1
|
Pérez-Valero Á, Magadán-Corpas P, Ye S, Serna-Diestro J, Sordon S, Huszcza E, Popłoński J, Villar CJ, Lombó F. Antitumor Effect and Gut Microbiota Modulation by Quercetin, Luteolin, and Xanthohumol in a Rat Model for Colorectal Cancer Prevention. Nutrients 2024; 16:1161. [PMID: 38674851 PMCID: PMC11054239 DOI: 10.3390/nu16081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer stands as the third most prevalent form of cancer worldwide, with a notable increase in incidence in Western countries, mainly attributable to unhealthy dietary habits and other factors, such as smoking or reduced physical activity. Greater consumption of vegetables and fruits has been associated with a lower incidence of colorectal cancer, which is attributed to their high content of fiber and bioactive compounds, such as flavonoids. In this study, we have tested the flavonoids quercetin, luteolin, and xanthohumol as potential antitumor agents in an animal model of colorectal cancer induced by azoxymethane and dodecyl sodium sulphate. Forty rats were divided into four cohorts: Cohort 1 (control cohort), Cohort 2 (quercetin cohort), Cohort 3 (luteolin cohort), and Cohort 4 (xanthohumol cohort). These flavonoids were administered intraperitoneally to evaluate their antitumor potential as pharmaceutical agents. At the end of the experiment, after euthanasia, different physical parameters and the intestinal microbiota populations were analyzed. Luteolin was effective in significantly reducing the number of tumors compared to the control cohort. Furthermore, the main significant differences at the microbiota level were observed between the control cohort and the cohort treated with luteolin, which experienced a significant reduction in the abundance of genera associated with disease or inflammatory conditions, such as Clostridia UCG-014 or Turicibacter. On the other hand, genera associated with a healthy state, such as Muribaculum, showed a significant increase in the luteolin cohort. These results underline the anti-colorectal cancer potential of luteolin, manifested through a modulation of the intestinal microbiota and a reduction in the number of tumors.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Juan Serna-Diestro
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
3
|
Madrigal-Matute J, Bañón-Escandell S. Colorectal Cancer and Microbiota Modulation for Clinical Use. A Systematic Review. Nutr Cancer 2022; 75:123-139. [PMID: 35950572 DOI: 10.1080/01635581.2022.2108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the top contributors to the global burden of cancer incidence and mortality, with both genetic and environmental factors contributing to its etiology. Environmental factors may be the cause of up to 60% of the risk of developing CRC, with gut microbiota being a crucial modifiable risk factor. The microbial ecosystem plays a vital role in CRC prevention and antitumoral response through modulation of the immune system and production of short-chain fatty acids. Numerous approaches have been followed to modify the gut microbiota in order to reduce the risk of cancer development, improve treatment efficacy, and reduce side effects. This study aims to perform a systematic analysis of the published literature to elucidate whether microbiota modulation through pre-, pro-, and symbiotic treatment and/or nutritional intervention can be beneficial for patients diagnosed with CRC. Our analysis finds that some prebiotics, mainly in the form of oligo- and polysaccharides, probiotics such as lactic strain producers of short-chain fatty acids, and consumption of a Mediterranean plant-based diet may be beneficial for patients diagnosed with CRC. However, there is a need for clinical data which evaluate the modulation of gut microbiota in a safe and effective manner.
Collapse
|
4
|
Lan T, Zeng Q, Jiang W, Liu T, Xu W, Yao P, Lu W. Metabolism disorder promotes isoproterenol-induced myocardial injury in mice with high temperature and high humidity and high-fat diet. BMC Cardiovasc Disord 2022; 22:133. [PMID: 35350989 PMCID: PMC8966251 DOI: 10.1186/s12872-022-02583-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Isoproterenol (ISO), a synthetic on selective β-adrenergic agonist, provides a simple and non-invasive method for inducing myocardial injury with lower mortality and higher reproducibility. Phlegm-damp syndrome, as known as “Tanshi” in Chinese, is one of Traditional Chinese Medicine (TCM) syndrome differentiation, which plays an important role in the development of cardiovascular diseases. However, the underlying mechanism remains unknown. Methods In our present study, a myocardial injury mouse model was introduced by ISO administration combined with high temperature and high humidity and high-fat diet to simulate phlegm-damp syndrome. Nontargeted metabolomics with LC–MS/MS was adopted to reveal serum metabolism profile for elucidating the possible molecular mechanism. Results The results of our study showed that phlegm-damp syndrome promoted ISO-induced myocardial injury by aggravating left ventricular hypertrophy and fibrosis, and increasing cardiac index. Our study also confirmed the presence of specific metabolites and disturbed metabolic pathways by comparing ISO mice and Tanshi mice, mainly including glycerophospholipid metabolism, arginine–proline metabolism, and sphingolipid signaling pathway. The lysoPCs, PCs, SMs, Sphingosine, and L-Arginine were the main metabolites that showed a difference between ISO and Tanshi mice, which might be the result of the underlying mechanism in the promotion of ISO-induced myocardial injury in mice with high temperature and high humidity and high-fat diet. Conclusion Our current study provides new insights into contribution of metabolism disorder in promotion of ISO-induced myocardial injury in mice with high temperature and high humidity and high-fat diet, and new targets for clinical diagnosis and pharmacologic treatment of cardiovascular disease with phlegm-damp syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02583-z.
Collapse
Affiliation(s)
- Taohua Lan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510020, People's Republic of China
| | - Qiaohuang Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510020, People's Republic of China
| | - Wei Jiang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510020, People's Republic of China
| | - Tong Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510020, People's Republic of China
| | - Wenjing Xu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510020, People's Republic of China
| | - Ping Yao
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, People's Republic of China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510020, People's Republic of China
| | - Weihui Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, People's Republic of China. .,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, People's Republic of China. .,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, People's Republic of China. .,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510020, People's Republic of China. .,Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, 510020, People's Republic of China.
| |
Collapse
|