1
|
Cheng Y, Teng Z, Zhang Y, Jin B, Zheng Z, Man L, Wang Z, Teng Y, Yu P, Shi J, Luo Y, Wang Y, Zhang J, Zhang H, Liu J, Chen H, Xiao J, Zhao L, Zhang L, Jiang Y, Chen Y, Zhang J, Wang C, Liu S, Qu J, Qu X, Liu Y. Irinotecan plus raltitrexed as second-line treatment in locally advanced or metastatic colorectal cancer patients: a prospective open-label, single-arm, multi-center, phase II study. BMC Cancer 2024; 24:1082. [PMID: 39223545 PMCID: PMC11368032 DOI: 10.1186/s12885-024-12831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Colorectal cancer is the third most common cancer and the second leading cause of cancer death. There are limited therapeutic options for the treatment of locally advanced or metastatic colorectal cancers which fail first-line chemotherapy. Phase I/II studies showed that the combined application of the raltitrexed and irinotecan has significant synergistic effect and acceptable toxicity. However, most of these previous studies have relatively small sample size. METHODS This is a prospective open-label, single-arm, multi-center, Phase II trial. Brief inclusion criteria: patients were aged 18 to 75 years with locally advanced or metastatic colorectal cancer after failure of 5-FU and oxaliplatin therapy. Enrolled patients received raltitrexed (3 mg/m2, d1) and irinotecan (180 mg/m2, d1) each 21-day cycle until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival, and the secondary endpoints were disease control rate, objective response rate, overall survival and safety. RESULTS A total of 108 patients were enrolled between September 2016 and May 2020. The median age was 61 years, ECOG 1 score accounts for 67.6%, the rest were ECOG 0. A total of 502 cycles were completed, with an average of 4.6 cycles and a median of 4 cycles. 108 patients were evaluated, with an objective response rate of 17.6%, and disease control rate of 76.9%. The median follow-up time was 27 months (range:3.1-61.0 m) at data cut-off on March 2023. Median progression-free survival was 4.9 months (95% CI 4.1-5.7) and median overall survival was 13.1 months (95% CI 12.2-15.5). The most common adverse events that were elevated are alanine aminotransferase increased, aspartate aminotransferase increased, fatigue, diarrhoea, neutrocytopenia, thrombocytopenia, hypohemoglobin, and leukocytopenia. Most of the adverse events were Grade I/II, which were relieved after symptomatic treatment, and there were no treatment-related cardiotoxicities and deaths. CONCLUSIONS The combination of raltitrexed and irinotecan as second-line treatment for mCRC could be a reliable option after failure of standard 5-Fu-first-line chemotherapy in locally advanced or metastatic colorectal cancers, especially for patients with 5-FU intolerance (cardiac events or DPD deficiency patients). TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03053167, registration date was 14/2/2017.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Zan Teng
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Yanqiao Zhang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Bo Jin
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Zhendong Zheng
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, Liaoning Province, China
| | - Li Man
- Department of Oncology, Anshan Cancer Hospital, Anshan, Liaoning Province, China
| | - Zhenghua Wang
- Department of Oncology, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuee Teng
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Ping Yu
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Jing Shi
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Ying Luo
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Ying Wang
- Department of Oncology, Shengjing Hospital Of China Medical University, Shenyang, Liaoning Province, China
| | - Jingdong Zhang
- Department of Oncology, Liaoning Cancer Hospital, Shenyang, Liaoning Province, China
| | - Huijuan Zhang
- Department of Oncology, Tieling Central Hospital, Tieling, Liaoning Province, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital Of Dalian Medical University, Dalian, Liaoning Province, China
| | - Hao Chen
- Department of Oncology, Liaoyang Liaohua Hospital, Liaoyang, Liaoning Province, China
| | - Jiawen Xiao
- Department of Oncology, Shenyang Fifth People Hospital, Shenyang, Liaoning Province, China
| | - Lei Zhao
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Lingyun Zhang
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Yu Jiang
- Department of Oncology, Panjin Central Hospital, Panjin, Liaoning Province, China
| | - Ying Chen
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Jian Zhang
- Department of Oncology, Liaoyang City Central Hospital, Liaoyang, Liaoning Province, China
| | - Chang Wang
- Department of Oncology, The First Hospital Of Jilin University, Changchun, Jilin Province, China
| | - Sa Liu
- Department of Oncology, The Fourth Affiliated Hospital Of China Medical University, Shenyang, Liaoning Province, China
| | - Jinglei Qu
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China.
| | - Xiujuan Qu
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China.
| | - Yunpeng Liu
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning Province, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Amonkar MM, Abderhalden LA, Frederickson AM, Aksomaityte A, Lang BM, Leconte P, Zhang I. Clinical outcomes of chemotherapy-based therapies for previously treated advanced colorectal cancer: a systematic literature review and meta-analysis. Int J Colorectal Dis 2023; 38:10. [PMID: 36630020 DOI: 10.1007/s00384-022-04301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE The purpose of this study was to evaluate clinical outcomes of standard therapies in previously treated, advanced colorectal cancer (CRC) patients. METHODS A systematic literature review was conducted in Embase, MEDLINE, and CENTRAL databases (January 2000-July 2021), annual oncology conferences (2019-2021), and clinicaltrials.gov to identify studies evaluating the use of licensed interventions in second-line or later settings. The primary outcome of interest was objective response rate (ORR) and secondary outcomes included progression-free survival (PFS) and overall survival (OS). ORR was pooled using the Freeman-Tukey double arcsine transformation. For survival outcomes, published Kaplan-Meier curves for OS and PFS were digitized to re-construct individual patient-level data and pooled following the methodology described by Combescure et al. (2014). RESULTS Twenty-three trials evaluating standard chemotherapies with or without targeted therapies across 4,791 advanced CRC patients contributed to our meta-analysis. In the second-line setting, the random effects pooled estimate of ORR was 22.4% (95% confidence interval (CI): 18.0, 27.1), median PFS was 7.0 months (95% CI: 6.4, 7.4), and median OS was 14.9 months (95% CI: 13.6, 16.1). In the third-line or later setting, the random effects pooled estimate of ORR was 1.7% (95% CI: 0.8, 2.7), median PFS was 2.3 months (95% CI: 2.0, 2.8), and median OS was 8.2 months (95% CI: 7.1, 9.1). CONCLUSION Standard treatments have limited efficacy in the second-line or later setting with worsening outcomes in later lines. Given the global burden of CRC, further research into novel and emerging therapeutic options following treatment failure is needed.
Collapse
|
3
|
Poad H, Khan S, Wheaton L, Thomas A, Sweeting M, Bujkiewicz S. The Validity of Surrogate Endpoints in Sub Groups of Metastatic Colorectal Cancer Patients Defined by Treatment Class and KRAS Status. Cancers (Basel) 2022; 14:5391. [PMID: 36358810 PMCID: PMC9654686 DOI: 10.3390/cancers14215391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background and Aim: Findings from the literature suggest that the validity of surrogate endpoints in metastatic colorectal cancer (mCRC) may depend on a treatments' mechanism of action. We explore this and the impact of Kirsten rat sarcoma (KRAS) status on surrogacy patterns in mCRC. Methods: A systematic review was undertaken to identify randomized controlled trials (RCTs) for pharmacological therapies in mCRC. Bayesian meta-analytic methods for surrogate endpoint evaluation were used to evaluate surrogate relationships across all RCTs, by KRAS status and treatment class. Surrogate endpoints explored were progression free survival (PFS) as a surrogate endpoint for overall survival (OS), and tumour response (TR) as a surrogate for PFS and OS. Results: 66 RCTs were identified from the systematic review. PFS showed a strong surrogate relationship with OS across all data and in subgroups by KRAS status. The relationship appeared stronger within individual treatment classes compared to the overall analysis. The TR-PFS and TR-OS relationships were found to be weak overall but stronger within the Epidermal Growth Factor Receptor + Chemotherapy (EGFR + Chemo) treatment class; both overall and in the wild type (WT) patients for TR-PFS, but not in patients with the mutant (MT) KRAS status where data were limited. Conclusions: PFS appeared to be a good surrogate endpoint for OS. TR showed a moderate surrogate relationship with PFS and OS for the EGFR + Chemo treatment class. There was some evidence of impact of the mechanism of action on the strength of the surrogacy patterns in mCRC, but little evidence of the impact of KRAS status on the validity of surrogate endpoints.
Collapse
Affiliation(s)
- Heather Poad
- Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Sam Khan
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Lorna Wheaton
- Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Anne Thomas
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Michael Sweeting
- Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Sylwia Bujkiewicz
- Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
4
|
Hoang T, Sohn DK, Kim BC, Cha Y, Kim J. Efficacy and Safety of Systemic Treatments Among Colorectal Cancer Patients: A Network Meta-Analysis of Randomized Controlled Trials. Front Oncol 2022; 11:756214. [PMID: 35223449 PMCID: PMC8864322 DOI: 10.3389/fonc.2021.756214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Systemic treatments, namely, either monotherapy or combination therapy, are commonly administered to patients with advanced or metastatic colorectal cancer (CRC). This study aimed to provide the complete efficacy and safety profiles and ranking of systemic therapies for the treatment of unresectable advanced or metastatic CRC. METHODS We searched PubMed, Embase, the Cochrane Library, and ClinicalTrials.gov from inception until June 30, 2021, and also the bibliographies of relevant studies. Randomized controlled trials comparing two or more treatments, namely, at least capecitabine, 5-fluorouracil, leucovorin, irinotecan, bevacizumab, cetuximab, oxaliplatin, or panitumumab were investigated. A network meta-analysis using the Bayesian approach was performed to compare the efficacy and safety of treatments. The surface under the cumulative ranking curve (SUCRA) was calculated for the probability of each treatment as the most effective. The overall response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), adverse events (AEs) grade ≥3, and serious adverse events (SAEs) were evaluated. RESULTS One hundred two publications with 36,147 participants were assigned to 39 different treatments. Among 11 treatments with full information on six outcomes, FOLFIRI/FOLFOX/FOLFOXIRI + bevacizumab significantly improved both the ORR and DCR, compared to FOLFIRI. Although FOLFOX and FOLFIRI/FOLFOX + cetuximab significantly prolonged both OS and PFS, treatments were comparable in terms of AEs grade ≥3 and SAEs. The top highest SUCRA values were observed in the FOLFOXIRI + panitumumab group for ORR (96%) and DCR (99%), FOLFIRI + bevacizumab + panitumumab group for OS (62%) and PFS (54%), and FOLFOXIRI + bevacizumab group for AEs grade ≥3 (59%) and SAEs (59%) outcomes. CONCLUSIONS These findings suggest an available range of systemic treatment therapies with different efficacy and safety profiles with patients. Further investigations of the side effects and mutation status are required to confirm our findings. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42019127772.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Byung Chang Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Yongjun Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| |
Collapse
|
5
|
Sun J, Xu J, Sun C, Zheng M, Li Y, Zhu S, Zhang S. Screening and Prognostic Value of Methylated Septin9 and its Association With Clinicopathological and Molecular Characteristics in Colorectal Cancer. Front Mol Biosci 2021; 8:568818. [PMID: 34095214 PMCID: PMC8173126 DOI: 10.3389/fmolb.2021.568818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Screening of CRC continues to show poor compliance of endoscopy examination. The detection of mSEPT9 in peripheral blood is among the safe and simple early screening methods for CRC. The issue of how to elucidate whether detection of mSEPT9 in peripheral blood can effectively improve compliance of endoscopy and increase the early diagnosis rate of CRC and the relationship between levels of mSEPT9 in the peripheral blood and clinical stage, pathological classification, and expression of characteristic molecules in CRC remains unsolved. A total of 7759 individuals participated in the study that was performed using a questionnaire for screening of high-risk CRC. The endoscopic detection compliance of individuals with high-risk CRC who underwent the fecal occult blood test (FOBT) or mSEPT9 test was compared based on the results of the questionnaire. Additionally, correlation of mSEPT9 levels in the peripheral blood with clinicopathological features, mutation status of TP53, mismatch repair deficiency (dMMR), and KRAS/NRAS/BRAF/PIK3CA genotype was analyzed, and association of biomarkers with cancer-specific survival (CSS) and time to recurrence (TTR) was compared. We also detected levels of mSEPT9 in the peripheral blood of patients with CRC 7 days after surgery and compared the prognostic value of mSEPT9 with CEA. Results of our study showed that the mSEPT9 test could improve compliance of endoscopy and indicated a higher percentage of patients with positive mSEPT9 willing to undergo endoscopy detection than in those with positive FOBT. The specificity and sensitivity of mSEPT9 were better than that of FOBT for the detection of CRC. mSEPT9 was associated with the TNM stage, dMMR, and mutations in TP53, BRAF, and PIK3CA. A Ct value of mSEPT9 ≤ 37.5 was significantly related to poor CSS. mSEPT9 could affect association of dMMR and BRAF and PIK3CA mutations with CSS in a specific stage of CRC. The positive rate of mSEPT9 after surgery was found to correlate with poor TTR, and sensitivity was higher than CEA. The combination of mSEPT9 with CEA had a better prognostic value than that of mSEPT9 alone. The level of mSEPT9 was related to dMMR, mutations in TP53, BRAF, and PIK3CA, and was an effective biomarker for the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Jinling Xu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Chao Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Siwei Zhu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
6
|
Yan LH, Liu XL, Mo SS, Zhang D, Mo XW, Tang WZ. OX40 as a novel target for the reversal of immune escape in colorectal cancer. Am J Transl Res 2021; 13:923-934. [PMID: 33841630 PMCID: PMC8014382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/11/2020] [Indexed: 06/12/2023]
Abstract
First-generation immunological checkpoint inhibitors, such as CTLA-4, PD-L1 and PD-1 exhibit significant advantages over conventional cytotoxic drugs, such as oxaliplatin and 5-FU, for the treatment of colorectal cancer. However, these inhibitors are not ideal due to their low objective response rate and the vulnerability of these treatment methods when faced with emerging drug resistant cancers. This study summarizes the immunological characteristics of colorectal cancer treatment, and analyzes the ways in which OX40 may improve the efficacy of these treatments. Activation of the OX40 signaling pathway can enhance the activity of CD4+/CD8+ T cells and inhibit the function of Treg. Simultaneously, OX40 can directly inhibit the expression of Foxp3, affect the inhibitory function of Treg, and inhibit the immunosuppressive factors in the tumor microenvironment so as to reverse immune escape and reverse drug resistance. Therefore, OX40 is an important target for treating colorectal cancer in "cold tumors" with less immunogenicity.
Collapse
Affiliation(s)
- Lin-Hai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Liang Liu
- Department of Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Si Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di Zhang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Chang HL, Jones AL. Current Status of Biologics in Perioperative Treatment for Resectable or Borderline Resectable Liver Metastases. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Clinical Pharmacokinetics and Pharmacodynamics of the Epidermal Growth Factor Receptor Inhibitor Panitumumab in the Treatment of Colorectal Cancer. Clin Pharmacokinet 2019; 57:455-473. [PMID: 28853050 PMCID: PMC5856878 DOI: 10.1007/s40262-017-0590-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite progress in the treatment of metastatic colorectal cancer (mCRC) in the last 15 years, it is still a condition with a relatively low 5-year survival rate. Panitumumab, a fully human monoclonal antibody directed against the epidermal growth factor receptor (EGFR), is able to prolong survival in patients with mCRC. Panitumumab is used in different lines of therapy in combination with chemotherapy, and as monotherapy for the treatment of wild-type (WT) RAS mCRC. It is administered as an intravenous infusion of 6 mg/kg every 2 weeks and has a t½ of approximately 7.5 days. Elimination takes place via two different mechanisms, and immunogenicity rates are low. Only RAS mutations have been confirmed as a negative predictor of efficacy with anti-EGFR antibodies. Panitumumab is generally well tolerated and has a manageable toxicity profile, despite a very high prevalence of dermatologic side effects. This article presents an overview of the clinical pharmacokinetics and pharmacodynamics of panitumumab, including a description of the studies that led to its approval in the different lines of therapy of mCRC.
Collapse
|
9
|
Ashktorab H, Azimi H, Varma S, Lee EL, Laiyemo AO, Nickerson ML, Brim H. Driver genes exome sequencing reveals distinct variants in African Americans with colorectal neoplasia. Oncotarget 2019; 10:2607-2624. [PMID: 31080553 PMCID: PMC6498998 DOI: 10.18632/oncotarget.26721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. African Americans are disproportionately affected by CRC. Our hypothesis is that driver genes with known and novel mutations have an impact on CRC outcome in this population. Therefore, we investigated the variants' profiles in a panel of 15 CRC genes. PATIENTS & METHODS Colorectal specimens (n=140) were analyzed by targeted exome sequencing using an Ion Torrent platform. Detected variants were validated in 36 samples by Illumina sequencing. The novel status of the validated variants was determined by comparison to publicly available databases. Annotated using ANNOVAR and in-silico functional analysis of these variants were performed to determine likely pathogenic variants. RESULTS Overall, 121 known and novel variants were validated: APC (27%), AMER1 (3%), ARID1 (7%), MSH3 (12%), MSH6 (10%), BRAF (4%), KRAS (6%), FBXW7 (4%), PIK3CA (6%), SMAD4 (5%), SOX9 (2%), TCF7L2 (2%), TGFBR2 (5%), TP53 (7%). From these validated variants, 12% were novel in 8 genes (AMER1, APC, ARID1A, BRAF, MSH6, PIK3CA, SMAD4, and TCF7L2). Of the validated variants, 23% were non-synonymous, 14% were stopgains, 24% were synonymous and 39% were intronic variants. CONCLUSION We here report the specifics of variants' profiles of African Americans with colorectal lesions. Validated variants showed that Tumor Suppressor Genes (TSGs) APC and ARID1 and DNA Mismatch repair (MMR) genes MSH3 and MSH6 are the genes with the highest numbers of validated variants. Oncogenes KRAS and PIK3CA are also altered and likely participate in the increased proliferative potential of the mutated colonic epithelial cells in this population.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine, Cancer Center, Howard University, Washington, DC, USA
| | - Hamed Azimi
- Department of Medicine, Cancer Center, Howard University, Washington, DC, USA
| | | | - Edward L. Lee
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| | - Adeyinka O. Laiyemo
- Department of Medicine, Cancer Center, Howard University, Washington, DC, USA
| | - Michael L. Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
10
|
Wang L, Zhou S, Zhang W, Wang J, Wang M, Hu X, Liu F, Zhang Y, Jiang B, Yuan H. Circulating tumor cells as an independent prognostic factor in advanced colorectal cancer: a retrospective study in 121 patients. Int J Colorectal Dis 2019; 34:589-597. [PMID: 30627849 DOI: 10.1007/s00384-018-03223-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE This study aimed to evaluate the prognostic value of circulating tumor cells (CTCs) in advanced colorectal cancer (CRC) patients during chemotherapy course. METHODS From January 2016 to September 2017, the clinicopathological variables, such as gender, age, tumor location, tumor de-differentiation, depth of invasion, lymphatic invasion, distant metastasis, TNM stage, CTCs enumeration during 2-6 cycles of chemotherapy, and serum carcinoembryonic antigen (CEA) level during the same period, of 121 newly acquired and histopathologically confirmed CRC patients were collected from the Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine. All patients were followed up for survival until the end of November 2018. Statistical analysis focused on the associations between CTCs counts and clinicopathological variables. Overall survival (OS) and progression-free survival (PFS) among different prognostic factors were calculated using the Kaplan-Meier method, and the differences between the survival curves were compared by using the log-rank test. Factors of prognostic significance were investigated with the multivariate Cox regression analysis. RESULTS Here, 71 of 121 patients were CTC-positive, in which CTC-positive rate was positively correlated with the depth of invasion, lymphatic invasion, distant metastasis, TNM stage, and serum CEA level (P < 0.05 for all). However, no significant difference was found between CTC-positive and other clinicopathological variables (P > 0.05 for all), such as gender, age, tumor location, and tumor de-differentiation. CTCs counts gradually increased with the advancement of depth of invasion (P = 0.002), lymphatic invasion (P = 0.004), distant metastasis (P = 0.007), TNM stage (P = 0.001), serum CEA level (P = 0.001), and decreased tumor de-differentiation (P = 0.011). Furthermore, the Kaplan-Meier survival curves showed that patients with CTC-positive had a significantly unfavorable PFS (14 vs. 23 months, P = 0.001) and OS (18 vs. 25 months, P = 0.003). The multivariate Cox regression analyses revealed that the presence of CTCs during chemotherapy was an independent factor for unfavorable PFS (hazard ratio (HR) 2.682, P = 0.017, 95% confidence interval (CI) 1.193-6.029) and OS (HR 2.790, P = 0.048, 95% CI 1.010-7.705) in advanced CRC patients. CONCLUSIONS This study provided an evidence that the presence of CTCs may be valuable for predicting survival outcome, and CTCs was associated with unfavorable survival in advanced CRC patients during chemotherapy.
Collapse
Affiliation(s)
- Lili Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Shichao Zhou
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Wenying Zhang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Jiongyi Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Meiling Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Xiaohua Hu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yanjie Zhang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Bin Jiang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| | - Haihua Yuan
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
11
|
Chan DLH, Segelov E, Wong RS, Smith A, Herbertson RA, Li BT, Tebbutt N, Price T, Pavlakis N. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2017. [PMID: 28654140 DOI: 10.1002/14651858.cd007047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) inhibitors prevent cell growth and have shown benefit in the treatment of metastatic colorectal cancer, whether used as single agents or in combination with chemotherapy. Clear benefit has been shown in trials of EGFR monoclonal antibodies (EGFR MAb) but not EGFR tyrosine kinase inhibitors (EGFR TKI). However, there is ongoing debate as to which patient populations gain maximum benefit from EGFR inhibition and where they should be used in the metastatic colorectal cancer treatment paradigm to maximise efficacy and minimise toxicity. OBJECTIVES To determine the efficacy, safety profile, and potential harms of EGFR inhibitors in the treatment of people with metastatic colorectal cancer when given alone, in combination with chemotherapy, or with other biological agents.The primary outcome of interest was progression-free survival; secondary outcomes included overall survival, tumour response rate, quality of life, and adverse events. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), the Cochrane Library, Issue 9, 2016; Ovid MEDLINE (from 1950); and Ovid Embase (from 1974) on 9 September 2016; and ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) on 14 March 2017. We also searched proceedings from the major oncology conferences ESMO, ASCO, and ASCO GI from 2012 to December 2016. We further scanned reference lists from eligible publications and contacted corresponding authors for trials for further information where needed. SELECTION CRITERIA We included randomised controlled trials on participants with metastatic colorectal cancer comparing: 1) the combination of EGFR MAb and 'standard therapy' (whether chemotherapy or best supportive care) to standard therapy alone, 2) the combination of EGFR TKI and standard therapy to standard therapy alone, 3) the combination of EGFR inhibitor (whether MAb or TKI) and standard therapy to another EGFR inhibitor (or the same inhibitor with a different dosing regimen) and standard therapy, or 4) the combination of EGFR inhibitor (whether MAb or TKI), anti-angiogenic therapy, and standard therapy to anti-angiogenic therapy and standard therapy alone. DATA COLLECTION AND ANALYSIS We used standard methodological procedures defined by Cochrane. Summary statistics for the endpoints used hazard ratios (HR) with 95% confidence intervals (CI) for overall survival and progression-free survival, and odds ratios (OR) for response rate (RR) and toxicity. Subgroup analyses were performed by Kirsten rat sarcoma viral oncogene homolog (KRAS) and neuroblastoma RAS viral (V-Ras) oncogene homolog (NRAS) status - firstly by status of KRAS exon 2 testing (mutant or wild type) and also by status of extended KRAS/NRAS testing (any mutation present or wild type). MAIN RESULTS We identified 33 randomised controlled trials for analysis (15,025 participants), including trials of both EGFR MAb and EGFR TKI. Looking across studies, significant risk of bias was present, particularly with regard to the risk of selection bias (15/33 unclear risk, 1/33 high risk), performance bias (9/33 unclear risk, 9/33 high risk), and detection bias (7/33 unclear risk, 11/33 high risk).The addition of EGFR MAb to standard therapy in the KRAS exon 2 wild-type population improves progression-free survival (HR 0.70, 95% CI 0.60 to 0.82; high-quality evidence), overall survival (HR 0.88, 95% CI 0.80 to 0.98; high-quality evidence), and response rate (OR 2.41, 95% CI 1.70 to 3.41; high-quality evidence). We noted evidence of significant statistical heterogeneity in all three of these analyses (progression-free survival: I2 = 76%; overall survival: I2 = 40%; and response rate: I2 = 77%), likely due to pooling of studies investigating EGFR MAb use in different lines of therapy. Rates of overall grade 3 to 4 toxicity, diarrhoea, and rash were increased (moderate-quality evidence for all three outcomes), but there was no evidence for increased rates of neutropenia.For the extended RAS wild-type population (no mutations in KRAS or NRAS), addition of EGFR MAb improved progression-free survival (HR 0.60, 95% CI 0.48 to 0.75; moderate-quality evidence) and overall survival (HR 0.77, 95% CI 0.67 to 0.88; high-quality evidence). Response rate was also improved (OR 4.28, 95% CI 2.61 to 7.03; moderate-quality evidence). We noted significant statistical heterogeneity in the progression-free survival analysis (I2 = 61%), likely due to the pooling of studies combining EGFR MAb with chemotherapy with monotherapy studies.We observed no evidence of a statistically significant difference when EGFR MAb was compared to bevacizumab, in progression-free survival (HR 1.02, 95% CI 0.93 to 1.12; high quality evidence) or overall survival (HR 0.84, 95% CI 0.70 to 1.01; moderate-quality evidence). We noted significant statistical heterogeneity in the overall survival analysis (I2 = 51%), likely due to the pooling of first-line and second-line studies.The addition of EGFR TKI to standard therapy in molecularly unselected participants did not show benefit in limited data sets (meta-analysis not performed). The addition of EGFR MAb to bevacizumab plus chemotherapy in people with KRAS exon 2 wild-type metastatic colorectal cancer did not improve progression-free survival (HR 1.04, 95% CI 0.83 to 1.29; very low quality evidence), overall survival (HR 1.00, 95% CI 0.69 to 1.47; low-quality evidence), or response rate (OR 1.20, 95% CI 0.67 to 2.12; very low-quality evidence) but increased toxicity (OR 2.57, 95% CI 1.45 to 4.57; low-quality evidence). We noted significant between-study heterogeneity in most analyses.Scant information on quality of life was reported in the identified studies. AUTHORS' CONCLUSIONS The addition of EGFR MAb to either chemotherapy or best supportive care improves progression-free survival (moderate- to high-quality evidence), overall survival (high-quality evidence), and tumour response rate (moderate- to high-quality evidence), but may increase toxicity in people with KRAS exon 2 wild-type or extended RAS wild-type metastatic colorectal cancer (moderate-quality evidence). The addition of EGFR TKI to standard therapy does not improve clinical outcomes. EGFR MAb combined with bevacizumab is of no clinical value (very low-quality evidence). Future studies should focus on optimal sequencing and predictive biomarkers and collect quality of life data.
Collapse
Affiliation(s)
- David Lok Hang Chan
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia, 2065
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chan DLH, Segelov E, Wong RSH, Smith A, Herbertson RA, Li BT, Tebbutt N, Price T, Pavlakis N, Cochrane Colorectal Cancer Group. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. Cochrane Database Syst Rev 2017; 6:CD007047. [PMID: 28654140 PMCID: PMC6481896 DOI: 10.1002/14651858.cd007047.pub2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) inhibitors prevent cell growth and have shown benefit in the treatment of metastatic colorectal cancer, whether used as single agents or in combination with chemotherapy. Clear benefit has been shown in trials of EGFR monoclonal antibodies (EGFR MAb) but not EGFR tyrosine kinase inhibitors (EGFR TKI). However, there is ongoing debate as to which patient populations gain maximum benefit from EGFR inhibition and where they should be used in the metastatic colorectal cancer treatment paradigm to maximise efficacy and minimise toxicity. OBJECTIVES To determine the efficacy, safety profile, and potential harms of EGFR inhibitors in the treatment of people with metastatic colorectal cancer when given alone, in combination with chemotherapy, or with other biological agents.The primary outcome of interest was progression-free survival; secondary outcomes included overall survival, tumour response rate, quality of life, and adverse events. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), the Cochrane Library, Issue 9, 2016; Ovid MEDLINE (from 1950); and Ovid Embase (from 1974) on 9 September 2016; and ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) on 14 March 2017. We also searched proceedings from the major oncology conferences ESMO, ASCO, and ASCO GI from 2012 to December 2016. We further scanned reference lists from eligible publications and contacted corresponding authors for trials for further information where needed. SELECTION CRITERIA We included randomised controlled trials on participants with metastatic colorectal cancer comparing: 1) the combination of EGFR MAb and 'standard therapy' (whether chemotherapy or best supportive care) to standard therapy alone, 2) the combination of EGFR TKI and standard therapy to standard therapy alone, 3) the combination of EGFR inhibitor (whether MAb or TKI) and standard therapy to another EGFR inhibitor (or the same inhibitor with a different dosing regimen) and standard therapy, or 4) the combination of EGFR inhibitor (whether MAb or TKI), anti-angiogenic therapy, and standard therapy to anti-angiogenic therapy and standard therapy alone. DATA COLLECTION AND ANALYSIS We used standard methodological procedures defined by Cochrane. Summary statistics for the endpoints used hazard ratios (HR) with 95% confidence intervals (CI) for overall survival and progression-free survival, and odds ratios (OR) for response rate (RR) and toxicity. Subgroup analyses were performed by Kirsten rat sarcoma viral oncogene homolog (KRAS) and neuroblastoma RAS viral (V-Ras) oncogene homolog (NRAS) status - firstly by status of KRAS exon 2 testing (mutant or wild type) and also by status of extended KRAS/NRAS testing (any mutation present or wild type). MAIN RESULTS We identified 33 randomised controlled trials for analysis (15,025 participants), including trials of both EGFR MAb and EGFR TKI. Looking across studies, significant risk of bias was present, particularly with regard to the risk of selection bias (15/33 unclear risk, 1/33 high risk), performance bias (9/33 unclear risk, 9/33 high risk), and detection bias (7/33 unclear risk, 11/33 high risk).The addition of EGFR MAb to standard therapy in the KRAS exon 2 wild-type population improves progression-free survival (HR 0.70, 95% CI 0.60 to 0.82; high-quality evidence), overall survival (HR 0.88, 95% CI 0.80 to 0.98; high-quality evidence), and response rate (OR 2.41, 95% CI 1.70 to 3.41; high-quality evidence). We noted evidence of significant statistical heterogeneity in all three of these analyses (progression-free survival: I2 = 76%; overall survival: I2 = 40%; and response rate: I2 = 77%), likely due to pooling of studies investigating EGFR MAb use in different lines of therapy. Rates of overall grade 3 to 4 toxicity, diarrhoea, and rash were increased (moderate-quality evidence for all three outcomes), but there was no evidence for increased rates of neutropenia.For the extended RAS wild-type population (no mutations in KRAS or NRAS), addition of EGFR MAb improved progression-free survival (HR 0.60, 95% CI 0.48 to 0.75; moderate-quality evidence) and overall survival (HR 0.77, 95% CI 0.67 to 0.88; high-quality evidence). Response rate was also improved (OR 4.28, 95% CI 2.61 to 7.03; moderate-quality evidence). We noted significant statistical heterogeneity in the progression-free survival analysis (I2 = 61%), likely due to the pooling of studies combining EGFR MAb with chemotherapy with monotherapy studies.We observed no evidence of a statistically significant difference when EGFR MAb was compared to bevacizumab, in progression-free survival (HR 1.02, 95% CI 0.93 to 1.12; high quality evidence) or overall survival (HR 0.84, 95% CI 0.70 to 1.01; moderate-quality evidence). We noted significant statistical heterogeneity in the overall survival analysis (I2 = 51%), likely due to the pooling of first-line and second-line studies.The addition of EGFR TKI to standard therapy in molecularly unselected participants did not show benefit in limited data sets (meta-analysis not performed). The addition of EGFR MAb to bevacizumab plus chemotherapy in people with KRAS exon 2 wild-type metastatic colorectal cancer did not improve progression-free survival (HR 1.04, 95% CI 0.83 to 1.29; very low quality evidence), overall survival (HR 1.00, 95% CI 0.69 to 1.47; low-quality evidence), or response rate (OR 1.20, 95% CI 0.67 to 2.12; very low-quality evidence) but increased toxicity (OR 2.57, 95% CI 1.45 to 4.57; low-quality evidence). We noted significant between-study heterogeneity in most analyses.Scant information on quality of life was reported in the identified studies. AUTHORS' CONCLUSIONS The addition of EGFR MAb to either chemotherapy or best supportive care improves progression-free survival (moderate- to high-quality evidence), overall survival (high-quality evidence), and tumour response rate (moderate- to high-quality evidence), but may increase toxicity in people with KRAS exon 2 wild-type or extended RAS wild-type metastatic colorectal cancer (moderate-quality evidence). The addition of EGFR TKI to standard therapy does not improve clinical outcomes. EGFR MAb combined with bevacizumab is of no clinical value (very low-quality evidence). Future studies should focus on optimal sequencing and predictive biomarkers and collect quality of life data.
Collapse
Affiliation(s)
- David Lok Hang Chan
- Royal North Shore HospitalDepartment of Medical OncologySt LeonardsNew South WalesAustralia2065
| | - Eva Segelov
- Monash University and Monash HealthDepartment of OncologyLvl 7, MHTP building, Monash Health 240 Clayton RdClaytonVictoriaAustralia3168
| | - Rachel SH Wong
- University of SydneyDepartment of MedicineSydneyNSWAustralia2006
| | - Annabel Smith
- University of New South WalesDepartment of MedicineSydneyNSWAustralia2052
| | - Rebecca A Herbertson
- Ludwig Institute for Cancer ResearchMelbourne Centre for Clinical SciencesAustin Hospital HSB1145‐163 Studley RoadHeidelbergVictoriaAustralia3084
| | - Bob T. Li
- Memorial Sloan Kettering Cancer CenterThoracic Oncology and Early Drug Development Service1275 York AvenueNew YorkNYUSA10065
| | - Niall Tebbutt
- Olivia Newton‐John Cancer Wellness and Research Centre, Austin HospitalOlivia Newton‐John Cancer Research Institute145‐163 Studley RdHeidelbergVictoriaAustralia3084
| | - Timothy Price
- Olivia Newton‐John Cancer Wellness & Research Centre, Austin HospitalOlivia Newton‐John Cancer Research Institute, Level 5145‐163 Studley RdHeidelbergVictoriaAustralia3084
| | - Nick Pavlakis
- Royal North Shore HospitalDepartment of Medical OncologySt LeonardsNew South WalesAustralia2065
| | | |
Collapse
|
13
|
Mocellin S, Baretta Z, Roqué i Figuls M, Solà I, Martin‐Richard M, Hallum S, Bonfill Cosp X, Cochrane Colorectal Cancer Group. Second-line systemic therapy for metastatic colorectal cancer. Cochrane Database Syst Rev 2017; 1:CD006875. [PMID: 28128439 PMCID: PMC6464923 DOI: 10.1002/14651858.cd006875.pub3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The therapeutic management of people with metastatic colorectal cancer (CRC) who did not respond to first-line treatment represents a formidable challenge. OBJECTIVES To determine the efficacy and toxicity of second-line systemic therapy in people with metastatic CRC. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 4), Ovid MEDLINE (1950 to May 2016), Ovid MEDLINE In-process & Other Non-Indexed Citations (1946 to May 2016) and Ovid Embase (1974 to May 2016). There were no language or date of publication restrictions. SELECTION CRITERIA Randomized controlled trials (RCTs) assessing the efficacy (survival, tumour response) and toxicity (incidence of severe adverse effects (SAEs)) of second-line systemic therapy (single or combined treatment with any anticancer drug, at any dose and number of cycles) in people with metastatic CRC that progressed, recurred or did not respond to first-line systemic therapy. DATA COLLECTION AND ANALYSIS Authors performed a descriptive analysis of each included RCT in terms of primary (survival) and secondary (tumour response, toxicity) endpoints. In the light of the variety of drug regimens tested in the included trials, we could carry out meta-analysis considering classes of (rather than single) anticancer regimens; to this aim, we applied the random-effects model to pool the data. We used hazard ratios (HRs) and risk ratios (RRs) to describe the strength of the association for survival (overall (OS) and progression-free survival (PFS)) and dichotomous (overall response rate (ORR) and SAE rate) data, respectively, with 95% confidence intervals (CI). MAIN RESULTS Thirty-four RCTs (enrolling 13,787 participants) fulfilled the eligibility criteria. Available evidence enabled us to address multiple clinical issues regarding the survival effects of second-line systemic therapy of people with metastatic CRC.1. Chemotherapy (irinotecan) was more effective than best supportive care (HR for OS: 0.58, 95% CI 0.43 to 0.80; 1 RCT; moderate-quality evidence); 2. modern chemotherapy (FOLFOX (5-fluorouracil plus leucovorin plus oxaliplatin), irinotecan) is more effective than outdated chemotherapy (5-fluorouracil) (HR for PFS: 0.59, 95% CI 0.49 to 0.73; 2 RCTs; high-quality evidence) (HR for OS: 0.69, 95% CI 0.51 to 0.94; 1 RCT; moderate-quality evidence); 3. irinotecan-based combinations were more effective than irinotecan alone (HR for PFS: 0.68, 95% CI 0.60 to 0.76; 6 RCTs; moderate-quality evidence); 4. targeted agents improved the efficacy of conventional chemotherapy both when considered together (HR for OS: 0.84, 95% CI 0.77 to 0.91; 6 RCTs; high-quality evidence) and when bevacizumab was used alone (HR for PFS: 0.67, 95% CI 0.60 to 0.75; 4 RCTs; high-quality evidence).With regard to secondary endpoints, tumour response rates generally paralleled the survival results; moreover, higher anticancer efficacy was generally associated with worse treatment-related toxicity, with the important exception of bevacizumab-containing regimens, where the addition of the targeted agent to chemotherapy did not result in a significant increase in the rate of SAE. Finally, we found that oral (instead of intravenous) fluoropyrimidines significantly reduced the incidence of adverse effects (without compromising efficacy) in people treated with oxaliplatin-based regimens.We could not draw any conclusions on other debated aspects in this field of oncology, such as ranking of treatments (not all possible comparisons have been tested and many comparisons were based on single trials enrolling a small number of participants) and quality of life (virtually no data available). AUTHORS' CONCLUSIONS Systemic therapy offers a survival benefit to people with metastatic CRC who did not respond to first-line treatment, especially when targeted agents are combined with conventional chemotherapeutic drugs. Further research is needed to define the optimal regimen and to identify people who most benefit from each treatment.
Collapse
Affiliation(s)
- Simone Mocellin
- University of PadovaDepartment of Surgery, Oncology and GastroenterologyVia Giustiniani 2PadovaVenetoItaly35128
- IOV‐IRCCSIstituto Oncologico VenetoPadovaItaly35100
| | - Zora Baretta
- Ospedale di MontecchioU.O.C. di Oncologia ULSS5 Ovest VicentinoMontecchio MaggioreVicenzaItaly
| | - Marta Roqué i Figuls
- CIBER Epidemiología y Salud Pública (CIBERESP)Iberoamerican Cochrane Centre ‐ Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret 171Edifici Casa de ConvalescènciaBarcelonaCatalunyaSpain08041
| | - Ivan Solà
- CIBER Epidemiología y Salud Pública (CIBERESP) ‐ Universitat Autònoma de BarcelonaIberoamerican Cochrane Centre ‐ Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret 167Pavilion 18BarcelonaCatalunyaSpain08025
| | - Marta Martin‐Richard
- Hospital de la Santa Creu i Sant PauClinical OncologySant Antoni Maria Claret 167BarcelonaSpain08025
| | - Sara Hallum
- CochraneCochrane Colorectal Cancer Group23 Bispebjerg BakkeCopenhagenDenmarkDK 2400 NV
| | - Xavier Bonfill Cosp
- CIBER Epidemiología y Salud Pública (CIBERESP)Iberoamerican Cochrane Centre ‐ Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret 171Edifici Casa de ConvalescènciaBarcelonaCatalunyaSpain08041
| | | |
Collapse
|
14
|
Wang L, Sun Y, Zhao B, Zhang H, Yu Q, Yuan X. Chemotherapy plus targeted drugs in conversion therapy for potentially resectable colorectal liver metastases: a meta-analysis. Oncotarget 2016; 7:55732-55740. [PMID: 27248177 PMCID: PMC5342449 DOI: 10.18632/oncotarget.9675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To evaluate the safety and efficiency of the conversion therapy: chemotherapy plus anti-epidermal growth factor Receptor (EGFR) or anti-vascular endothelial growth factor receptor (VEGFR) monoclonal antibodies (MoAbs) with different rat sarcoma (RAS) status in patients with potentially resectable colorectal liver metastases (CRLM). METHODS Randomized controlled trials (RCTs) were identified and the association between RAS mutation and clinical outcome in CRLM patients treated with anti-EGFR or anti-VEGFR MoAbs was investigated. Searches were performed for data recorded between January 2005 and August 2015 in the Cochrane Library, MEDLINE, PubMed, and EMBASE. Objective response rates (ORR), conversion resection rates (CRR), R0 resection rates (R0R) and rate ratios (RR) were used to assess the strength of the association between different RAS status, MoAbs and conversion efficiency. RESULTS In the conversion therapy, ORR and RR were associated with patients with wild type RAS and different MoAbs. Patients treated with MoAbs: anti-VEGFR or anti-EGFR drugs, resulted in higher ORR, (RR=1.53, 95% confidence interval [CI]: 1.27-1.84, P < 0.05). Furthermore, anti-EGFR regimens displayed higher ORR compared with anti-VEGFR regimens in CRLM patients, (RR=1.15, 95%CI: 1.04-1.26, P < 0.05). However, CRLM patients with mutant type RAS did not benefit from anti-EGFR therapy, (RR=0.91, 95%CI: 0.76-1.08, P<0.05) and wild type RAS patients displayed higher ORR with anti-EGFR therapy, (RR=1.56, 95%CI: 1.16-2.01, P <0.05). In addition, the patients achieved higher resection rates (RR=1.67, 95%CI: 1.00-2.81, P ≤ 0.05) and R0 resection (RR=1.85, 95%CI: 1.04-3.27, P < 0.05). CONCLUSION We noted that the addition of MoAbs (anti-EGFR or anti-VEGFR) to standard chemotherapy could improve conversion efficiency for patients with potentially resectable CRLM patients, and anti-EGFR therapies maybe more effective than anti-VEGFR therapies. RAS status is a potential predictive marker of the clinical benefit resulting from treatment with anti-EGFR MoAbs therapy in CRLM patients and anti-EGFR MoAbs therapy could displayed greater efficiency only in patients with wild type RAS.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yinan Sun
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ben Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huixian Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
15
|
Abstract
Drug delivery system based on nanobiotechnology can improve the pharmacokinetics and therapeutic index of chemotherapeutic agents, which has revolutionized tumor therapy. Onivyde, also known as MM-398 or PEP02, is a nanoliposomal formulation of irinotecan which has demonstrated encouraging anticancer activity across a broad range of malignancies, including pancreatic cancer, esophago-gastric cancer, and colorectal cancer. This up-to-date review not only focuses on the structure, pharmacokinetics, and pharmacogenetics of Onivyde but also summarizes clinical trials and recommends Onivyde for patients with advanced solid tumors.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat Rev 2015; 41:859-67. [PMID: 26547132 DOI: 10.1016/j.ctrv.2015.10.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 01/18/2023]
Abstract
Treatment with monoclonal antibodies is becoming increasingly important in clinical oncology. These antibodies specifically inhibit signaling pathways in tumor growth and/or induce immunological responses against tumor cells. By combining monoclonal antibodies several pathways may be targeted simultaneously, potentially leading to additive or synergistic effects. Theoretically, antibodies are very suitable for use in combination therapy, because of limited overlapping toxicity and lack of pharmacokinetic interactions. In this article an overview is given of preclinical and clinical data on twenty-five different combinations of antibodies in oncology. Some of these combinations have proven clinical benefit, for example the combination of trastuzumab and pertuzumab in HER2-positive breast cancer, which exemplifies an additive or synergistic effect on antitumor activity in clinical studies and the combination of nivolumab and ipilimumab, which results in significant increases in progression-free and overall survival in patients with advanced melanoma. However, other combinations may lead to unfavorable results, such as bevacizumab with cetuximab or panitumumab in advanced colorectal cancer. These combinations result in shorter progression-free survival and increased toxicity compared to therapy with a single antibody. In summary, the different published studies showed widely varying results, depending on the combination of antibodies, indication and patient population. More preclinical and clinical studies are necessary to unravel the mechanisms behind synergistic or antagonistic effects of combining monoclonal antibodies. Most research on combination therapies is still in an early stage, but it is expected that for several tumor types the use of combination therapy of antibodies will become standard of care in the near future.
Collapse
|