevelopmental Disorders-Potential for Therapeutic Targeting. Int J Mol Sci 2022; 23:ijms231810375. [PMID: 36142288 PMCID: PMC9499366 DOI: 10.3390/ijms231810375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) plays a crucial role in regulating gene expression at the levels of alternative splicing, translation, mRNA localization, and nonsense-mediated decay (NMD). The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (eIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), in addition to other peripheral factors whose structural integration is activity-dependent. The physiological and mechanistic roles of the EJC in contribution to molecular, cellular, and organismal level function continue to be explored for potential insights into genetic or pathological dysfunction. The EJC’s specific role in the cell cycle and its implications in cancer and neurodevelopmental disorders prompt enhanced investigation of the EJC as a potential target for these diseases. In this review, we highlight the current understanding of the EJC’s position in the cell cycle, its relation to cancer and developmental diseases, and potential avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Hannah Martin
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Julian Rupkey
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shray Patel
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence:
| |
Collapse
|
12
|
Development of Olaparib-Resistance Prostate Cancer Cell Lines to Identify Mechanisms Associated with Acquired Resistance. Cancers (Basel) 2022; 14:cancers14163877. [PMID: 36010871 PMCID: PMC9405809 DOI: 10.3390/cancers14163877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary PARP inhibitors (PARPi; olaparib) are presently in clinical trials for advanced prostate cancer (PC). Resistance mechanisms are not fully understood in PC compared to ovarian and breast cancers. Our study aimed to identify new molecular mechanisms that affect acquired olaparib-resistance. We developed new resistant PC cell line models derived from original PC cell lines. We identified that DNA repair, autophagy, and the Rho-associated coiled-coil containing protein kinase 2 (ROCK2) could be potential targets to reverse the acquired olaparib-resistance. Abstract Background: Poly (ADP-ribose) polymerase inhibitors (PARPi) were initially deployed to target breast and ovarian tumors with mutations in DNA damage response genes. Recently, PARPi have been shown to be beneficial in the treatment of prostate cancer (PC) patients having exhausted conventional therapeutics. Despite demonstrating promising response rates, all patients treated with PARPi eventually develop resistance. However, PARPi resistance in PC is not well understood, and further studies are required to understand PARPi resistance in PC to propose strategies to circumvent resistance. Methods: Starting from well-established olaparib-sensitive PC cell lines (LNCaP, C4-2B and DU145), we derived olaparib-resistant (OR) PC cell lines and performed a microarray analysis. Results: The olaparib IC50 values of OR cell lines increased significantly as compared to the parental cell lines. Gene expression analyses revealed that different pathways, including DNA repair, cell cycle regulation and autophagy, were affected by acquired resistance. A total of 195 and 87 genes were significantly upregulated and downregulated, respectively, in all three OR cell lines compared to their parental counterparts. Among these genes, we selected BRCC3, ROCK2 and ATG2B for validation. We showed that ROCK2 expression, basal autophagy and homologous recombination (HR) efficiency were increased in all OR cell lines. Conclusions: Our study provides a new in vitro model to study PARPi resistance in PC and suggests new possible targets to reverse resistance and prolong the benefits of PARPi treatment.
Collapse
|
13
|
The MAGOH paralogs - MAGOH, MAGOHB and their multiple isoforms. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|