1
|
Duong Nguyen TT, Tanoli Z, Hassan S, Özcan UO, Caroli J, Kooistra AJ, Gloriam DE, Hauser AS. PGxDB: an interactive web-platform for pharmacogenomics research. Nucleic Acids Res 2025; 53:D1486-D1497. [PMID: 39565203 PMCID: PMC11701576 DOI: 10.1093/nar/gkae1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Pharmacogenomics, the study of how an individual's genetic makeup influences their response to medications, is a rapidly evolving field with significant implications for personalized medicine. As researchers and healthcare professionals face challenges in exploring the intricate relationships between genetic profiles and therapeutic outcomes, the demand for effective and user-friendly tools to access and analyze genetic data related to drug responses continues to grow. To address these challenges, we have developed PGxDB, an interactive, web-based platform specifically designed for comprehensive pharmacogenomics research. PGxDB enables the analysis across a wide range of genetic and drug response data types - informing cell-based validations and translational treatment strategies. We developed a pipeline that uniquely combines the relationship between medications indexed with Anatomical Therapeutic Chemical (ATC) codes with molecular target profiles with their genetic variability and predicted variant effects. This enables scientists from diverse backgrounds - including molecular scientists and clinicians - to link genetic variability to curated drug response variability and investigate indication or treatment associations in a single resource. With PGxDB, we aim to catalyze innovations in pharmacogenomics research, empower drug discovery, support clinical decision-making, and pave the way for more effective treatment regimens. PGxDB is a freely accessible database available at https://pgx-db.org/.
Collapse
Affiliation(s)
- Trinh Trung Duong Nguyen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- BioICAWtech, Helsinki, Finland
| | | | - Umut Onur Özcan
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Jimmy Caroli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Ijaz S, Iqbal J, Abbasi BA, Tufail A, Yaseen T, Uddin S, Usman K, Ullah R, Bibi H, Inam P, Sagindykova E, Gürer ES, Habtemariam S, Calina D, Sharifi-Rad J. Current stage of preclinical and clinical development of guggulsterone in cancers: Challenges and promises. Cell Biol Int 2024; 48:128-142. [PMID: 38148708 DOI: 10.1002/cbin.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 11/18/2023] [Indexed: 12/28/2023]
Abstract
Throughout human history, the utilization of medicinal herbs has been recognized as a crucial defense against various ailments, including cancer. Natural products with potential anticancer properties, capable of inducing apoptosis in cancer cells, have garnered substantial attention. One such agent under investigation is guggulsterone (GS), a phytosterol derived from the gum resin of the Commiphora mukul tree. This review aims to provide a comprehensive summary of recent studies elucidating the anticancer molecular mechanisms and molecular targets of GS, guiding future research and potential applications as an adjuvant drug in cancer therapy. Recent in vivo and in vitro studies have explored the biological activities of the active ingredients in Commiphora mukul. Specifically, GS emerges as a potential cancer chemopreventive and therapeutic agent. The investigations delve into the impact of GS on constitutively activated survival pathways, including Janus kinase/signal transducer and activator of transcription (JAK/STAT), nuclear factor-kappa B (NF-kB), and PI3-kinase/AKT signaling pathways. These pathways regulate antiapoptotic and proinflammatory genes, exerting control over growth and inflammatory responses. The findings highlight the potential of GS in disrupting survival pathways crucial for cancer cell viability. The inhibition of JAK/STAT, NF-kB, and PI3-kinase/AKT signaling pathways positions GS as a promising candidate for cancer therapy. The review synthesizes evidence from diverse studies, underscoring the multifaceted biological activities of GS in cancer prevention and treatment. To advance our understanding, future clinical and translational studies are imperative to determine effective doses in humans. Additionally, there is a need for the development of new pharmaceutical forms of GS to optimize therapeutic effects. This comprehensive review provides a foundation for ongoing research, offering insights into the potential of GS as a valuable addition to the armamentarium against cancer.
Collapse
Affiliation(s)
- Shumaila Ijaz
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Punjab, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | | | - Aasma Tufail
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Punjab, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Siraj Uddin
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Kiran Usman
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Rafi Ullah
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Haseena Bibi
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Palwasha Inam
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Elvira Sagindykova
- Faculty of Science and Technology, The Caspian University of Technology and Engineering Named after Sh.Yessenov, Aktau, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Kent, UK
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
3
|
Hertz DL, Lustberg MB, Sonis S. Evolution of predictive risk factor analysis for chemotherapy-related toxicity. Support Care Cancer 2023; 31:601. [PMID: 37773300 DOI: 10.1007/s00520-023-08074-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
The causes of variation in toxicity to the same treatment regimen among seemingly similar patients remain largely unknown. There was tremendous optimism that the patient's germline genome would be strongly predictive of treatment-related toxicity and could be used to personalize treatment and improve therapeutic outcomes. However, there has been limited success in discovering robust pharmacogenetic predictors of treatment-related toxicity and even less progress in translating the few validated predictors into clinical practice. It is apparent that identification of toxicity predictors that can be used to predict and prevent treatment-related toxicity will require thinking beyond germline genomics. To that end, we propose an integrated biomarker discovery approach that recognizes that a patient's toxicity risk is determined by the cumulative effects of a broad range of "omic" and non-omic factors. This commentary describes the limited success in discovering and translating clinical and pharmacogenetic toxicity predictors into clinical practice. We illustrate the evolution of cancer toxicity biomarker discovery and translation through studies of taxane-induced peripheral neuropathy, which is one of the most common and debilitating side effects of cancer treatment. We then discuss the opportunities for discovering non-genomic (e.g., metabolomic, lipidomic, transcriptomic, proteomic, microbiomic, medical, behavioral, environmental) and integrated biomarkers that may be more strongly predictive of toxicity risk and the potential challenges with translating integrated biomarkers into clinical practice. This integrated biomarker discovery approach may circumvent some of the major limitations in toxicity biomarker science and move precision oncology treatment forward so that patients receive maximum treatment benefit with minimal toxicity.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St., Room 3054 College of Pharmacy, Ann Arbor, MI, 48109-1065, USA.
| | | | - Stephen Sonis
- Divisions of Oral Medicine, Brigham and Women's Hospital and the Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Ellis SD, Brooks JV, Birken SA, Morrow E, Hilbig ZS, Wulff-Burchfield E, Kinney AY, Ellerbeck EF. Determinants of targeted cancer therapy use in community oncology practice: a qualitative study using the Theoretical Domains Framework and Rummler-Brache process mapping. Implement Sci Commun 2023; 4:66. [PMID: 37308981 PMCID: PMC10259814 DOI: 10.1186/s43058-023-00441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Precision medicine holds enormous potential to improve outcomes for cancer patients, offering improved rates of cancer control and quality of life. Not all patients who could benefit from targeted cancer therapy receive it, and some who may not benefit do receive targeted therapy. We sought to comprehensively identify determinants of targeted therapy use among community oncology programs, where most cancer patients receive their care. METHODS Guided by the Theoretical Domains Framework, we conducted semi-structured interviews with 24 community cancer care providers and mapped targeted therapy delivery across 11 cancer care delivery teams using a Rummler-Brache diagram. Transcripts were coded to the framework using template analysis, and inductive coding was used to identify key behaviors. Coding was revised until a consensus was reached. RESULTS Intention to deliver precision medicine was high across all participants interviewed, who also reported untenable knowledge demands. We identified distinctly different teams, processes, and determinants for (1) genomic test ordering and (2) delivery of targeted therapies. A key determinant of molecular testing was role alignment. The dominant expectation for oncologists to order and interpret genomic tests is at odds with their role as treatment decision-makers' and pathologists' typical role to stage tumors. Programs in which pathologists considered genomic test ordering as part of their staging responsibilities reported high and timely testing rates. Determinants of treatment delivery were contingent on resources and ability to offset delivery costs, which low- volume programs could not do. Rural programs faced additional treatment delivery challenges. CONCLUSIONS We identified novel determinants of targeted therapy delivery that potentially could be addressed through role re-alignment. Standardized, pathology-initiated genomic testing may prove fruitful in ensuring patients eligible for targeted therapy are identified, even if the care they need cannot be delivered at small and rural sites which may have distinct challenges in treatment delivery. Incorporating behavior specification and Rummler-Brache process mapping with determinant analysis may extend its usefulness beyond the identification of the need for contextual adaptation.
Collapse
Affiliation(s)
- Shellie D. Ellis
- University of Kansas School of Medicine, 3901 Rainbow Blvd., Kansas City, KS 66610 USA
| | - Joanna Veazey Brooks
- University of Kansas School of Medicine, 3901 Rainbow Blvd., Kansas City, KS 66610 USA
| | - Sarah A. Birken
- Wake Forest University School of Medicine, 525 Vine Street, Winston-Salem, NC 27101 USA
| | - Emily Morrow
- Kansas City Kansas Community College, 7250 State Ave., Kansas City, KS 66112 USA
| | - Zachary S. Hilbig
- University of Kansas School of Medicine, 3901 Rainbow Blvd., Kansas City, KS 66610 USA
| | | | - Anita Y. Kinney
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St., New Brunswick, NJ 08901 USA
| | - Edward F. Ellerbeck
- University of Kansas School of Medicine, 3901 Rainbow Blvd., Kansas City, KS 66610 USA
| |
Collapse
|
5
|
Albalwy F, McDermott JH, Newman WG, Brass A, Davies A. A blockchain-based framework to support pharmacogenetic data sharing. THE PHARMACOGENOMICS JOURNAL 2022; 22:264-275. [PMID: 35869255 DOI: 10.1038/s41397-022-00285-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/11/2022]
Abstract
The successful implementation of pharmacogenetics (PGx) into clinical practice requires patient genomic data to be shared between stakeholders in multiple settings. This creates a number of barriers to widespread adoption of PGx, including privacy concerns related to the storage and movement of identifiable genomic data. Informatic solutions that support secure and equitable data access for genomic data are therefore important to PGx. Here we propose a methodology that uses smart contracts implemented on a blockchain-based framework, PGxChain, to address this issue. The design requirements for PGxChain were identified through a systematic literature review, identifying technical challenges and barriers impeding the clinical implementation of pharmacogenomics. These requirements included security and privacy, accessibility, interoperability, traceability and legal compliance. A proof-of-concept implementation based on Ethereum was then developed that met the design requirements. PGxChain's performance was examined using Hyperledger Caliper for latency, throughput, and transaction success rate. The findings clearly indicate that blockchain technology offers considerable potential to advance pharmacogenetic data sharing, particularly with regard to PGx data security and privacy, large-scale accessibility of PGx data, PGx data interoperability between multiple health care providers and compliance with data-sharing laws and regulations.
Collapse
Affiliation(s)
- F Albalwy
- Department of Computer Science, Kilburn Building, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah, Saudi Arabia. .,Division of Informatics, Imaging and Data Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - J H McDermott
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.,Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - W G Newman
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.,Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - A Brass
- Department of Computer Science, Kilburn Building, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Division of Informatics, Imaging and Data Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - A Davies
- Division of Informatics, Imaging and Data Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
6
|
Tan T, Han G, Cheng Z, Jiang J, Zhang L, Xia Z, Wang X, Xia Q. Genetic Polymorphisms in CYP2C19 Cause Changes in Plasma Levels and Adverse Reactions to Anlotinib in Chinese Patients With Lung Cancer. Front Pharmacol 2022; 13:918219. [PMID: 35814206 PMCID: PMC9257029 DOI: 10.3389/fphar.2022.918219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Anlotinib is a small molecular multi-targeting tyrosine kinase inhibitor. Growing evidence indicates that treatment efficacy, and toxicity varies considerably between individuals. Therefore, this study aimed to investigate the relationship between cytochrome P450 (CYP450) gene polymorphisms, drug concentrations, and their adverse reactions in anlotinib-treated patients with lung cancer.Methods: We enrolled 139 patients with lung cancer, treated with anlotinib. Twenty loci in the following five genes of the CYP450 family were genotyped: CYP450 family 3 subfamily A member 5 (CYP3A5), 3 subfamily A member 4 (CYP3A4), 2 subfamily C member 9 (CYP2C9), 2 subfamily C member 19 (CYP2C19), and 1 subfamily A member 2 (CYP1A2). Data on adverse reactions were collected from patients, and plasma anlotinib concentrations were measured.Results: There were significant variances in plasma trough concentration (3.95–52.88 ng/ml) and peak plasma concentration (11.53–42.8 ng/ml) following administration of 8 mg anlotinib. Additionally, there were significant differences in the plasma trough concentration (5.65–81.89 ng/ml) and peak plasma concentration (18.01–107.18 ng/ml) following administration of 12 mg anlotinib. Furthermore, for CYP2C19-rs3814637, the peak plasma concentrations of mutant allele T carriers (TT+CT) were significantly higher than those of wildtypes (CC). For CYP2C19-rs11568732, the peak plasma concentrations of the mutant allele G carriers (GT+GG) were significantly higher than those of the wild-type (TT). More importantly, the incidence rates of hypertension and hemoptysis (peripheral lung cancer) with TT+CT in rs3814637 and GT+GG in rs11568732 were significantly higher than those with CC and TT.Conclusions: The plasma trough and peak concentrations varied significantly for both 8 and 12 mg of anlotinib. Single-nucleotide polymorphisms in CYP2C19 are significantly associated with hypertension, hemoptysis, and anlotinib peak concentrations. Polymorphisms in CYP450 may explain inter-individual differences in anlotinib-related adverse reactions.
Collapse
Affiliation(s)
- Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gongwei Han
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ziwei Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jiemei Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zitong Xia
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xinmeng Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Quan Xia,
| |
Collapse
|
7
|
Lopes DV, de Fraga Dias A, Silva LFL, Scholl JN, Sévigny J, Battastini AMO, Figueiró F. Influence of NSAIDs and methotrexate on CD73 expression and glioma cell growth. Purinergic Signal 2021; 17:273-284. [PMID: 33745072 DOI: 10.1007/s11302-021-09775-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant and deadly brain tumor. GBM cells overexpress the CD73 enzyme, which controls the level of extracellular adenosine, an immunosuppressive molecule. Studies have shown that some nonsteroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) have antiproliferative and modulatory effects on CD73 in vitro and in vivo. However, it remains unclear whether the antiproliferative effects of MTX and NSAIDS in GBM cells are mediated by increases in CD73 expression and adenosine formation. The aim of this study was to evaluate the effect of the NSAIDs, naproxen, piroxicam, meloxicam, ibuprofen, sodium diclofenac, acetylsalicylic acid, nimesulide, and ketoprofen on CD73 expression in GBM and mononuclear cells. In addition, we sought to understand whether the effects of MTX may be mediated by CD73 expression and activity. Cell viability and CD73 expression were evaluated in C6 and mononuclear cells after exposure to NSAIDs. For analysis of the mechanism of action of MTX, GBM cells were treated with APCP (CD73 inhibitor), dipyridamole (inhibitor of adenosine uptake), ABT-702 (adenosine kinase enzyme inhibitor), or caffeine (P1 adenosine receptor antagonist), before treatment with MTX and AMP, in the presence or not of mononuclear cells. In summary, only MTX increased the expression of CD73 in GBM cells decreasing cells viability by mechanisms independent of the adenosinergic system. Further studies are needed to understand the role of MTX in the GBM microenvironment.
Collapse
Affiliation(s)
- Daniela Vasconcelos Lopes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Fernando Lopes Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Ana Maria Oliveira Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Caspar SM, Schneider T, Stoll P, Meienberg J, Matyas G. Potential of whole-genome sequencing-based pharmacogenetic profiling. Pharmacogenomics 2021; 22:177-190. [PMID: 33517770 DOI: 10.2217/pgs-2020-0155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmacogenetics represents a major driver of precision medicine, promising individualized drug selection and dosing. Traditionally, pharmacogenetic profiling has been performed using targeted genotyping that focuses on common/known variants. Recently, whole-genome sequencing (WGS) is emerging as a more comprehensive short-read next-generation sequencing approach, enabling both gene diagnostics and pharmacogenetic profiling, including rare/novel variants, in a single assay. Using the example of the pharmacogene CYP2D6, we demonstrate the potential of WGS-based pharmacogenetic profiling as well as emphasize the limitations of short-read next-generation sequencing. In the near future, we envision a shift toward long-read sequencing as the predominant method for gene diagnostics and pharmacogenetic profiling, providing unprecedented data quality and improving patient care.
Collapse
Affiliation(s)
- Sylvan Manuel Caspar
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland.,Department of Health Sciences & Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Timo Schneider
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Patricia Stoll
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Gabor Matyas
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
9
|
Arechederra M, Ávila MA, Berasain C. Liquid biopsy for cancer management: a revolutionary but still limited new tool for precision medicine. ADVANCES IN LABORATORY MEDICINE 2020; 1:20200009. [PMID: 37361495 PMCID: PMC10197281 DOI: 10.1515/almed-2020-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 06/28/2023]
Abstract
The term liquid biopsy is used in contraposition to the traditional "solid" tissue biopsy. In the oncology field it has opened a new plethora of clinical opportunities as tumor-derived material is shedded into the different biofluids from where it can be isolated and analyzed. Common biofluids include blood, urine, saliva, cerebrospinal fluid (CSF), pleural effusion or bile. Starting from these biological specimens several analytes can be isolated, among which we will review the most widely used: circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), proteins, metabolites, and exosomes. Regarding the nature of the biomarkers it will depend on the analyte, the type of tumor and the clinical application of the liquid biopsy and it includes, somatic point mutations, deletions, amplifications, gene-fusions, DNA-methylated marks, tumor-specific miRNAs, proteins or metabolites. Here we review the characteristics of the analytes and the methodologies used for their isolation. We also describe the applications of the liquid biopsy in the management of patients with cancer, from the early detection of cancers to treatment guidance in patients with advanced tumors. Finally, we also discuss some current limitations and still open questions.
Collapse
Affiliation(s)
- María Arechederra
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| | - Matías A. Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Berasain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Program, CIMA, University of Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| |
Collapse
|
10
|
Liao D, Liu Z, Zhang Y, Liu N, Yao D, Cao L, Chen Y, Fu Y, Yang N, Xiang D. Polymorphisms of Drug-Metabolizing Enzymes and Transporters Contribute to the Individual Variations of Erlotinib Steady State Trough Concentration, Treatment Outcomes, and Adverse Reactions in Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer Patients. Front Pharmacol 2020; 11:664. [PMID: 32457635 PMCID: PMC7225310 DOI: 10.3389/fphar.2020.00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Background Erlotinib is presently the first line treatment for non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) active mutation. An increasing number of evidences show that the treatment efficacy and toxicities are considerably heterogeneous among individuals. Hence, it is necessary to find biological predictors for further individualized treatment of erlotinib in NSCLC patients. Methods Our present study enrolled 87 cases of NSCLC patients who had been administrated erlotinib with a fixed dose (150 mg/d). Eleven polymorphisms in seven genes of drug-metabolizing enzymes and transporters were genotyped and the steady state trough concentrations were also determined. Results There were significant variances in the steady-state erlotinib trough plasma concentrations, ranging from 315.6 ng/ml to 4479.83 ng/ml. Erlotinib steady state trough concentration was remarkably lower in current smoking patients. The steady state trough concentration of GG in rs1048943 of CYP1A1 was significantly higher than that of AA allele carriers. The polymorphism of CYP1A2 was significantly associated with the severity of skin rash, and the development of diarrhea was associated with SNPs in ABCB1 and CYP3A5. We also observed that GG allele in CYP1A1 was accompanied with a longer PFS in our study. Conclusion A large variability of erlotinib steady state trough concentration was found among Chinese Han population. SNPs in CYP1A1 appeared to influence the steady state trough concentration of erlotinib. Correlation between CYP1A2 polymorphisms and severity of skin rash was observed, together with the correlation between the development of diarrhea and SNPs in ABCB1 and CYP3A5.
Collapse
Affiliation(s)
- Dehua Liao
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Zhigang Liu
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Phase I Clinical Trial Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yongchang Zhang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Ni Liu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Dunwu Yao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Lizhi Cao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Nong Yang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Daxiong Xiang
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Pharmaco-Geno-Proteo-Metabolomics and Translational Research in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31713161 DOI: 10.1007/978-3-030-24100-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The diagnosis, prognosis and treatment of cancer has had a great improvement due to the "omics" technologies such as genomics, proteomics, epigenomics, pharmacogenomics, and metabolomics. The technological progress of these technologies has allowed precision medicine to become a clinical reality. The study of different biomolecules such as DNA, RNA and proteins has helped to detect alterations in genes, changes in gene expression profiles and loss or gain of protein function, which allows us to make associations and better understand the cancer biology. Data obtained from different "omics" technologies gives a complementary spectrum of information that helps us to understand and unveil new information for a better diagnosis, prognosis, prediction of new molecular targets of anticancer therapies, etc. This chapter presents a general landscape of the interaction between the Pharmaco-Geno-Proteo-Metabolomic and translational medicine research in cancer.
Collapse
|
12
|
Alshabeeb MA, Deneer VHM, Khan A, Asselbergs FW. Use of Pharmacogenetic Drugs by the Dutch Population. Front Genet 2019; 10:567. [PMID: 31312209 PMCID: PMC6614185 DOI: 10.3389/fgene.2019.00567] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
Introduction The Dutch Pharmacogenetics Working Group (DPWG) indicated a list of actionable genotypes that affect patients’ response to more 50 drugs; these drugs which show variable effects based on patients’ genetic traits were named as pharmacogenetics (PGX) drugs. Preemptive genetic testing before using these drugs may protect certain patients from serious adverse reactions and could help in avoiding treatment failures. The objectives of this study include identifying the rate of PGX drug usage among Dutch population, estimating the level of users who carry the actionable genotypes and determining the main genes involved in drug’s effect variability. Methods Usage of PGX drugs over 2011–2017 by the insured population (an average of 11.4 million) in outpatient clinics in Netherlands was obtained from the publically available GIP databank. The data of 45 drugs were analyzed and their interactions with selected pharmacogenes were estimated. Frequency of actionable genotypes of 249 Dutch parents was obtained from the public database: Genome of Netherlands (GoNL), to identify the pattern of genetic characteristics of Dutch population. Results Over a 7 year period, 51.3 million exposures of patients to PGX drugs were reported with an average of 5.3 exposures per each drug user. One quarterof the exposures (12.4 million) are predicted to be experienced by individuals with actionable genotypes (risky exposures). Up to 60% of the risky exposures (around 7.5 million) were related to drugs metabolized by CYP2D6. SLCO1B1, and CYP2C19 were also identified among the top genes affecting response of drugs users (involved in about 22 and 12.4% of the risky exposures, respectively). Cardiovascular medications were the top prescribed PGX drug class (43%), followed by gastroenterology (29%) and psychiatry/neurology medications (15%). Women use more PGX drugs than men (55.8 vs. 44.2%, respectively) with the majority (84%) of users in both sexes are above 45 years. Conclusion PGX drugs are commonly used in Netherlands. Preemptive panel testing for CYP2D6, SLCO1B1, and CYP2C19 only could be useful to predict 95% of vulnerable patients’ exposures to PGX drugs. Future studies to assess the economic impact of preemptive panel testing on patients of older age are suggested.
Collapse
Affiliation(s)
- Mohammad A Alshabeeb
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Vera H M Deneer
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amjad Khan
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, United Kingdom.,Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| |
Collapse
|
13
|
The Patient in Precision Medicine: A Systematic Review Examining Evaluations of Patient-Facing Materials. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:9541621. [PMID: 30250657 PMCID: PMC6140003 DOI: 10.1155/2018/9541621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
Precision medicine (PM) has the potential to tailor healthcare to the individual patient by using their genetic information to guide treatment choices. However, this process is complex and difficult to understand for patients and providers alike. With a recent push in the healthcare community to understand the patient experience and engage patients in their care, it is important to give patients the opportunity to learn about PM. We performed a systematic review to identify previous work assessing the quality of patient-facing PM materials from 2008 to July 2018. Ten studies were identified, which used varying methods and measures. A qualitative assessment was conducted to compare key elements of the studies, including study design, characteristics of the participant population, what measurements were used to assess the PM materials, understandability, preference, psychological reactions, and the type of PM materials being assessed. The studies identified provide important groundwork by highlighting consistent aspects of design that aid in comprehension. Eight of the ten studies focused on the content and organization of genomic test results, while the remaining two assessed educational tools. Two main design elements that appeared across the studies were appropriately designed visual aids and simplified language. The studies identified were limited by the participant populations that were used, which were primarily white and well educated. Only one study attempted to oversample patient populations typically underrepresented in this type of research. Through our systematic review, it is evident that the breadth of knowledge in this field is limited in scope and that more work must be done to ensure that patients can engage in their care when faced with PM.
Collapse
|
14
|
Patel JN, Wiebe LA, Dunnenberger HM, McLeod HL. Value of Supportive Care Pharmacogenomics in Oncology Practice. Oncologist 2018; 23:956-964. [PMID: 29622698 PMCID: PMC6156181 DOI: 10.1634/theoncologist.2017-0599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Genomic medicine provides opportunities to personalize cancer therapy for an individual patient. Although novel targeted therapies prolong survival, most patients with cancer continue to suffer from burdensome symptoms including pain, depression, neuropathy, nausea and vomiting, and infections, which significantly impair quality of life. Suboptimal management of these symptoms can negatively affect response to cancer treatment and overall prognosis. The effect of genetic variation on drug response-otherwise known as pharmacogenomics-is well documented and directly influences an individual patient's response to antiemetics, opioids, neuromodulators, antidepressants, antifungals, and more. The growing body of pharmacogenomic data can now guide clinicians to select the safest and most effective supportive medications for an individual patient with cancer from the very first prescription. This review outlines a theoretical patient case and the implications of using pharmacogenetic test results to personalize supportive care throughout the cancer care continuum. IMPLICATIONS FOR PRACTICE Integration of palliative medicine into the cancer care continuum has resulted in increased quality of life and survival for patients with many cancer types. However, suboptimal management of symptoms such as pain, neuropathy, depression, and nausea and vomiting continues to place a heavy burden on patients with cancer. As demonstrated in this theoretical case, pharmacogenomics can have a major effect on clinical response to medications used to treat these conditions. Recognizing the value of supportive care pharmacogenomics in oncology and application into routine practice offers an objective choice for the safest and most effective treatment compared with the traditional trial and error method.
Collapse
Affiliation(s)
- Jai N Patel
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, USA
| | - Lauren A Wiebe
- NorthShore University Health System, Evanston, Illinois, USA
| | | | - Howard L McLeod
- The DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
15
|
Hertz DL, Glatz A, Pasternak AL, Lonigro RJ, Vats P, Wu YM, Anderson B, Rabban E, Mora E, Frank K, Robinson DR, Mody RJ, Chinnaiyan A. Integration of Germline Pharmacogenetics Into a Tumor Sequencing Program. JCO Precis Oncol 2018; 2:PO.18.00011. [PMID: 32832831 PMCID: PMC7434089 DOI: 10.1200/po.18.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Evidence-based guidelines inform treatment decisions for patients for whom germline genetic information is available. Our real-time tumor sequencing program, which makes precision treatment decisions for patients with cancer, produces matched germline information, providing a unique opportunity to efficiently implement pharmacogenetics and benefit patients. METHODS The germline genetic database from the Michigan Oncology Sequencing (MI-Oncoseq) program was searched for 21 clinically actionable polymorphisms in five cancer-relevant genes: TPMT, DPYD, CYP2C19, CYP3A5, and UGT1A1. Residual germ line DNA was sent to an external Clinical Laboratory Improvement Amendments-approved laboratory for confirmatory genotyping. The medical records of MI-Oncoseq patients with actionable phenotypes were searched for receipt of relevant drugs and to determine whether having genetic information at the time of treatment would have led to a treatment recommendation. RESULTS All nine variants in TPMT, DPYD, and CYP2C19 that were detected in MI-Oncoseq were confirmed by external genotyping. Genotype determinations could not be made for CYP3A5*3, UGT1A1*28, or UGT1A1*80. On the basis of retrospective assessment of 115 adult and pediatric patient records, 4.3% (n = 5) had a potentially clinically actionable phenotype for TPMT, DPYD, or CYP2C19 and received a relevant medication. After accounting for differences in adult and pediatric recommendations, three of these patients could have received a treatment recommendation at the time of prescribing. CONCLUSION Germline genotype determinations for TPMT, DPYD, and CYP2C19 can be used to make evidence-based treatment recommendations in MI-Oncoseq patients. Although the proportion of patients for whom recommendations can be made is small, this added value to MI-Oncoseq and patient care comes at no additional genotyping cost. Pharmacogenetic assessment should be integrated into tumor sequencing programs that genotype matched germline DNA; however, the complexity and additional cost of implementing pharmacogenetics remain challenging.
Collapse
Affiliation(s)
- Daniel L. Hertz
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Andrew Glatz
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Amy L. Pasternak
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Robert J. Lonigro
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Pankaj Vats
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Yi-Mi Wu
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Bailey Anderson
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Erica Rabban
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Erika Mora
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Kevin Frank
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Dan R. Robinson
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Rajen J. Mody
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Arul Chinnaiyan
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
16
|
Kalinin AA, Higgins GA, Reamaroon N, Soroushmehr S, Allyn-Feuer A, Dinov ID, Najarian K, Athey BD. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics 2018; 19:629-650. [PMID: 29697304 PMCID: PMC6022084 DOI: 10.2217/pgs-2018-0008] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates a family of machine learning algorithms that has transformed many important subfields of artificial intelligence over the last decade, and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical and demographic datasets.
Collapse
Affiliation(s)
- Alexandr A Kalinin
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Statistics Online Computational Resource (SOCR), University of Michigan School of Nursing, Ann Arbor, MI 48109, USA
| | - Gerald A Higgins
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Narathip Reamaroon
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sayedmohammadreza Soroushmehr
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ivo D Dinov
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Statistics Online Computational Resource (SOCR), University of Michigan School of Nursing, Ann Arbor, MI 48109, USA
- Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48109, USA
| | - Kayvan Najarian
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian D Athey
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Ankathil R, Azlan H, Dzarr AA, Baba AA. Pharmacogenetics and the treatment of chronic myeloid leukemia: how relevant clinically? An update. Pharmacogenomics 2018; 19:475-393. [PMID: 29569526 DOI: 10.2217/pgs-2017-0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the excellent efficacy and improved clinical responses obtained with imatinib mesylate (IM), development of resistance in a significant proportion of chronic myeloid leukemia (CML) patients on IM therapy have emerged as a challenging problem in clinical practice. Resistance to imatinib can be due to heterogeneous array of factors involving BCR/ABL-dependent and BCR/ABL-independent pathways. Although BCR/ABL mutation is the major contributory factor for IM resistance, reduced bio-availability of IM in leukemic cells is also an important pharmacokinetic factor that contributes to development of resistance to IM in CML patients. The contribution of polymorphisms of the pharmacogenes in relation to IM disposition and treatment outcomes have been studied by various research groups in numerous population cohorts. However, the conclusions arising from these studies have been highly inconsistent. This review encompasses an updated insight into the impact of pharmacogenetic variability on treatment response of IM in CML patients.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abu Abdullah Dzarr
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Baba
- Department of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Coviello JS. Cardiovascular and Cancer Risk: The Role of Cardio-oncology. J Adv Pract Oncol 2018; 9:160-176. [PMID: 30588351 PMCID: PMC6303003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardio-oncology is a subspecialty of cardiology. It was created to address oncology data indicating that newly developed drugs for cancer treatment were having unanticipated cardiac side effects. Cardio-oncology designs primary and secondary risk strategies through surveillance as well as interventions to reduce cardiovascular risk (CVR), prevent cardiotoxicities, and manage the side effects that may occur. Rather than discuss in detail the cardiotoxicities of specific therapies or radiation, this review article will explore the interplay of cancer, cancer treatment, and CVR. It will examine the link between CVR and cancer risk, define mechanisms associated with cardiotoxicity, and describe screening and surveillance for patients undergoing cancer treatment. Finally, effective preventative and management strategies used to reduce the incidence of cardiotoxicities in those receiving chemotherapeutics or radiation will be presented.
Collapse
|
19
|
Kiessling F. The changing face of cancer diagnosis: From computational image analysis to systems biology. Eur Radiol 2018; 28:3160-3164. [PMID: 29488085 DOI: 10.1007/s00330-018-5347-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
Abstract
ᅟ: KEY POINTS: • Radiomics and radiogenomics will merge radiology, nuclear medicine, pathology and laboratory medicine. • Automation of image data analysis will change the daily routine work. • Image-guided therapy and handling complex radiogenomic data will play a major role.
Collapse
Affiliation(s)
- Fabian Kiessling
- Department of Experimental Molecular Imaging, Medical Faculty, Institute for Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Zhou X, Qiao G, Wang X, Song Q, Morse MA, Hobeika A, Gwin WR, Ren J, Lyerly HK. CYP1A1 genetic polymorphism is a promising predictor to improve chemotherapy effects in patients with metastatic breast cancer treated with docetaxel plus thiotepa vs. docetaxel plus capecitabine. Cancer Chemother Pharmacol 2017; 81:365-372. [PMID: 29242966 DOI: 10.1007/s00280-017-3500-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE A prospective study was performed to compare the outcome for metastatic breast cancer (MBC) patients treated with docetaxel plus thiotepa (DT) or docetaxel plus capecitabine (DC), and to explore the value of CYP1A1*2C polymorphisms in predicting clinical efficacy of these chemotherapies. METHODS MBC patients (n = 130) were randomized to treatment with DT (n = 65) or DC (n = 65). Response rate, disease control rate, progression-free and overall survival were monitored. Genotyping of CYP1A1*2C was performed in all patients. RESULTS DT and DC produced similar overall disease control rates (76.9 vs 69.2%), median PFS (6.7 vs. 7.5 months) and OS (20.1 vs. 21.0 months) (P > 0.05 for all comparisons); however, DT exhibited a higher rate of control of localized liver metastases (78.6 vs 41.2%, P = 0.023). Among patients homozygous for wild-type CYP1A1*1 genotype (AA), DT treatment was associated with a significantly longer PFS (8.4 vs. 6.4 months, P = 0.019) and OS (33.4 vs. 15.8 months, P = 0.018). Conversely, among patients carrying the variant CYP1A1*2C genotype (AG/GG), DC treatment was associated with a significantly longer PFS (8.4 vs. 5.5 month, P = 0.005), and OS (28.5 vs. 19.6 months, P = 0.010). After adjusting for competing risk factors, CYP1A1*2C genotype was confirmed to be an independent predictor of PFS and OS for each chemotherapy combination. CONCLUSIONS Overall, DT and DC result in similar clinical efficacy for MBC patients; however, efficacy for each therapy differs depending on CYP1A1*2C genotype.
Collapse
Affiliation(s)
- Xinna Zhou
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China.,Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, 100142, China
| | - Guoliang Qiao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China.,Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, 100142, China
| | - Qingkun Song
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China
| | - Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Surgery, Duke University Medical Center, 203 Research Drive, Suite 403, Box 2606, Durham, NC, 27710, USA
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, 203 Research Drive, Suite 403, Box 2606, Durham, NC, 27710, USA
| | - William R Gwin
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jun Ren
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China. .,Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, 100142, China. .,Department of Surgery, Duke University Medical Center, 203 Research Drive, Suite 403, Box 2606, Durham, NC, 27710, USA.
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, 203 Research Drive, Suite 403, Box 2606, Durham, NC, 27710, USA.
| |
Collapse
|
21
|
Kamps R, Brandão RD, Bosch BJVD, Paulussen ADC, Xanthoulea S, Blok MJ, Romano A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int J Mol Sci 2017; 18:ijms18020308. [PMID: 28146134 PMCID: PMC5343844 DOI: 10.3390/ijms18020308] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided.
Collapse
Affiliation(s)
- Rick Kamps
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Rita D Brandão
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Bianca J van den Bosch
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Aimee D C Paulussen
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Sofia Xanthoulea
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Marinus J Blok
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Andrea Romano
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| |
Collapse
|