1
|
Kolesnikova VV, Nikonov OS, Phat TD, Nikonova EY. The Proteins Diversity of the eIF4E Family in the eIF4F Complex. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S60-S85. [PMID: 40164153 DOI: 10.1134/s0006297924603721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 04/02/2025]
Abstract
In eukaryotes, translation initiation occurs by the cap-dependent mechanism. Each translated mRNA must be pre-bound by the translation initiation factor eIF4E. All isoforms of this factor are combined into one family. The review considers natural diversity of the eIF4E isoforms in different organisms, provides structural information about them, and describes their functional role in the processes, such as oncogenesis, participation in the translation of certain mRNAs under stress, and selective use of the individual isoforms by viruses. In addition, this review briefly describes the mechanism of cap-dependent translation initiation and possible ways to regulate the eIF4E function.
Collapse
Affiliation(s)
- Viktoriya V Kolesnikova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tien Do Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ekaterina Yu Nikonova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
2
|
Ren JX, Chen L, Guo W, Feng KY, Cai YD, Huang T. Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods. Comb Chem High Throughput Screen 2024; 27:2921-2934. [PMID: 37957897 DOI: 10.2174/0113862073266300231026103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development. OBJECTIVES This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk. METHODS A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance. RESULT The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies. CONCLUSION This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.
Collapse
Affiliation(s)
- Jing Xin Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Kai Yan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
3
|
Zha HL, Chen W, Shi W, Liao YY. Inhibition of Eukaryotic Initiating Factor eIF4E Overcomes Abemaciclib Resistance in Gastric Cancer. Curr Med Sci 2023; 43:927-934. [PMID: 37752406 DOI: 10.1007/s11596-023-2789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/18/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Aberrant activating mutations in cyclin-dependent kinases 4 and 6 (CDK4/6) are common in various cancers, including gastroesophageal malignancies. Although CDK4/6 inhibitors, such as abemaciclib and palbociclib, have been approved for breast cancer treatment, their effectiveness as a monotherapy remains limited for gastroesophageal tumors. The present study explored the underlying mechanism of abemaciclib resistance. METHODS Abemaciclib-resistant gastric cancer cell lines were generated, and the phospho-eukaryotic translation initiation factor 4E (p-eIF4E) and eIF4E expression was compared between resistant and parental cell lines. In order to analyze the role of eIF4E in cell resistance, siRNA knockdown was employed. The effectiveness of ribavirin alone and its combination with abemaciclib was evaluated in the gastric cancer xenograft mouse model. RESULTS The upregulation of eIF4E was a common feature in gastric cancer cells exposed to prolonged abemaciclib treatment. Gastric cancer cells with increased eIF4E levels exhibited a better response to eIF4E inhibition, especially those that were resistant to abemaciclib. Ribavirin, which is an approved anti-viral drug, significantly improved the efficacy of abemaciclib, both in vitro and in vivo, by inhibiting eIF4E. Importantly, ribavirin effectively suppressed the abemaciclib-resistant gastric cancer growth in mice without causing toxicity. CONCLUSION These findings suggest that targeting eIF4E can enhance the abemaciclib treatment for gastric cancer, proposing the potential combination therapy of CDK4/6 inhibitors with ribavirin for advanced gastric cancer.
Collapse
Affiliation(s)
- Huo-Long Zha
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Shi
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Ying-Ying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
4
|
Zhang Q, Zhao J, Xu T. Inhibition of eukaryotic initiation factor 4E by tomivosertib suppresses angiogenesis, growth, and survival of glioblastoma and enhances chemotherapy's efficacy. Fundam Clin Pharmacol 2023. [PMID: 36691859 DOI: 10.1111/fcp.12877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Glioblastoma is characterized by extensive vascularization and is highly resistant to current therapy. Identification of drugs that target tumor directly and angiogenesis processes present an effective therapeutic strategy for glioblastoma. Mnk kinase is required for the activation of eukaryotic initiation factor 4E (eIF4E), which mediates translation of oncogenic proteins. We investigated the effects of tomivosertib, a novel MAPK-interacting kinase (MNK) inhibitor, on glioblastoma angiogenesis, growth, and survival. We found that tomivosertib inhibited growth and induced caspase-dependent apoptosis in various glioblastoma cell lines. Tomivosertib disrupted glioblastoma endothelial cell capillary network formation, growth, and survival. Mechanistically, tomivosertib acted on glioblastoma via suppressing MNK-dependent eIF4E phosphorylation and activation in tumor and endothelial cells. We further found that temozolomide activated eIF4E and this was reversed by tomivosertib. Using glioblastoma xenograft mouse model, we demonstrated that temozolomide and tomivosertib combination had higher efficacy than tomivosertib alone. Of note, tomivosertib inhibited glioblastoma angiogenesis and decreased p-eIF4E level in mice. We finally showed that p-eIF4E activation was a common molecular feature in glioblastoma patients. Our pre-clinical findings suggest that tomivosertib is a useful addition to the treatment armamentarium for glioblastoma and that targeting MNK-eIF4E pathway represents a therapeutic strategy to overcome glioblastoma chemoresistance.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Juan Zhao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Tingwei Xu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 14 Dong Street, Xiangcheng District, Xiangyang, 441021, Hubei Province, China
| |
Collapse
|
5
|
Chen J, Yao S, Sun Z, Wang Y, Yue J, Cui Y, Yu C, Xu H, Li L. The pattern of expression and prognostic value of key regulators for m7G RNA methylation in hepatocellular carcinoma. Front Genet 2022; 13:894325. [PMID: 36118897 PMCID: PMC9478798 DOI: 10.3389/fgene.2022.894325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
N7-methylguanosine (m7G) modification on internal RNA positions plays a vital role in several biological processes. Recent research shows m7G modification is associated with multiple cancers. However, in hepatocellular carcinoma (HCC), its implications remain to be determined. In this place, we need to interrogate the mRNA patterns for 29 key regulators of m7G RNA modification and assess their prognostic value in HCC. Initial, the details from The Cancer Genome Atlas (TCGA) database concerning transcribed gene data and clinical information of HCC patients were inspected systematically. Second, according to the mRNA profiles of 29 m7G RNA methylation regulators, two clusters (named 1 and 2, respectively) were identified by consensus clustering. Furthermore, robust risk signature for seven m7G RNA modification regulators was constructed. Last, we used the Gene Expression Omnibus (GEO) dataset to validate the prognostic associations of the seven-gene risk signature. We figured out that 24/29 key regulators of m7G RNA modification varied remarkably in their grades of expression between the HCC and the adjacent tumor control tissues. Cluster one compared with cluster two had a substandard prognosis and was also positively correlated with T classification (T), pathological stage, and vital status (fustat) significantly. Consensus clustering results suggested the expression pattern of m7G RNA modification regulators was correlated with the malignancy of HCC strongly. In addition, cluster one was extensively enriched in metabolic-related pathways. Seven optimal genes (METTL1, WDR4, NSUN2, EIF4E, EIF4E2, NCBP1, and NCBP2) were selected to establish the risk model for HCC. Indicating by further analyses and validation, the prognostic model has fine anticipating command and this probability signature might be a self supporting presage factor for HCC. Finally, a new prognostic nomogram based on age, gender, pathological stage, histological grade, and prospects were established to forecast the prognosis of HCC patients accurately. In essence, we detected association of HCC severity and expression levels of m7G RNA modification regulators, and developed a risk score model for predicting prognosis of HCC patients’ progression.
Collapse
Affiliation(s)
- Jianxing Chen
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibin Yao
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhijuan Sun
- International Education School, Chifeng University, Chifeng, China
| | - Yanjun Wang
- Department of Pediatrics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Jili Yue
- Department of General Surgery, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Yongkang Cui
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengping Yu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haozhi Xu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linqiang Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, China
- *Correspondence: Linqiang Li,
| |
Collapse
|
6
|
Al-Harazi O, Kaya IH, Al-Eid M, Alfantoukh L, Al Zahrani AS, Al Sebayel M, Kaya N, Colak D. Identification of Gene Signature as Diagnostic and Prognostic Blood Biomarker for Early Hepatocellular Carcinoma Using Integrated Cross-Species Transcriptomic and Network Analyses. Front Genet 2021; 12:710049. [PMID: 34659334 PMCID: PMC8511318 DOI: 10.3389/fgene.2021.710049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is considered the most common type of liver cancer and the fourth leading cause of cancer-related deaths in the world. Since the disease is usually diagnosed at advanced stages, it has poor prognosis. Therefore, reliable biomarkers are urgently needed for early diagnosis and prognostic assessment. Methods: We used genome-wide gene expression profiling datasets from human and rat early HCC (eHCC) samples to perform integrated genomic and network-based analyses, and discovered gene markers that are expressed in blood and conserved in both species. We then used independent gene expression profiling datasets for peripheral blood mononuclear cells (PBMCs) for eHCC patients and from The Cancer Genome Atlas (TCGA) database to estimate the diagnostic and prognostic performance of the identified gene signature. Furthermore, we performed functional enrichment, interaction networks and pathway analyses. Results: We identified 41 significant genes that are expressed in blood and conserved across species in eHCC. We used comprehensive clinical data from over 600 patients with HCC to verify the diagnostic and prognostic value of 41-gene-signature. We developed a prognostic model and a risk score using the 41-geneset that showed that a high prognostic index is linked to a worse disease outcome. Furthermore, our 41-gene signature predicted disease outcome independently of other clinical factors in multivariate regression analysis. Our data reveals a number of cancer-related pathways and hub genes, including EIF4E, H2AFX, CREB1, GSK3B, TGFBR1, and CCNA2, that may be essential for eHCC progression and confirm our gene signature's ability to detect the disease in its early stages in patients' biological fluids instead of invasive procedures and its prognostic potential. Conclusion: Our findings indicate that integrated cross-species genomic and network analysis may provide reliable markers that are associated with eHCC that may lead to better diagnosis, prognosis, and treatment options.
Collapse
Affiliation(s)
- Olfat Al-Harazi
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibrahim H Kaya
- AlFaisal University, College of Medicine, Riyadh, Saudi Arabia
| | - Maha Al-Eid
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lina Alfantoukh
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ali Saeed Al Zahrani
- Gulf Centre for Cancer Control and Prevention, King Faisal Special Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Al Sebayel
- Liver and Small Bowel Transplantation and Hepatobiliary-Pancreatic Surgery Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Department of Surgery, University of Almaarefa, Riyadh, Saudi Arabia
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Sun L, Liu S, Wang X, Zheng X, Chen Y, Shen H. eIF6 promotes the malignant progression of human hepatocellular carcinoma via the mTOR signaling pathway. J Transl Med 2021; 19:216. [PMID: 34016142 PMCID: PMC8139032 DOI: 10.1186/s12967-021-02877-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Eukaryotic translation initiation factor 6 (eIF6) has a crucial function in the maturation of 60S ribosomal subunits, and it controls the initiation of protein translation. Although emerging studies indicate that eIF6 is aberrantly expressed in various types of cancers, the functions and underlying molecular mechanisms of eIF6 in the pathological progression of hepatocellular carcinoma (HCC) remain unclear. This study aimed to evaluate the potential diagnostic and prognostic value of eIF6 in patients with HCC. METHODS HCC samples enrolled from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and our cohort were used to explore the role and mechanism of eIF6 in HCC. The diagnostic power of eIF6 was verified by receiver operating characteristic curve (ROC) analysis and its prognostic value was assessed by Kaplan-Meier analysis, and then related biological functions of eIF6 were determined in vitro and in vivo cancer models. In addition, potential molecular mechanism of eIF6 in HCC was unveiled by the gene set enrichment analysis and western blot assay. RESULTS We demonstrated that eIF6 expression was markedly increased in HCC, and elevated eIF6 expression correlated with pathological progression of HCC. Besides, eIF6 served as not only a new diagnostic biomarker but also an independent risk factor for OS in HCC patients. Functional studies indicated that the deletion of eIF6 displayed tumor-suppressor activity in HCC cells. Furthermore, we found that eIF6 could activate the mTOR-related signaling pathway and regulate the expression level of its target genes, such as CCND1, CDK4, CDK6, MYC, CASP3 and CTNNBL1, and these activities promoted proliferation and invasion of HCC cells. CONCLUSIONS The findings of this study provided a novel basis for understanding the potential role of eIF6 in promoting tumor growth and invasion, and exploited a promising strategy for improving diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Liping Sun
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaopai Wang
- Department of Pathology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Ya Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Shen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Majeed ST, Batool A, Majeed R, Bhat NN, Zargar MA, Andrabi KI. mTORC1 induces eukaryotic translation initiation factor 4E interaction with TOS-S6 kinase 1 and its activation. Cell Cycle 2021; 20:839-854. [PMID: 33938392 DOI: 10.1080/15384101.2021.1901038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Eukaryotic translation initiation factor 4E was recently shown to be a substrate of mTORC1, suggesting it may be a mediator of mTORC1 signaling. Here, we present evidence that eIF4E phosphorylated at S209 interacts with TOS motif of S6 Kinase1 (S6K1). We also show that this interaction is sufficient to overcome rapamycin sensitivity and mTORC1 dependence of S6K1. Furthermore, we show that eIF4E-TOS interaction relieves S6K1 from auto-inhibition due to carboxy terminal domain (CTD) and primes it for hydrophobic motif (HM) phosphorylation and activation in mTORC1 independent manner. We conclude that the role of mTORC1 is restricted to engaging eIF4E with S6K1-TOS motif to influence its state of HM phosphorylation and inducing its activation.
Collapse
Affiliation(s)
- Sheikh Tahir Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Asiya Batool
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, India
| | - Rabiya Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Nadiem Nazir Bhat
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India
| | | | - Khurshid Iqbal Andrabi
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
9
|
Herzog LO, Walters B, Buono R, Lee JS, Mallya S, Fung A, Chiu H, Nguyen N, Li B, Pinkerton AB, Jackson MR, Schneider RJ, Ronai ZA, Fruman DA. Targeting eIF4F translation initiation complex with SBI-756 sensitises B lymphoma cells to venetoclax. Br J Cancer 2021; 124:1098-1109. [PMID: 33318657 PMCID: PMC7960756 DOI: 10.1038/s41416-020-01205-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The BCL2 inhibitor venetoclax has shown efficacy in several hematologic malignancies, with the greatest response rates in indolent blood cancers such as chronic lymphocytic leukaemia. There is a lower response rate to venetoclax monotherapy in diffuse large B-cell lymphoma (DLBCL). METHODS We tested inhibitors of cap-dependent mRNA translation for the ability to sensitise DLBCL and mantle cell lymphoma (MCL) cells to apoptosis by venetoclax. We compared the mTOR kinase inhibitor (TOR-KI) MLN0128 with SBI-756, a compound targeting eukaryotic translation initiation factor 4G1 (eIF4G1), a scaffolding protein in the eIF4F complex. RESULTS Treatment of DLBCL and MCL cells with SBI-756 synergised with venetoclax to induce apoptosis in vitro, and enhanced venetoclax efficacy in vivo. SBI-756 prevented eIF4E-eIF4G1 association and cap-dependent translation without affecting mTOR substrate phosphorylation. In TOR-KI-resistant DLBCL cells lacking eIF4E binding protein-1, SBI-756 still sensitised to venetoclax. SBI-756 selectively reduced translation of mRNAs encoding ribosomal proteins and translation factors, leading to a reduction in protein synthesis rates in sensitive cells. When normal lymphocytes were treated with SBI-756, only B cells had reduced viability, and this correlated with reduced protein synthesis. CONCLUSIONS Our data highlight a novel combination for treatment of aggressive lymphomas, and establishes its efficacy and selectivity using preclinical models.
Collapse
Affiliation(s)
- Lee-or Herzog
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Beth Walters
- grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY USA
| | - Roberta Buono
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - J. Scott Lee
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA ,grid.418185.10000 0004 0627 6737Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121 USA
| | - Sharmila Mallya
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Amos Fung
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Honyin Chiu
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA ,grid.416879.50000 0001 2219 0587Benaroya Research Institute, Seattle, WA 98101 USA
| | - Nancy Nguyen
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Boyang Li
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Anthony B. Pinkerton
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Michael R. Jackson
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Robert J. Schneider
- grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY USA
| | - Ze’ev A. Ronai
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - David A. Fruman
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| |
Collapse
|
10
|
Kang D, Lee Y, Lee JS. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12092699. [PMID: 32967226 PMCID: PMC7563379 DOI: 10.3390/cancers12092699] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional expression of genes. Many of them are known to be deregulated in a wide variety of cancers. Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus, understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead to improved therapeutic strategies. Abstract RNA-binding proteins (RBPs) crucially regulate gene expression through post-transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer. Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes, tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs, their roles in cancer-related cellular phenotypes, and various approaches that may be used to target RBPs for cancer treatment.
Collapse
Affiliation(s)
- Donghee Kang
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
| | - Yerim Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jae-Seon Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9832
| |
Collapse
|
11
|
Burgenson D, Linton J, Ge X, Kostov Y, Tolosa L, Szeto GL, Rao G. A Cell-Free Protein Expression System Derived from Human Primary Peripheral Blood Mononuclear Cells. ACS Synth Biol 2020; 9:2188-2196. [PMID: 32698572 DOI: 10.1021/acssynbio.0c00256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Historically, some of the first cell-free protein expression systems studied in vitro translation in various human blood cells. However, because of limited knowledge of eukaryotic translation and the advancement of cell line development, interest in these systems decreased. Eukaryotic translation is a complex system of factors that contribute to the overall translation of mRNA to produce proteins. The intracellular translateome of a cell can be modified by various factors and disease states, but it is impossible to individually measure all factors involved when there is no comprehensive understanding of eukaryotic translation. The present work outlines the use of a coupled transcription and translation cell-free protein expression system to produce recombinant proteins derived from human donor peripheral blood mononuclear cells (PBMCs) activated with phytohemagglutinin-M (PHA-M). The methods outlined here could result in tools to aid immunology, gene therapy, cell therapy, and synthetic biology research and provide a convenient and holistic method to study and assess the intracellular translation environment of primary immune cells.
Collapse
Affiliation(s)
- David Burgenson
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Jonathan Linton
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Leah Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
12
|
Protein Arginine Methyltransferase 5 as a Therapeutic Target for KRAS Mutated Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12082091. [PMID: 32731506 PMCID: PMC7465151 DOI: 10.3390/cancers12082091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Nearly 45% of colorectal cancer (CRC) patients harbor a mutation in their KRAS gene for which, despite many years of research, there are still no targeted therapies available. Protein Arginine Methyltransferase 5 (PRMT5) is a transcription regulator for multiple cellular processes that is currently being tested as a potential target in several cancer types. PRMT5 has been previously shown to be overexpressed in approximately 75% of CRC patient tumor samples, as well as negatively correlated with CRC patient survival. Here, we provide evidence that PRMT5 can act as a surrogate target for mutated KRAS in CRC. Our findings show that PRMT5 expression is upregulated, as well as positively correlated with KRAS expression, in CRC patient datasets. Moreover, our results reveal that PRMT5 is further overexpressed in KRAS mutant CRC cells when compared to KRAS wild type (WT) CRC cells at both the transcriptional and translational levels. Additionally, our data demonstrate that this further overexpression of PRMT5 in the KRAS mutant CRC cells affects an even greater degree of growth inhibition, apoptosis, and cell cycle arrest, following treatment with PRMT5 inhibitor, when compared to the KRAS WT CRC cells. Our research therefore suggests for the first time that PRMT5 and KRAS may crosstalk, and thus, PRMT5 can potentially be used as a surrogate target for mutated KRAS in CRC.
Collapse
|
13
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
14
|
Prossomariti A, Piazzi G, Alquati C, Ricciardiello L. Are Wnt/β-Catenin and PI3K/AKT/mTORC1 Distinct Pathways in Colorectal Cancer? Cell Mol Gastroenterol Hepatol 2020; 10:491-506. [PMID: 32334125 PMCID: PMC7369353 DOI: 10.1016/j.jcmgh.2020.04.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Wnt/β-catenin and phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin complex 1 (PI3K/AKT/mTORC1) pathways both are critically involved in colorectal cancer (CRC) development, although they are implicated in the modulation of distinct oncogenic mechanisms. In homeostatic and pathologic conditions, these pathways show a fine regulation based mainly on feedback mechanisms, and are connected at multiple levels involving both upstream and downstream common effectors. The ability of the Wnt/β-catenin and PI3K/AKT/mTORC1 pathways to reciprocally control themselves represents one of the main resistance mechanisms to selective inhibitors in CRC, leading to the hypothesis that in specific settings, particularly in cancer driven by genetic alterations in Wnt/β-catenin signaling, the relationship between Wnt/β-catenin and PI3K/AKT/mTORC1 pathways could be so close that they should be considered as a unique therapeutic target. This review provides an update on the Wnt/β-catenin and PI3K/AKT/mTORC1 pathway interconnections in CRC, describing the main molecular players and the potential implications of combined inhibitors as an approach for CRC chemoprevention and treatment.
Collapse
Affiliation(s)
- Anna Prossomariti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Center for Applied Biomedical Research, S. Orsola Hospital, University of Bologna, Bologna, Italy,Anna Prossomariti, PhD, Center for Applied Biomedical Research, S. Orsola Hospital, Via Massarenti 9, 40138, Bologna, Italy. fax: (39) 051-2143902.
| | - Giulia Piazzi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Center for Applied Biomedical Research, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Chiara Alquati
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Center for Applied Biomedical Research, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Center for Applied Biomedical Research, S. Orsola Hospital, University of Bologna, Bologna, Italy,Correspondence Address correspondence to: Luigi Ricciardiello, MD, Department of Medical and Surgical Sciences, Via Massarenti 9, 40138, Bologna, Italy. fax: (39) 051-2143381
| |
Collapse
|
15
|
Cai D, Choi PS, Gelbard M, Meyerson M. Identification and Characterization of Oncogenic SOS1 Mutations in Lung Adenocarcinoma. Mol Cancer Res 2019; 17:1002-1012. [PMID: 30635434 DOI: 10.1158/1541-7786.mcr-18-0316] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/18/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
Lung adenocarcinomas are characterized by mutations in the receptor tyrosine kinase (RTK)/Ras/Raf pathway, with up to 75% of cases containing mutations in known driver genes. However, the driver alterations in the remaining cases are yet to be determined. Recent exome sequencing analysis has identified SOS1, encoding a guanine nucleotide exchange factor, as significantly mutated in lung adenocarcinomas lacking canonical oncogenic RTK/Ras/Raf pathway mutations. Here, we demonstrate that ectopic expression of lung adenocarcinoma-derived mutants of SOS1 induces anchorage-independent cell growth in vitro and tumor formation in vivo. Biochemical experiments suggest that these mutations lead to overactivation of the Ras pathway, which can be suppressed by mutations that disrupt either the Ras-GEF or putative Rac-GEF activity of SOS1. Transcriptional profiling reveals that the expression of mutant SOS1 leads to the upregulation of MYC target genes and genes associated with Ras transformation. Furthermore, we demonstrate that an AML cancer cell line harboring a lung adenocarcinoma-associated mutant SOS1 is dependent on SOS1 for survival and is also sensitive to MEK inhibition. Our work provides experimental evidence for the role of SOS1 as an oncogene and suggests a possible therapeutic strategy to target SOS1-mutated cancers. IMPLICATIONS: This study demonstrates that SOS1 mutations found in lung adenocarcinoma are oncogenic and that MEK inhibition may be a therapeutic avenue for the treatment of SOS1-mutant cancers.
Collapse
Affiliation(s)
- Diana Cai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Program in Genetics and Genomics, Harvard University, Boston, Massachusetts
| | - Peter S Choi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Maya Gelbard
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts. .,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
16
|
Expression analysis and clinical significance of eIF4E, VEGF-C, E-cadherin and MMP-2 in colorectal adenocarcinoma. Oncotarget 2018; 7:85502-85514. [PMID: 27907907 PMCID: PMC5356753 DOI: 10.18632/oncotarget.13453] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The underlying mechanisms of colorectal carcinoma (CRC) metastasis remain to be elucidated. The aim of this study is to investigate clinical significance and the expression of eIF4E, VEGF-C, MMP-2, and E-cadherin in the CRC metastasis. We investigated their expressions in 108 patients, analyzed the relationships between their expressions in CRC and evaluated the relationships between their expressions and clinical pathogenic parameters. Furthermore, their roles in patient survival and in CRC metastasis were also investigated. We found that eIF4E, VEGF-C and MMP-2 were up-regulated in CRC, and their expression frequencies (EFs) were higher in cancerous tissues than in adjacent normal tissues. The EF of E-cadherin is lower in cancerous tissues than in adjacent normal tissues. Totally, their EFs were not associated with sex and age of patient, however, their EFs were associated with tumor differentiation, the depth of invasion, lymph node metastasis and tumor stages. Furthermore, eIF4E, VEGF-C, and MMP-2 shortened and E-cadherin prolonged survival in patient-derived CRC xenografts. Similarly, eIF4E, VEGF-C, and MMP-2 promoted and E-cadherin suppressed the lung metastasis of CRC cells. In addition, knockdown of eIF4E inhibited migration of CRC cells, downregulated VEGF-C, MMP-2 and upregulated E-cadherin. In conclusion, eIF4E promoted CRC metastasis via up-regulating the expression of VEGF-C, MMP-2 and suppressing E-cadherin.
Collapse
|
17
|
Zahreddine HA, Culjkovic-Kraljacic B, Emond A, Pettersson F, Midura R, Lauer M, Del Rincon S, Cali V, Assouline S, Miller WH, Hascall V, Borden KL. The eukaryotic translation initiation factor eIF4E harnesses hyaluronan production to drive its malignant activity. eLife 2017; 6:29830. [PMID: 29111978 PMCID: PMC5705209 DOI: 10.7554/elife.29830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023] Open
Abstract
The microenvironment provides a functional substratum supporting tumour growth. Hyaluronan (HA) is a major component of this structure. While the role of HA in malignancy is well-defined, the mechanisms driving its biosynthesis in cancer are poorly understood. We show that the eukaryotic translation initiation factor eIF4E, an oncoprotein, drives HA biosynthesis. eIF4E stimulates production of enzymes that synthesize the building blocks of HA, UDP-Glucuronic acid and UDP-N-Acetyl-Glucosamine, as well as hyaluronic acid synthase which forms the disaccharide chain. Strikingly, eIF4E inhibition alone repressed HA levels as effectively as directly targeting HA with hyaluronidase. Unusually, HA was retained on the surface of high-eIF4E cells, rather than being extruded into the extracellular space. Surface-associated HA was required for eIF4E’s oncogenic activities suggesting that eIF4E potentiates an oncogenic HA program. These studies provide unique insights into the mechanisms driving HA production and demonstrate that an oncoprotein can co-opt HA biosynthesis to drive malignancy.
Collapse
Affiliation(s)
- Hiba Ahmad Zahreddine
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Biljana Culjkovic-Kraljacic
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Audrey Emond
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Filippa Pettersson
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Ronald Midura
- Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, United States.,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, United States
| | - Mark Lauer
- Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, United States.,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, United States
| | - Sonia Del Rincon
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Valbona Cali
- Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, United States.,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, United States
| | - Sarit Assouline
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Wilson H Miller
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Québec, Canada
| | - Vincent Hascall
- Orthopaedic Research Center, The Cleveland Clinic Foundation, Cleveland, United States.,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, United States
| | - Katherine Lb Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| |
Collapse
|
18
|
Berger MD, Stintzing S, Heinemann V, Yang D, Cao S, Sunakawa Y, Ning Y, Matsusaka S, Okazaki S, Miyamoto Y, Suenaga M, Schirripa M, Soni S, Zhang W, Falcone A, Loupakis F, Lenz HJ. Impact of genetic variations in the MAPK signaling pathway on outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI and bevacizumab: data from FIRE-3 and TRIBE trials. Ann Oncol 2017; 28:2780-2785. [PMID: 29045529 PMCID: PMC5834083 DOI: 10.1093/annonc/mdx412] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The MAPK-interacting kinase 1 (MKNK1) is localized downstream of the RAS/RAF/ERK and the MAP3K1/MKK/p38 signaling pathway. Through phosphorylation MKNK1 regulates the function of eukaryotic translation initiation factor 4E, a key player in translational control, whose expression is often upregulated in metastatic colorectal cancer patients (mCRC). Preclinical data suggest that MKNK1 increases angiogenesis by upregulating angiogenic factors. We therefore hypothesize that variations in the MKNK1 gene predict outcome in mCRC patients treated with first-line FOLFIRI and bevacizumab (bev). PATIENTS AND METHODS A total of 567 patients with KRAS wild-type mCRC in the randomized phase III FIRE-3 and TRIBE trials treated with first-line FOLFIRI/bev (discovery and validation cohorts) or FOLFIRI and cetuximab (cet) (control cohort) were included in this study. Five single-nucleotide polymorphisms in the MAPK signaling pathway were analyzed. RESULTS AA genotype carriers of the MKNK1 rs8602 single-nucleotide polymorphism treated with FOLFIRI/bev in the discovery cohort (FIRE-3) had a shorter progression-free survival (PFS) than those harboring any C (7.9 versus 10.3 months, Hazard ratio (HR) 1.73, P = 0.038). This association could be confirmed in the validation cohort (TRIBE) in multivariable analysis (PFS 9.0 versus 11.0 months, HR 3.04, P = 0.029). Furthermore, AA carriers in the validation cohort had a decreased overall response rate (25% versus 66%, P = 0.049). Conversely, AA genotype carriers in the control group receiving FOLFIRI/cet did not show a shorter PFS. By combining both FOLFIRI/bev cohorts the worse outcome among AA carriers became more significant (PFS 9.0 versus 10.5 months) in univariable (HR 1.74, P = 0.015) and multivariable analysis (HR 1.76, P = 0.022). Accordingly, AA carriers did also exhibit an inferior overall response rate compared with those harboring any C (36% versus 65%, P = 0.005). CONCLUSION MKNK1 polymorphism rs8602 might serve as a predictive marker in KRAS wild-type mCRC patients treated with FOLFIRI/bev in the first-line setting. Additionally, MKNK1 might be a promising target for drug development.
Collapse
Affiliation(s)
- M D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Stintzing
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Munich, Germany
| | - V Heinemann
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Munich, Germany
| | - D Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - W Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - A Falcone
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa
| | - F Loupakis
- Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - H-J Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA;.
| |
Collapse
|
19
|
Separation of low and high grade colon and rectum carcinoma by eukaryotic translation initiation factors 1, 5 and 6. Oncotarget 2017; 8:101224-101243. [PMID: 29254159 PMCID: PMC5731869 DOI: 10.18632/oncotarget.20642] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer related death worldwide. Furthermore, with more than 1.2 million cases registered per year, it constitutes the third most frequent diagnosed cancer entity worldwide. Deregulation of protein synthesis has received considerable attention as a major step in cancer development and progression. Eukaryotic translation initiation factors (eIFs) are involved in the regulation of protein synthesis and are functionally linked to the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. The identification of factors accounting for colorectal carcinoma (CRC) development is a major gap in the field. Besides the importance of eIF3 subunits and the eIF4 complex, eIF1, eIF5 and eIF6 were found to be altered in primary and metastatic CRC. We observed significant difference in the expression profile between low and high grade CRC. eIF1, eIF5 and eIF6 are involved in translational control in CRC. Our findings also indicate a probable clinical impact when separating them into low and high grade colon and rectum carcinoma. eIF and mTOR expression were analysed on protein and mRNA level in primary low and high grade colon carcinoma (CC) and rectum carcinoma (RC) samples in comparison to non-neoplastic tissue without any disease-related pathology. To assess the therapeutic potential of targeting eIF1, eIF5 and eIF6 siRNA knockdown in HCT116 and HT29 cells was performed. We evaluated the eIF knockdown efficacy on protein and mRNA level and investigated proliferation, apoptosis, invasion, as well as colony forming and polysome associated fractions. These results indicate that eIFs, in particular eIF1, eIF5 and eIF6 play a major role in translational control in colon and rectum cancer.
Collapse
|