1
|
Zhu H, Li C, Jia L, Qiao J, El-Seedi HR, Zhang Y, Zhang H. Supercritical CO 2 extracts of propolis inhibits tumor proliferation and Enhances the immunomodulatory activity via activating the TLR4-MAPK/NF-κB signaling pathway. Food Res Int 2024; 196:115137. [PMID: 39614528 DOI: 10.1016/j.foodres.2024.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 12/01/2024]
Abstract
Propolis is a natural immunomodulator with anticancer activity. This study investigated the immunomodulatory mechanism and anti-tumor activity of supercritical CO2 extracts of propolis (SEP) in tumor-bearing immunosuppression mice. We used cyclophosphamide (CTX) to construct the immunosuppressive mice model and then inoculated them with CT26 cells to build the CT26 tumor-bearing immunosuppression mice model. Upon treatment with SEP, tumor proliferation in mice was markedly suppressed, with tumor volumes decreasing from 1881.43 mm3 to 1049.95 mm3 and weights reducing from 2.07 g to 1.13 g. Concurrently, the immune system recovered well, and the spleen and thymus indexes increased significantly. The total T lymphocyte (CD3+ T cell) contents in the spleen and blood recovered from 11.88 % to 21.19 % and 15.32 % to 22.19 %, respectively. In addition, the CD4+ /CD8+ ratio has returned to a healthy level, 3.12 in the spleen and 5.42 in the blood. The levels of IL-1β, IL-6, and TNF-α were increased by 2.17, 2.76, and 7.15 times in the spleen, 2.76, 1.92, and 3.02 times in the serum. Moreover, the western blot results showed that SEP treatment increased the expression of toll-like receptor 4 (TLR4) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p65. These results indicated that SEP activated the immune activity of RAW 264.7 macrophages through the TLR4-mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway to exert immunomodulatory function and inhibit tumor proliferation. This study facilitated the further application of SEP as a potential immunomodulatory and anti-tumor functional food.
Collapse
Affiliation(s)
- Hequan Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chunyang Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Lei Jia
- Xingjiang Yifan Biotechnology Co., LTD, Ili Kazakh Autonomous Prefecture, 835000, China
| | - Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Jiangsu Beevip Biotechnology Co., LTD, Taizhou 225300, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
2
|
Shen L, Luo H, Fan L, Su Z, Yu S, Cao S, Wu X. Exploration of the immuno-adjuvant effect and mechanism of Anemoside B4 through network pharmacology and experiment verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155302. [PMID: 38176273 DOI: 10.1016/j.phymed.2023.155302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Extensive investigation has been undertaken about the utilization of saponin adjuvants in vaccines intended for veterinary and human applications. AB4 is the main constituent of the traditional Chinese medicine, Pulsatilla chinensis (Bunge) Regel, and has immunomodulatory activity. However, there is a paucity of reports on AB4 as a potential adjuvant. PURPOSE The objective of this work was to clarify the adjuvant role of AB4 and the molecular mechanisms that underlie its immunomodulatory actions. STUDY DESIGN AND METHODS The immunomodulatory effects of AB4 were investigated using network pharmacological analyses. These effects were validated by evaluating the developmental status of the immune organs and by using the following techniques: ELISA for the quantification of serum-specific antibodies to determine immune-related cytokine levels; the MTS method for the assessment of proliferative activity of splenic lymphocytes; flow cytometry to analyze lymphocyte and dendritic cell activation status; and western blotting for mechanistic analysis at the protein level. RESULTS The network pharmacological analysis predicted a total of 52 targets and 12 pathways for AB4 to exert immunomodulatory effects. In a mouse model with immunity to OVA, the introduction of AB4 resulted in the enhancement of immunological organ growth and maturation, elevation of blood antibodies targeting OVA, and amplification of the production of cytokines associated with Th1 and Th2 immune responses. Additionally, the administration of AB4 resulted in a notable augmentation of lymphocyte proliferation and an elevation in the CD4+/CD8+ T lymphocyte ratios. Furthermore, the administration of AB4 enhanced the maturation process of DCs in the draining LNs and increased the production of co-stimulatory factors and MHC II molecules. AB4 induces the upregulation of TLR4 and IKK proteins, as well as the phosphorylation of NF-κB p65 protein within the TLR4/NF-κB signaling cascade, while concurrently suppressing the expression of IκBα protein. CONCLUSION The specific immunoadjuvant effects of AB4 have been demonstrated to modulate the growth and maturation of immune organs and enhance the secretion and cellular activity of pertinent immune molecules. The utilization of network pharmacology, combined within and in vivo vitro assays, clarified the adjuvant function of AB4, which potentially involves the regulation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hao Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhetong Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Fahmy HA, Mohamed MA, Mekkawy MH, Taha EFS. Role of TLR4 signaling pathway in the mitigation of damaged lung by low-dose gamma irradiation. Cell Biochem Funct 2023; 41:1188-1199. [PMID: 37732723 DOI: 10.1002/cbf.3851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
Organisms frequently suffer negative effects from large doses of ionizing radiation. However, radiation is not as hazardous at lower doses as was once believed. The current study aims to evaluate the possible radio-adaptive effect induced by low-dose radiation (LDR) in modulating high-dose radiation (HDR) and N-nitrosodiethylamine (NDEA)-induced lung injury in male albino rats. Sixty-four male rats were randomly divided into four groups: Group 1 (control): normal rats; Group 2 (D): rats given NDEA in drinking water; Group 3 (DR): rats administered with NDEA then exposed to fractionated HDR; and Group 4 (DRL): rats administered with NDEA then exposed to LDR + HDR. In the next stage, malondialdehyde (MDA), glutathione reduced (GSH), catalase (CAT), and superoxide dismutase (SOD) levels in the lung tissues were measured. Furthermore, the enzyme-linked immunoassay analysis technique was performed to assess the Toll-like receptor 4 (TLR4), interleukin-1 receptor-associated kinase 4 (IRAK4), and mitogen-activated protein kinases (MAPK) expression levels. Histopathological and DNA fragmentation analyses in lung tissue, in addition to hematological and apoptosis analyses of the blood samples, were also conducted. Results demonstrated a significant increase in antioxidant defense and a reduction in MDA levels were observed in LDR-treated animals compared to the D and DR groups. Additionally, exposure to LDR decreased TLR4, IRAK4, and MAPK levels, decreased apoptosis, and restored all the alterations in the histopathological, hematological parameters, and DNA fragmentation, indicating its protective effects on the lung when compared with untreated rats. Taken together, LDR shows protective action against the negative effects of subsequent HDR and NDEA. This impact may be attributable to the adaptive response induced by LDR, which decreases DNA damage in lung tissue and activates the antioxidative, antiapoptotic, and anti-inflammatory systems in the affected animals, enabling them to withstand the following HDR exposure.
Collapse
Affiliation(s)
- Hanan A Fahmy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Marwa A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Mai H Mekkawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Eman F S Taha
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
4
|
Wang J, Zhang J, Wen W, Wang F, Wu M, Chen D, Yu J. Exploring low-dose radiotherapy to overcome radio-immunotherapy resistance. Biochim Biophys Acta Mol Basis Dis 2023:166789. [PMID: 37302425 DOI: 10.1016/j.bbadis.2023.166789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the current treatment landscape for cancer, yet the response rates of ICIs remain unmet. Synergistic with immunotherapy, low-dose radiotherapy (LDRT) has been demonstrated to activate anti-tumor immunity - a transition from traditional radiation therapy geared toward local radical treatment to a type of immunological adjuvant. As such, studies utilizing LDRT to enhance the efficacy of immunotherapy have been increasing preclinically and clinically. This paper reviews the recent strategies of using LDRT to overcome the resistance of ICIs, as well as providing potential opportunities in cancer treatment. Despite the potential of LDRT in immunotherapy is recognized, the mechanisms behind this form of treatment remain largely elusive. Thus, we reviewed history, mechanisms and challenges associated with this form of treatment, as well as different modes of its application, to provide relatively accurate practice standards for LDRT as a sensitizing treatment when combined with immunotherapy or radio-immunotherapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Jingxin Zhang
- Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Weitao Wen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Fei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Dawei Chen
- Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Jinming Yu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Shandong University Cancer Center, Jinan, Shandong 250117, PR China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
5
|
Wang A, Shi Z, Wang L, Wang Y, Chen X, He C, Zhang X, Xu W, Fu Q, Wang T, Zhang S, Gao Y, Hu S. The injuries of spleen and intestinal immune system induced by 2-Gy 60Co γ-ray whole-body irradiation. Int J Radiat Biol 2022; 99:406-418. [PMID: 35759247 DOI: 10.1080/09553002.2022.2094017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE The aim of the present study was to investigate the injuries of spleen and intestinal immune system induced by 2 Gy 60Co γ ray in mice. MATERIALS AND METHODS A total of 120 Balb/c mice were randomly divided into two groups: blank control (Ctrl) and model (IR). The IR mice were exposed to a single dose of total body irradiation (2 Gy, dose rate: 1 Gy/min) and sacrificed on 1st, 3rd, 7th, 14th and 21st day after irradiation. The indicators including general observations and body weight, the changes in peripheral hemogram, spleen index, histopathology examination and lymphocyte subsets of spleen. As well as the count and subsets of lymphocyte in gut-associated lymphoid tissue. RESULTS Compared with the Ctrl group, the body weight, spleen index, peripheral blood cell and splenocyte amounts, intraepithelial lymphocytes number decreased significantly after exposure, accompanied by a notable decreased count of lymphocytes in Peyer's patch and mesenteric lymph nodes. Moreover, ionizing radiation also broke the balance of CD4+/CD8+ and increased the Treg proportion in spleen, which then triggered immune imbalance and immunosuppression. In general, the spleen injuries occurred on 1st day after exposure, worse on 3rd day, and were relieved on 7th day. The intestinal immune injuries were observed on 1st day, and attenuated on 3rd day. On 21st day after exposure, the spleen volume and index have returned to normal, except for the distribution of lymphocyte subpopulations. Furthermore, all indicators of gut-associated lymphoid tissue, except for mesenteric lymph nodes lymphocyte count, had returned to normal levels on 21st day. CONCLUSION In conclusion, our data showed the injuries of spleen and intestinal immune system induced by 2 Gy 60Co γ ray whole-body irradiation. These findings may provide the bases for further radiation protection in the immunity.
Collapse
Affiliation(s)
- An Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Abdel-Aziz N, Haroun RAH, Mohamed HE. Low-Dose Gamma Radiation Modulates Liver and Testis Tissues Response to Acute Whole Body Irradiation. Dose Response 2022; 20:15593258221092365. [PMID: 35444513 PMCID: PMC9014718 DOI: 10.1177/15593258221092365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Aim This work aims to investigate whether the pre-exposure to low dose/low dose rate (40 mGy, 2.2 mGy/hour) γ-radiation as a priming dose can produce a protective effect against the subsequent high one (4 Gy, .425 Gy/minute). Methods Rats were divided into Group I (control), Group II (L); exposed to 40 mGy, Group III (H); exposed to 4 Gy, and Group IV (L+H); exposed to 40 mGy 24 hours before the exposure to 4Gy. The molecular and biochemical changes related to oxidative stress, DNA damage, apoptosis, and mitochondrial activity in the liver and testis were studied 4 hours after irradiation. Results Exposure to 40 mGy before 4 Gy induced a significant increase in the levels of Nrf2, Nrf2 mRNA, TAC, and mitochondrial complexes I & II accompanied by a significant decrease in the levels of LPO, 8-OHdG, DNA fragmentation, TNF-α, caspase-3, and caspase-3 mRNA compared with H group. Conclusion Exposure to low-dose γ-radiation before a high dose provides protective mechanisms that allow the body to survive better after exposure to a subsequent high one via reducing the oxidative stress, DNA damage, and apoptosis-induced early after irradiation. However, further studies are required to identify the long-term effects of this low dose.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Riham A.-H. Haroun
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hebatallah E. Mohamed
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
7
|
Xu J, Luo Y, Yuan C, Han L, Wu Q, Xu L, Gao Y, Sun Y, Ma S, Tang G, Li S, Sun W, Gong Y, Xie C. Downregulation of Nitric Oxide Collaborated with Radiotherapy to Promote Anti-Tumor Immune Response via Inducing CD8+ T Cell Infiltration. Int J Biol Sci 2020; 16:1563-1574. [PMID: 32226302 PMCID: PMC7097922 DOI: 10.7150/ijbs.41653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
The production of nitric oxide (NO) is a key feature of immunosuppressive myeloid cells, which impair T cell activation and proliferation via reversibly blocking interleukin-2 receptor signaling. NO is mainly produced from L-arginine by inducible NO synthase (iNOS). Moreover, L-arginine is an essential element for T cell proliferation and behaviors. Impaired T cell function further inhibits anti-tumor immunity and promotes tumor progression. Previous studies indicated that radiotherapy activated anti-tumor immune responses in multiple tumors. However, myeloid-derived cells in the tumor microenvironment may neutralize these responses. We hypothesized that iNOS, as an important regulator of the immunosuppressive effects in myeloid-derived cells, mediated radiation resistance of cancer cells. In this study, we used 1400W dihydrochloride, a potent small-molecule inhibitor of iNOS, to explore the regulatory roles of NO in anti-tumor immunity. Radiotherapy and iNOS inhibition by 1400W collaboratively suppressed tumor growth and increased survival time, as well as increased tumor-infiltrating CD8+ T cells and specific inflammatory cytokine levels, in both lung and breast cancer cells in vivo. Our results also suggested that myeloid cell-mediated inhibition of T cell proliferation was effectively counteracted by radiation and 1400W-mediated NO blockade in vitro. Thus, these results demonstrated that iNOS was an important regulator of radiotherapy-induced antitumor immune responses. The combination of radiotherapy with iNOS blockade might be an effective therapy to improve the response of tumors to clinical radiation.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liexi Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuke Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Zhao Q, Chen G, Ye L, Shi S, Du S, Zeng Z, He J. Treatment-duration is related to changes in peripheral lymphocyte counts during definitive radiotherapy for unresectable stage III NSCLC. Radiat Oncol 2019; 14:86. [PMID: 31133034 PMCID: PMC6537222 DOI: 10.1186/s13014-019-1287-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To investigate the potential impact of fractionation regimes and overall treatment time (OTT) on lymphopenia during definitive radiotherapy (RT) and its associations with patient outcomes in non-small cell lung cancer (NSCLC). METHODS Subjects consisted of 115 patients who had received definitive chemoradiation therapy (CRT) with different doses and fractions for unresectable stage III NSCLC. Clinical and laboratory records were reviewed to assess the changes in total lymphocyte counts (TLCs) during definitive RT. The associations of the TLCs with the clinical and treatment features, and outcomes were analyzed. RESULTS The median reduction of TLCs in the entire cohort was 1300 cells/μL (interquartile range [IQR], 950-1510 cells/μL). Of all patients, 63 (54.8%) experienced severe lymphopenia (SL) (TLC nadir < 500 cells/μL), which occurred at a median of the 5th week following RT initiation, not at the completion of RT or upon treatment with maximal doses. SL risk was increased over the first 5 weeks (odds ratio [OR] = 3.455, P = 0.007), after which, no increased risk was observed (OR = 0.562, P = 0.216). The median TLCs remained low and failed to recover to the initial normal values of their pre-RT level after 2 months of RT completion. Patients without SL exhibited significantly improved progression-free survival (hazard ratio [HR] = 0.544, P = 0.010) and overall survival (HR = 0.463, P = 0.011) after controlling for confounding variables in multivariate analyses. The incidence of SL was significantly lower (71.1% reduction in risk (OR = 0.289, P = 0.007)) in patients who received hypofractionated RT with an OTT within 4 weeks, compared to those who had an OTT of more than 4 weeks (32.1% vs 62.1%, P = 0.006). Multivariate analyses revealed that OTT within 4 weeks (OR = 0.322, P = 0.032) was significantly associated with a decreased risk of developing SL after controlling for confounding factors. CONCLUSIONS Hypofractionated RT was significantly associated with a decreased risk of SL and improved survival during definitive radiotherapy for unresectable stage III NSCLC.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Gang Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Luxi Ye
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shiming Shi
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jian He
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
9
|
Chen HY, Xie HY, Liu XX, Li LF, Bai YR, Gao JX. Splenic irradiation combined with tumor irradiation promotes T cell infiltration in the tumor microenvironment and helps in tumor control. Biochem Biophys Res Commun 2019; 510:156-162. [DOI: 10.1016/j.bbrc.2019.01.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
10
|
Wang H, Lin X, Luo Y, Sun S, Tian X, Sun Y, Zhang S, Chen J, Zhang J, Liu X, Liu H, Gong Y, Xie C. α-PD-L1 mAb enhances the abscopal effect of hypo-fractionated radiation by attenuating PD-L1 expression and inducing CD8 + T-cell infiltration. Immunotherapy 2018; 11:101-118. [PMID: 30511887 DOI: 10.2217/imt-2018-0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM We investigated a promising cooperative combination of radiotherapy (RT) and programmed death ligand 1 (PD-L1) monoclonal antibodies (mAb) in both local and abscopal tumors. MATERIALS & METHODS C57BL/6 mice were randomly grouped and received RT, α-PD-L1 mAb or combination therapy 13 days after implantation of Lewis lung carcinoma cells. Flow cytometry and immunohistochemistry analyses demonstrated CD8+ T-cell infiltration and PD-L1 expression in tumor issue. Cytometric bead arrays were used to examine cytokine levels. RESULTS Our studies revealed that administration of 8 Gy × 3 F with α-PD-L1 mAb promoted both local and distant control. Only local hypofractionated RT enhanced CD8+ T-cell infiltration with increased PD-L1 expression at distant foci, which might occur via serum IFN-γ modulation. Addition of α-PD-L1 mAb reduced PD-L1 expression and further increased CD8+ T-cell infiltration. CONCLUSION We identified a novel mechanism through which combination therapy enhanced the abscopal effect.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiangjie Lin
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yuan Luo
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shaoxing Sun
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaoli Tian
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yingming Sun
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | | | - Jing Chen
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Junhong Zhang
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xuefeng Liu
- Department of Pathology & Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20541, USA
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Conghua Xie
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|