1
|
Jayathirtha M, Jayaweera T, Whitham D, Sullivan I, Petre BA, Darie CC, Neagu AN. Two-Dimensional-PAGE Coupled with nLC-MS/MS-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in MCF7 Breast Cancer Cells Transfected for JTB Protein Silencing. Molecules 2023; 28:7501. [PMID: 38005222 PMCID: PMC10673289 DOI: 10.3390/molecules28227501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/β-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Isabelle Sullivan
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd. No. 22, 700505 Iasi, Romania
| |
Collapse
|
2
|
Chen X, Xu Y, Zhou Z, Zhao P, Zhou Z, Wang F, Zhong F, Du H. CircUSP10 promotes liver cancer progression by regulating miR-211-5p/TCF12/EMT signaling pathway. Heliyon 2023; 9:e20649. [PMID: 37829805 PMCID: PMC10565698 DOI: 10.1016/j.heliyon.2023.e20649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
There is no precise diagnosis or prognosis for liver cancer (LC) using a single biomarker. Circular RNAs (circRNAs) contribute to the pathogenesis of different cancers, but their role in LC is not entirely understood. In this study, circUSP10, an aberrantly expressed circRNA in LC, was screened using the Gene Expression Omnibus database, and its tissue-specific expression was verified using qRT-PCR. In vitro, functional assays and nude mouse tumorigenesis models were used to investigate circUSP10 role in LC. RNA immunoprecipitation and dual-luciferase reporter assays were performed to study the mechanistic relationship between circUSP10, miR-211-5p, and transcription factor 12 (TCF12). We found that circUSP10 expression was upregulated in LC tissues and cells. CircUSP10 expression was linked to tumor size and tumor node metastasis stage and negatively correlated with LC prognosis. In vitro assays confirmed circUSP10-mediated proliferation, migration, and invasion of LC cells and their association with the epithelial-mesenchymal transition (EMT) pathway. Mechanistically, circUSP10 adsorbed miR-211-5p, which regulated TCF12 and promoted tumorigenesis via the EMT signaling pathway. Therefore, our results suggest that circUSP10 may promote LC progression by modulating the miR-211-5p/TCF12/EMT signaling cascade and may serve as a potential biomarker for LC diagnosis and prognosis.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yao Xu
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhengyang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ping Zhao
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhou Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Fengyun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
3
|
Chen M, Zhang L. Circ_0001806 relieves LPS-induced HK2 cell injury by regulating the expression of miR-942-5p and TXNIP. J Bioenerg Biomembr 2023; 55:301-312. [PMID: 37541979 DOI: 10.1007/s10863-023-09978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023]
Abstract
Sepsis is a systemic inflammatory disease that can cause a variety of diseases, including septic acute kidney injury (AKI). Circular RNAs (circRNAs) are believed to be involved in the development of this disease. This study aims to clarify the function of circ_0001806 in lipopolysaccharide (LPS)-induced HK2 cell model and its related mechanisms. Circ_0001806 was up-regulated in septic AKI serum specimens and LPS-induced HK2 cells. Circ_0001806 knockdown promoted cell proliferation and restrained apoptosis, inflammation and oxidative stress in LPS-induced HK2 cells. In mechanism, circ_0001806 can be used as a sponge for miR-942-5p, and miR-942-5p can directly target TXNIP. Functional experiments revealed that the miR-942-5p inhibitor could reverse the alleviating effect of circ_0001806 knockdown on LPS-induced HK2 cell injury, and TXNIP addition can also reverse the inhibitory effect of miR-942-5p overexpression on LPS-induced HK2 cell injury. In addition, circ_0001806 regulated TXNIP expression through sponging miR-942-5p. Besides, exosome-derived circ_0001806 was upregulated in LPS-induced HK2 cells, while was downregulated by GW4869. The results showed that circ_0001806 knockdown could reduce LPS-induced HK2 cell injury by regulating TXNIP expression via targeting miR-942-5p, indicating that circ_0001806 might be an important biomarker for alleviating sepsis-related AKI. This might provide therapeutic strategy for the treatment of sepsis.
Collapse
Affiliation(s)
- Mingjin Chen
- Department of Emergency Medicine, Lishui Second People's Hospital, No. 69, North Ring Road, Liandu District, Lishui City, 323000, Zhejiang Province, China
| | - Lefeng Zhang
- Department of Emergency Medicine, Lishui Second People's Hospital, No. 69, North Ring Road, Liandu District, Lishui City, 323000, Zhejiang Province, China.
| |
Collapse
|
4
|
Alimohammadi M, Gholinezhad Y, Mousavi V, Kahkesh S, Rezaee M, Yaghoobi A, Mafi A, Araghi M. Circular RNAs: novel actors of Wnt signaling pathway in lung cancer progression. EXCLI JOURNAL 2023; 22:645-669. [PMID: 37636026 PMCID: PMC10450211 DOI: 10.17179/excli2023-6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/β-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/β-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/β-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Circ_CSPP1 Regulates the Development of Non-small Cell Lung Cancer via the miR-486-3p/BRD9 Axis. Biochem Genet 2023; 61:1-20. [PMID: 35678942 DOI: 10.1007/s10528-022-10231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023]
Abstract
In this study, we explored the role of circ_CSPP1 in non-small cell lung cancer (NSCLC) using NSCLC cell lines (A549 and H1299) and human bronchial epithelioid cells (16HBE). The differential expression of circ_CSPP1, miR-486-3p and BRD9 in NSCLC by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot in A549 cells, H1299 cells, 16HBE cells, NSCLC tissues and healthy lung tissues. Dual-luciferase reporter assay was conducted to verify the interaction between circ_CSPP1 and miR-486-3p or miR-486-3p and BRD9. The effect of circ_CSPP1/miR-486-3p/BRD9 axis on NSCLC cell proliferation was evaluated using cell counting kit-8 assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine assay. Additionally, transwell assays were performed to evaluate the effect of circ_CSPP1/miR-486-3p/BRD9 axis on A549 and H1299 cell migration and invasion. The effect of circ_CSPP1 on tumor tumorigenesis of A549 cells in vivo was determined by xenograft tumor model and immunohistochemistry assay. Circ_CSPP1 and BRD9 expression were upregulated, while miR-486-3p expression was downregulated in tumor tissues of NSCCL patients and A549 and H1299 cells. Circ_CSPP1 specifically bound miR-486-3p, and miR-486-3p could target BRD9. Circ_CSPP1 upregulation promoted proliferation, invasion and migration of NSCLC cells, circ_CSPP1 knockdown or miR-486-3p upregulation had the opposite effects. Circ_CSPP1 knockdown-induced effects were reverted by miR-486-3p inhibition. Similarly, the effects of miR-486-3p upregulation on NSCLC cell proliferation, invasion and migration were reversed by BRD9 overexpression. In addition, circ_CSPP1 silencing inhibited tumor growth in nude mice. Circ_CSPP1 promoted A549 and H1299 cell malignancy by competitively inhibiting BRD9 and binding to miR-486-3p.
Collapse
|
6
|
Wu W, Zhou Z, Chen C, Chen M. Circ_0061395 functions as an oncogenic gene in hepatocellular carcinoma by acting as a miR-1182 sponge. Cell Cycle 2022; 21:2192-2205. [PMID: 35775884 PMCID: PMC9519000 DOI: 10.1080/15384101.2022.2092177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/25/2022] [Indexed: 11/03/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in liver cancer, with a high rate of metastasis and recurrence. Circular RNA_0061395 (circ_0061395) has been shown to be involved in the advance of HCC. However, the interaction between circ_0061395 and microRNA (miRNA) in HCC has not been studied. Quantitative real-time polymerase-chain reaction (qRT-PCR) was used to detect the expression of related genes in liver cancer tissues and cells. The stability of circ_0061395 was verified by RNase R digestion. Through detection of cell malignant behavior and apoptosis, the capping experiment was carried out to verify the regulatory relationship between miR-1182 and circ_0061395 or SPARC/osteonectin, CWCV and Kazal-like domains proteoglycan 1 (SPOCK1). The expression of related proteins was detected by western blot. The interaction of miR-1182 with circ_0061395 or SPOCK1 has been notarized by Dual-luciferase reporter analysis and RNA immunoprecipitation (RIP) assay. Xenotransplantation experiments using BALB/C nude mice were used to confirm the function of circ_0061395 in vivo. Circ_0061395 and SPOCK1 were significantly expressed in liver cancer tissues and cells. Silencing circ_0061395 reduced the proliferation, migration, invasion, tube formation and tumor spheroid formation rate of Huh-7 and SNU-387 cells. MiR-1182 was a target of circ_0061395. Silencing circ_0061395 inhibited the malignant behavior of HCC cells by releasing miR-1182. In addition, SPOCK1 was the target of miR-1182. Overexpression of SPOCK1 partially restored the inhibitory effect of miR-1182 on cell proliferation. Animal experiments confirmed the anti-tumor effect of silence circ_0061395. Circ_0061395 induced the changes of the expression of SPOCK1 by regulating miR-1182, thereby mediating the process of HCC, and at least partially promoting the development of HCC cells, providing a novel targeted therapy for HCC.
Collapse
Affiliation(s)
- Wen Wu
- The First Affiliated Hospital, Department of Hepato-Biliary-Pancreatic Surgery, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, China
| | - Zhenhua Zhou
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Huaihua, Huaihua City, Hunan Province, China
| | - Chao Chen
- The First Affiliated Hospital, Department of Hepato-Biliary-Pancreatic Surgery, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, China
| | - Ming Chen
- The First Affiliated Hospital, Department of Gastroenterology and Hepatology, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, China
| |
Collapse
|
7
|
Yin TF, Du SY, Zhao DY, Sun XZ, Zhou YC, Wang QQ, Zhou GYJ, Yao SK. Identification of circ_0000375 and circ_0011536 as novel diagnostic biomarkers of colorectal cancer. World J Clin Cases 2022; 10:3352-3368. [PMID: 35611198 PMCID: PMC9048569 DOI: 10.12998/wjcc.v10.i11.3352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/30/2021] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) imposes a tremendous burden on human health, with high morbidity and mortality. Circular ribonucleic acids (circRNAs), a new type of noncoding RNA, are considered to participate in cancer pathogenesis as microRNA (miRNA) sponges. However, the dysregulation and biological functions of circRNAs in CRC remain to be explored. AIM To identify potential circRNA biomarkers of CRC and explore their functions in CRC carcinogenesis. METHODS CircRNAs and miRNAs differentially expressed in CRC tissues were identified by analyzing expression profiles from the Gene Expression Omnibus (GEO) database. Circ_0000375 and circ_0011536 were selected as CRC biomarker candidates. Quantitative real-time polymerase chain reaction was utilized to evaluate the expression of these 2 circRNAs in CRC tissues, serums and cell lines. Receiver operating characteristic curves were generated to assess the diagnostic performances of these 2 circRNAs. Then, functional experiments, including cell counting kit-8, wound healing and Transwell invasion assays, were performed after the overexpression of circ_0000375 and circ_0011536 in CRC cell lines. Furthermore, candidate target miRNAs of circ_0000375 and circ_0011536 were predicted via bioinformatics analysis. The expression levels of these miRNAs were explored in CRC cell lines and tissues from GEO datasets. A luciferase reporter assay was developed to examine the interactions between circRNAs and miRNAs. Based on the target miRNAs and downstream genes, functional enrichment analyses were applied to reveal the critical signaling pathways involved in CRC carcinogenesis. RESULTS Downregulated circ_0000375 and circ_0011536 expression was observed in CRC tissues in GSE126095, clinical CRC tissue and serum samples and CRC cell lines. The areas under the curve for circ_0000375 and circ_0011536 were 0.911 and 0.885 in CRC tissue and 0.976 and 0.982 in CRC serum, respectively. Moreover, the serum levels of these 2 circRNAs were higher in patients at 30 d postsurgery than in patients before surgery, suggesting that the serum expression of circ_0000375 and circ_0011536 is related to CRC tumorigenesis. Circ_0000375 and circ_0011536 overexpression inhibited the proliferation, migration and invasion of CRC cells. Furthermore, miR-1182 and miR-1246, which were overexpressed in CRC tissues in GSE41655, GSE49246 and GSE115513, were verified as target miRNAs of circ_0000375 and circ_0011536, respectively, by luciferase reporter assays. The downstream genes of miR-1182 and miR-1246 were enriched in some CRC-associated pathways, such as the Wnt signaling pathway. CONCLUSION Circ_0000375 and circ_0011536 may function as tumor suppressors in CRC progression, serving as novel biomarkers for CRC diagnosis and as promising candidates for therapeutic exploration.
Collapse
Affiliation(s)
- Teng-Fei Yin
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Shi-Yu Du
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dong-Yan Zhao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xi-Zhen Sun
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yuan-Chen Zhou
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Qian-Qian Wang
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Ge-Yu-Jia Zhou
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shu-Kun Yao
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
8
|
Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, Yu Z, Wang P, Liu N. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int 2022; 22:141. [PMID: 35361205 PMCID: PMC8973545 DOI: 10.1186/s12935-022-02559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNA (circRNA), a new type of endogenous non-coding RNA, is abundantly present in eukaryotic cells, and characterized as stable high conservation and tissue specific expression. It has been generated increasing attention because of their close association with the progress of diseases. The liver is the vital organ of humans, while it is prone to acute and chronic diseases due to the influence of multiple pathogenic factors. Moreover, hepatocellular carcinoma (HCC) is the one of most common cancer and the leading cause of cancer death worldwide. Overwhelming evidences indicate that some circRNAs are differentially expressed in liver diseases, such as, HCC, chronic hepatitis B, hepatic steatosis and hepatoblastoma tissues, etc. Additionally, these circRNAs are related to proliferation, invasion, migration, angiogenesis, apoptosis, and metastasis of cell in liver diseases and act as oncogenic agents or suppressors, and linked to clinical manifestations. In this review, we briefly summarize the biogenesis, characterization and biological functions, recent detection and identification technologies of circRNA, and regulation network mechanism of circRNA in liver diseases, and discuss their potential values as biomarkers or therapeutic targets for liver diseases, especially on HCC.
Collapse
Affiliation(s)
- Panpan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Yunhuan Zhang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lugang Deng
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China. .,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China. .,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
9
|
Wang J, Zhou L, Chen B, Yu Z, Zhang J, Zhang Z, Hu C, Bai Y, Ruan X, Wang S, Ouyang J, Wu A, Zhao X. Circular RNA circCSPP1 promotes the occurrence and development of colon cancer by sponging miR-431 and regulating ROCK1 and ZEB1. J Transl Med 2022; 20:58. [PMID: 35101080 PMCID: PMC8805259 DOI: 10.1186/s12967-022-03240-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 12/17/2022] Open
Abstract
Background Colon cancer is a common malignant tumor of the digestive tract, and its incidence is ranked third among gastrointestinal tumors. The present study aims to investigate the role of a novel circular RNA (circCSPP1) in colon cancer and its underlying molecular mechanisms. Methods Bioinformatics analysis and reverse transcription-quantitative PCR were used to detect the expression levels of circCSPP1 in colon cancer tissues and cell lines. The effects of circCSPP1 on the behavior of colon cancer cells were investigated using CCK-8, transwell and clonogenic assays. Bioinformatics analysis along with luciferase, fluorescence in situ hybridization and RNA pull-down assays were used to reveal the interaction between circCSPP1, microRNA (miR)-431, Rho associated coiled-coil containing protein kinase 1 (ROCK1) and zinc finger E-box binding homeobox 1 (ZEB1). Results It was found that circCSPP1 expression was significantly upregulated in colon cancer tissues and cell lines. Overexpression of circCSPP1 significantly promoted the proliferation, migration and invasion of colon cancer cells, whereas silencing of circCSPP1 exerted opposite effects. Mechanistically, circCSPP1 was found to bind with miR-431. In addition, ROCK1 and ZEB1 were identified as the target genes of miR-431. Rescue experiments further confirmed the interaction between circCSPP1, miR-431, ROCK1 and ZEB1. Moreover, circCSPP1 promoted the expression level of ROCK1, cyclin D1, cyclin-dependent kinase 4, ZEB1 and Snail, and lowered the E-cadherin expression level. Conclusion Taken together, the findings of the present study indicated that circCSPP1 may function as a competing endogenous RNA in the progression of colon cancer by regulating the miR-431/ROCK1 and miR-431/ZEB1 signaling axes. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03240-x.
Collapse
|
10
|
Zhang L, Yang ST, Wang C, Zhang LC, Zhang X, Li FC, Wang SY, Ma K. Circle RNA circCSPP1 promotes human osteosarcoma cell proliferation and increases glucose metabolism by suppressing miR-200c maturation. Hum Exp Toxicol 2022; 41:9603271221097364. [PMID: 35713481 DOI: 10.1177/09603271221097364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION MiR-200c plays a central role in glucose metabolism in cancer cells. However, its upstream regulators in this process are unknown. CircRNA CSPP1 (circCSPP1) was predicted to bind to premature miR-200c, an oncogenic miRNA. Therefore, we explored their interaction in osteosarcoma (OS). METHODS Differential circCSPP1 and miR-200c expression in OS was analyzed using RT-qPCR. Glucose metabolism was analyzed by glucose uptake assay. Subcellular circCSPP1 location in OS cells was detected using cellular fractionation assay. The direct interaction between circCSPP1 and miR-200c was explored using RNA-RNA pull-down assay. The role of circCSPP1 in miR-200c maturation was investigated by analyzing both mature and premature miR-200c levels in OS cells with circCSPP1 overexpression. RESULTS CircCSPP1 and premature miR-200c levels were increased while mature miR-200c level was decreased in OS. CircCSPP1 was detected in both the nuclear and cytoplasm fractions of OS cells. CircCSPP1 directly interacted with premature miR-200c. CircCSPP1 overexpression increased premature miR-200c level, glucose uptake, and cell proliferation, but decreased mature miR-200c level. MiR-200c overexpression suppressed the role of circCSPP1 in OS cells. CONCLUSIONS CircCSPP1 promotes OS cell proliferation and increases glucose metabolism by suppressing miR-200c maturation.
Collapse
Affiliation(s)
- L Zhang
- Experiment Center of Basic Medical Sciences of Kunming Medical University, Kunming City, P. R. China
| | - S T Yang
- Department of Orthopedics, 36657The First Affiliated Hospital of Kunming Medical University, Kunming City, P. R. China
| | - C Wang
- Department of Orthopedics, 36657The First Affiliated Hospital of Kunming Medical University, Kunming City, P. R. China
| | - L C Zhang
- Department of Orthopedics, 36657The First Affiliated Hospital of Kunming Medical University, Kunming City, P. R. China
| | - X Zhang
- Experiment Center of Basic Medical Sciences of Kunming Medical University, Kunming City, P. R. China
| | - F C Li
- Department of Orthopedics, 36657The First Affiliated Hospital of Kunming Medical University, Kunming City, P. R. China
| | - S Y Wang
- Department of Orthopedics, 36657The First Affiliated Hospital of Kunming Medical University, Kunming City, P. R. China
| | - K Ma
- Department of Orthopedics, 36657The First Affiliated Hospital of Kunming Medical University, Kunming City, P. R. China
| |
Collapse
|