1
|
Mandefro A, Kebede AM, Katsvanga M, Cham F, Oriero E, Amambua-Ngwa A, Golassa L. Unveiling mismatch of RTS S AS01 and R21 Matrix M malaria vaccines haplotype among Ethiopian Plasmodium falciparum clinical isolates. Sci Rep 2025; 15:14985. [PMID: 40301403 PMCID: PMC12041546 DOI: 10.1038/s41598-025-00140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025] Open
Abstract
Malaria vaccines, RTS, S/AS01 and R21/Matrix which are based on the Plasmodium falciparum circumsporozoite protein (Pfcsp) have been approved by WHO for broad use in children in Africa. However, the extensive genetic diversity of Pfcsp limited its effectiveness, as vaccine efficacy reduced against non-vaccine strains. Using Oxford Nanopore Technology, we conducted amplicon sequencing of the full-length Pfcsp gene from 96 clinical isolates collected from three health centers in Ethiopia and compared the results against a reference genome. The result showed absence of population differentiation among the Ethiopian isolates. The N-terminal region was relatively conserved, with a KLKQP motif was present across all isolates. However, mutation at position A98G and an insertion of amino acids (DGNNNNGDNGREGKDEDKR) were identified in this region. The number of NANP and NVDP repeats of the central region per haplotype ranged from 39 to 42. Additionally, the Th2R and Th3R epitopes in the C-terminal region exhibited extensive polymorphism with at least one amino acid substitution compared to the reference strains. Notably, none of the Ethiopian Pfcsp haplotypes matched the vaccine haplotype. Furthermore, haplotype network and phylogenetic tree analyses shown considerable similarity among local and global isolates. The findings of this study revealed a high Pfcsp genetic diversity highlighting the need for further studies to inform allele selection for universal or region-specific vaccine development as this may influence vaccine efficacy.
Collapse
Affiliation(s)
- Aynalem Mandefro
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Natural and Computational Science, Hawassa University, Hawassa, Ethiopia.
| | | | - Mitchel Katsvanga
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Fatoumatta Cham
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
2
|
Obi OA, Obiezue RN, Eze D, Adebote DA. Evasive mechanisms of human VSG and PfEMP1 antigens with link to Vaccine scenario: a review. J Parasit Dis 2025; 49:13-28. [PMID: 39975623 PMCID: PMC11833005 DOI: 10.1007/s12639-024-01740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/13/2024] [Indexed: 02/21/2025] Open
Abstract
Recent fights on the control of trypanosomiasis and malaria focused on underscoring the concepts of antigen evasive mechanisms with the view to exploit the defensive mechanisms inherent in VSG and PfEMP1, although giant strides is being achieved towards beating the antigenic propensity of malaria parasites. Trypanosoma and Plasmodium falciparum adopt a common antigenic novelty through alternate expression of VSG and PfEMP1 respectively. These immunodominant antigens sterically shield other surface proteins from host antibodies and unvaryingly turn out to be the requisite elements with difficult underlining immunological concept for unmatched escape mechanisms of vaccine actions. Hence, the uncommon role of the pathogens to brazenly circumnavigate immunity through switching of variant antigens has not kept pace. Switching of variant surface in human trypanosomes occurs through programmed DNA rearrangements while in P. falciparum, switching occurs by purely transcriptional mechanism. The repertoire genes harmonize evasion of human immunity and also rekindle the outcome of infections. The extensive sequence divergence and genetic polymorphism of VSG and PfEMP1 are the requisite elements for the next generation breakthrough in vaccine discoveries. Thus, the springboard for the development of novel targets is lurking with the wit of unraveling the immunological concepts underlining the evasive aptitude of VSG and PfEMP1 with convincing biochemical techniques, hence offering a blueprint for enhanced vaccine targets. This review elucidates evasive mechanisms of VSG and PfEMP1 with link to pathologies, challenges of antigenic switches and prospects to current vaccine scenario.
Collapse
Affiliation(s)
- Okechukwu Anthony Obi
- Department of Zoology, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | - Rose Nduka Obiezue
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Desmond Eze
- Department of Biochemistry, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | | |
Collapse
|
3
|
Kessy EJ, Olotu AI. Controlled human malaria infection: overview and potential application in the evaluation of transmission-blocking interventions in malaria-endemic areas. Malar J 2025; 24:33. [PMID: 39893367 PMCID: PMC11786456 DOI: 10.1186/s12936-025-05277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Controlled human malaria infection (CHMI) involves the intentional infection of healthy individuals with malaria parasites, close observation of the volunteers, and clearance of the parasite at a predetermined endpoint. Depending on the need, CHMI can be initiated by either sporozoites or the administration of parasite-infected erythrocytes, with each of the two systems offering different advantages and caveats. Among other uses, CHMI has proven to be a useful tool for the evaluation of new malaria interventions, particularly vaccines and drugs. The majority of CHMI studies have been conducted in Europe, the USA and Australia, with only a handful of studies conducted in malaria-endemic countries. The slow adoption of CHMI in malaria-endemic countries may be attributed to a lack of infrastructure and expertise to conduct studies in malaria-endemic countries and the risk of undue influence and coercion as a result of volunteers' vulnerability due to a lack of education and financial situation. With the need to generate results relevant to the target populations, there has recently been an increase in CHMI studies that are being conducted in malaria-endemic countries. The use of CHMI models for the evaluation of preerythrocytic and blood-stage malaria interventions has been attempted in malaria-endemic countries with great success. There is a need for the adoption of a CHMI model for the evaluation of transmission-blocking interventions in malaria-endemic countries. The establishment of such a model in malaria-endemic countries will facilitate the selection of potential transmission-blocking intervention (TBI) candidates and accelerate their development. Here is an overview of CHMI, key challenges and ethical considerations in adopting CHMI for the evaluation of malaria transmission-blocking interventions in malaria-endemic countries.
Collapse
Affiliation(s)
- Enock J Kessy
- Ifakara Health Institute, P.O. Box 78 373, Dar Es Salaam, Tanzania.
- Nelson Mandela African Institution of Science and Technology, 404 Nganana, 2331 Kikwe, Arumeru, P.O.Box 447, Arusha, Tanzania.
| | - Ally I Olotu
- Ifakara Health Institute, P.O. Box 78 373, Dar Es Salaam, Tanzania
| |
Collapse
|
4
|
Abraham IC, Aboje JE, Ukoaka BM, Tom-Ayegunle K, Amjad M, Abdulkader A, Agbo CE, Akinruli OA, Akisanmi TR, Oyetola EO, Olatunji G, Kokori E, Aderinto N. Integrating malaria vaccine and CRISPR/Cas9 gene drive: a comprehensive strategy for accelerated malaria eradication. Malar J 2025; 24:17. [PMID: 39825389 PMCID: PMC11742230 DOI: 10.1186/s12936-025-05243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Malaria remains a significant public health challenge, particularly in low- and middle-income countries, despite ongoing efforts to eradicate the disease. Recent advancements, including the rollout of malaria vaccines, such as RTS,S/AS01 and R21/Matrix-M™, offer new avenues for prevention. However, the rise of resistance to anti-malarial medications necessitates innovative strategies. This review explores the potential integration of CRISPR/Cas9 gene drive technology with malaria vaccination efforts to enhance vector control and reduce transmission. By employing gene drive mechanisms for population suppression and replacement of malaria-transmitting Anopheles mosquitoes, combined with the immunogenic properties of vaccines, a synergistic approach can be established. This paper discussed the need for integrated strategies to address the biological complexities of malaria and socio-economic factors influencing its prevalence. Challenges such as regulatory hurdles, community acceptance, ecological impacts, and sustainable funding are examined, alongside strategies for implementation within existing malaria control programmes. This integrated approach could significantly contribute to achieving the World Health Organization's targets for malaria reduction by 2030, ultimately enhancing public health outcomes and supporting broader socio-economic development.
Collapse
Affiliation(s)
| | - John Ehi Aboje
- Benue State University, College of Health Sciences, Makurdi, Nigeria
| | | | - Kehinde Tom-Ayegunle
- Dept of Epidemiology & Biostatistics, Johns Hopkins Bloomberg School of Public Health, Maryland, USA
| | - Maryam Amjad
- Liaquat National Hospital and Medical College Karachi, Karachi, Pakistan
| | - Anas Abdulkader
- College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | | | | | | | | | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Nicholas Aderinto
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
5
|
Comino Garcia-Munoz A, Varlet I, Grau GE, Perles-Barbacaru TA, Viola A. Contribution of Magnetic Resonance Imaging Studies to the Understanding of Cerebral Malaria Pathogenesis. Pathogens 2024; 13:1042. [PMID: 39770302 PMCID: PMC11728472 DOI: 10.3390/pathogens13121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
Cerebral malaria (CM), the most lethal clinical syndrome of Plasmodium falciparum infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published. The murine model of experimental cerebral malaria (ECM) shares many common features with the human disease and has been extensively used to study the pathogenic mechanisms of the neurological syndrome. In vivo MRI studies on this model, the first of which was published in 2005, have contributed to a better understanding of brain lesion formation in CM and identified disease markers that were confirmed by MRI studies published from 2013 onwards in pediatric patients from endemic areas. In this review, we recapitulate the main findings and critically discuss the contributions of MRI studies in the ECM model to the understanding of human CM.
Collapse
Affiliation(s)
- Alicia Comino Garcia-Munoz
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Isabelle Varlet
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Georges Emile Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Medical Foundation Building (K25), Camperdown, NSW 2042, Australia;
| | - Teodora-Adriana Perles-Barbacaru
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Angèle Viola
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| |
Collapse
|
6
|
Obeagu EI, Obeagu GU. Emerging public health strategies in malaria control: innovations and implications. Ann Med Surg (Lond) 2024; 86:6576-6584. [PMID: 39525724 PMCID: PMC11543165 DOI: 10.1097/ms9.0000000000002578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
Malaria remains a significant global health challenge, particularly in regions with limited resources and tropical climates. Despite extensive efforts, the disease continues to cause significant morbidity and mortality, with ~229 million cases and 409 000 deaths reported in 2020. However, recent years have seen promising advancements in public health strategies aimed at malaria control and elimination. Technological advancements have played a crucial role in improving malaria control efforts. Genomic surveillance techniques enable the monitoring of malaria parasite populations, aiding in the detection of drug resistance and informing targeted interventions. Additionally, innovative diagnostic technologies, such as rapid diagnostic tests (RDTs) and molecular assays, have enhanced the speed and accuracy of malaria diagnosis, facilitated prompt treatment and reduced transmission. These tools are instrumental in achieving the WHO goals of reducing malaria cases and deaths by at least 90% by 2030. Novel vector control methods offer innovative approaches to reduce malaria transmission. Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) remain foundational strategies, with advancements including the development of next-generation insecticides and long-lasting insecticidal nets (LLINs). Furthermore, genetic modification of mosquitoes, such as gene drive technology, holds promise for reducing mosquito populations and interrupting malaria transmission. These vector control innovations complement other strategies, contributing to comprehensive malaria control efforts aimed at achieving sustainable disease reduction and eventual elimination.
Collapse
|
7
|
Ritaparna P, Ray M, Dhal AK, Mahapatra RK. An immunoinformatics approach for design and validation of multi-subunit vaccine against Plasmodium falciparum from essential hypothetical proteins. J Parasit Dis 2024; 48:593-609. [PMID: 39145352 PMCID: PMC11319695 DOI: 10.1007/s12639-024-01696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
Malaria, caused by Plasmodium falciparum, remains a pressing global health concern. Advancements in combating this parasite involve the development of a protein vaccine. This study employs immunoinformatics to identify potential vaccine candidates within the repertoire of 218 P. falciparum exported essential proteins identified through saturaturation mutagenesis study. Our screening approach narrows down to 65 Plasmodium-exported proteins with uncharacterized functions while exhibiting non-mutability in CDS (coding sequences). The transmembrane helix, antigenicity, allergenicity of the shortlisted proteins was assessed through diverse prediction algorithm, culminating in the identification of five promising vaccination contenders, based on probability scores. We discerned B-cell, helper T-lymphocyte, and cytotoxic T-lymphocyte epitopes. Two proteins with the most favorable epitope were harnessed to construct a multi-subunit vaccine, through judicious linker integration. Employing the I-TASSER software, three-dimensional models of the constituent proteins was obtained and was validated using diverse tools like ProSA, VERIFY3D, and ERRAT. The modelled proteins underwent Molecular Dynamics (MD) simulation in a solvent environment to evaluate the stability of the multi-subunit vaccine. Furthermore, we conducted molecular docking through the ClusPro web server to elucidate potential interactions with Toll-like receptors (TLR2 and TLR4). Docking scores revealed a pronounced affinity of the multi-subunit vaccine for TLR2. Significantly, 100 ns MD simulation of the protein-receptor complex unveiled a persistent hydrogen bond linkage between the ARG63 residue of the sub-unit vaccine and the GLU32 residue of the TLR2 receptor. These findings collectively advocate the potential efficacy of the first multi-subunit vaccine from the potential hypothetical proteins of P. falciparum. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-024-01696-w.
Collapse
Affiliation(s)
- Prajna Ritaparna
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
- National Innovation Foundation, India, KIIT-TBI, Bhubaneswar, Odisha 751024 India
| | - Muskan Ray
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | | |
Collapse
|
8
|
Rodolphi CM, Soares IF, Matos ADS, Rodrigues-da-Silva RN, Ferreira MU, Pratt-Riccio LR, Totino PRR, Scopel KKG, Lima-Junior JDC. Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study. Antibodies (Basel) 2024; 13:69. [PMID: 39189240 PMCID: PMC11348034 DOI: 10.3390/antib13030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Malaria is a serious health problem worldwide affecting mainly children and socially vulnerable people. The biological particularities of P. vivax, such as the ability to generate dormant liver stages, the rapid maturation of gametocytes, and the emergence of drug resistance, have contributed to difficulties in disease control. In this context, developing an effective vaccine has been considered a fundamental tool for the efficient control and/or elimination of vivax malaria. Although recombinant proteins have been the main strategy used in designing vaccine prototypes, synthetic immunogenic peptides have emerged as a viable alternative for this purpose. Considering, therefore, that in the Brazilian endemic population, little is known about the profile of the humoral immune response directed to synthetic peptides that represent different P. vivax proteins, the present work aimed to map the epitope-specific antibodies' profiles to synthetic peptides representing the linear portions of the ookinete and sporozoite cell passage protein (CelTOS), thrombospondin-related adhesive protein (TRAP), and cysteine-rich protective antigen (CyRPA) proteins in the acute (AC) and convalescent phases (Conv30 and Conv180 after infection) of vivax malaria. The results showed that the studied subjects responded to all proteins for at least six months following infection. For IgM, a few individuals (3-21%) were positive during the acute phase of the disease; the highest frequencies were observed for IgG (28-57%). Regarding the subclasses, IgG2 and IgG3 stood out as the most prevalent for all peptides. During the follow-up, the stability of IgG was observed for all peptides. Only one significant positive correlation was observed between IgM and exposure time. We conclude that for all the peptides, the immunodominant epitopes are recognized in the exposed population, with similar frequency and magnitude. However, if the antibodies detected in this study are potential protectors, this needs to be investigated.
Collapse
Affiliation(s)
- Cinthia Magalhães Rodolphi
- Research Centre of Parasitology, Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Isabela Ferreira Soares
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| | - Ada da Silva Matos
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| | | | - Marcelo Urbano Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo 05508-220, Brazil;
| | - Lilian Rose Pratt-Riccio
- Laboratory for Malaria Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.R.P.-R.); (P.R.R.T.)
- Center for Research, Diagnosis, and Training in Malaria of Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Paulo Renato Rivas Totino
- Laboratory for Malaria Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.R.P.-R.); (P.R.R.T.)
- Center for Research, Diagnosis, and Training in Malaria of Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Kézia Katiani Gorza Scopel
- Research Centre of Parasitology, Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Josué da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| |
Collapse
|
9
|
Tajudeen YA, Oladipo HJ, Yusuff SI, Abimbola SO, Abdulkadir M, Oladunjoye IO, Omotosho AO, Egbewande OM, Shittu HD, Yusuf RO, Ogundipe O, Muili AO, Afolabi AO, Dahesh SMA, Gameil MAM, El-Sherbini MS. A landscape review of malaria vaccine candidates in the pipeline. Trop Dis Travel Med Vaccines 2024; 10:19. [PMID: 39085983 PMCID: PMC11293096 DOI: 10.1186/s40794-024-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Globally, malaria continues to pose a major health challenge, with approximately 247 million cases of the illness and 627,000 deaths reported in 2021. However, the threat is particularly pronounced in sub-Saharan African countries, where pregnant women and children under the age of five face heightened vulnerability to the disease. As a result, the imperative to develop malaria vaccines especially for these vulnerable populations, remains crucial in the pursuit of malaria eradication. However, despite decades of research, effective vaccine development faces technical challenges, including the rapid spread of drug-resistant parasite strains, the complex parasite lifecycle, the development of liver hypnozoites with potential for relapse, and evasion of the host immune system. This review aims to discuss the different malaria vaccine candidates in the pipeline, highlighting different approaches used for adjuvating these candidates, their benefits, and outcomes, and summarizing the progress of these vaccine candidates under development. METHOD A comprehensive web-based search for peer-reviewed journal articles published in SCOPUS, MEDLINE (via PubMed), Science Direct, WHO, and Advanced Google Scholar databases was conducted from 1990 to May 2022. Context-specific keywords such as "Malaria", "Malaria Vaccine", "Malaria Vaccine Candidates", "Vaccine Development", "Vaccine Safety", "Clinical Trials", "mRNA Vaccines", "Viral Vector Vaccines", "Protein-based Vaccines", "Subunit Vaccines", "Vaccine Adjuvants", "Vaccine-induced Immune Responses", and "Immunogenicity" were emphatically considered. Articles not directly related to malaria vaccine candidates in preclinical and clinical stages of development were excluded. RESULTS Various approaches have been studied for malaria vaccine development, targeting different parasite lifecycle stages, including the pre-erythrocytic, erythrocytic, and sexual stages. The RTS, S/AS01 vaccine, the first human parasite vaccine reaching WHO-listed authority maturity level 4, has demonstrated efficacy in preventing clinical malaria in African children. However, progress was slow in introducing other safe, and feasible malaria vaccines through clinical trials . Recent studies highlight the potential effectiveness of combining pre-erythrocytic and blood-stage vaccines, along with the advantages of mRNA vaccines for prophylaxis and treatment, and nonstructural vaccines for large-scale production. CONCLUSION Malaria vaccine candidates targeting different lifecycle stages of the parasite range from chemoprophylaxis vaccination to cross-species immune protection. The use of a multi-antigen, multi-stage combinational vaccine is therefore essential in the context of global health. This demands careful understanding and critical consideration of the long-term multi-faceted interplay of immune interference, co-dominance, complementary immune response, molecular targets, and adjuvants affecting the overall vaccine-induced immune response. Despite challenges, advancements in clinical trials and vaccination technology offer promising possibilities for novel approaches in malaria vaccine development.
Collapse
Affiliation(s)
- Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Habeebullah Jayeola Oladipo
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Sodiq Inaolaji Yusuff
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University, Ibadan- Ife Rd, Ife, 220282, Osun State, Nigeria
| | - Samuel O Abimbola
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, 3036, Cyprus
| | - Muritala Abdulkadir
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Iyiola Olatunji Oladunjoye
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Abass Olawale Omotosho
- Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B 1530, Malete-Ilorin, Ilorin, Nigeria
| | | | | | - Rashidat Onyinoyi Yusuf
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Oluwatosin Ogundipe
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Abdulbasit Opeyemi Muili
- Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomosho, Oyo State, Nigeria
| | - Abdullateef Opeyemi Afolabi
- Faculty of Biomedical Sciences, Department of Microbiology and Immunology, Kampala International University, Bushenyi, Uganda.
| | - Salwa M A Dahesh
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, GOTHI, Damietta, Egypt
| | | | - Mona Said El-Sherbini
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
10
|
Lou J, Zhang D, Wu J, Zhu G, Zhang M, Tang J, Fang Y, He X, Cao J. Antimalarial activity of cecropin antimicrobial peptides derived from Anopheles mosquitoes. Antimicrob Agents Chemother 2024; 68:e0031124. [PMID: 38874346 PMCID: PMC11232398 DOI: 10.1128/aac.00311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
The emergence of clinically drug-resistant malaria parasites requires the urgent development of new drugs. Mosquitoes are vectors of multiple pathogens and have developed resistance mechanisms against them, which often involve antimicrobial peptides (AMPs). An-cecB is an AMP of the malaria-transmitting mosquito genus Anopheles, and we herein report its antimalarial activity against Plasmodium falciparum 3D7, the artemisinin-resistant strain 803, and the chloroquine-resistant strain Dd2 in vitro. We also demonstrate its anti-parasite activity in vivo, using the rodent malaria parasite Plasmodium berghei (ANKA). We show that An-cecB displays potent antimalarial activity and that its mechanism of action may occur through direct killing of the parasite or through interaction with infected red blood cell membranes. Unfortunately, An-cecB was found to be cytotoxic to mammalian cells and had poor antimalarial activity in vivo. However, its truncated peptide An-cecB-1 retained most of its antimalarial activity and avoided its cytotoxicity in vitro. An-cecB-1 also showed better antimalarial activity in vivo. Mosquito-derived AMPs may provide new ideas for the development of antimalarial drugs against drug-resistant parasites, and An-cecB has potential use as a template for antimalarial peptides.
Collapse
Affiliation(s)
- Junchao Lou
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Dongying Zhang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jingyao Wu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Guoding Zhu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Meihua Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jianxia Tang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaqun Fang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoqin He
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jun Cao
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| |
Collapse
|
11
|
Mouwenda YD, Jochems SP, Van Unen V, Betouke Ongwe ME, de Steenhuijsen Piters WA, Stam KA, Massinga Loembe M, Sim BKL, Esen M, Hoffman SL, Kremsner PG, Fendel R, Mordmüller B, Yazdanbakhsh M. Immune responses associated with protection induced by chemoattenuated PfSPZ vaccine in malaria-naive Europeans. JCI Insight 2024; 9:e170210. [PMID: 38716733 PMCID: PMC11141902 DOI: 10.1172/jci.insight.170210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/14/2024] [Indexed: 06/02/2024] Open
Abstract
Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.
Collapse
Affiliation(s)
- Yoanne D. Mouwenda
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Vincent Van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Madeleine Eunice Betouke Ongwe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Centre National de la Recherche Scientifique et Technologique, Institut De Recherche En Écologie Tropical, Libreville, Gabon
| | | | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Betty Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | - Meral Esen
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tübingen, Germany
| | | | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Radboud University Medical Center (Radboudumc), Department of Medical Microbiology, Nijmegen, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
12
|
Yu X, Min H, Yao S, Yao G, Zhang D, Zhang B, Chen M, Liu F, Cui L, Zheng L, Cao Y. Evaluation of different types of adjuvants in a malaria transmission-blocking vaccine. Int Immunopharmacol 2024; 131:111817. [PMID: 38460299 PMCID: PMC11090627 DOI: 10.1016/j.intimp.2024.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Adjuvants are critical components for vaccines, which enhance the strength and longevity of the antibody response and influence the types of immune response. Limited research has been conducted on the immunogenicity and protective efficacy of various adjuvants in malaria transmission-blocking vaccines (TBVs). In this study, we formulated a promising TBV candidate antigen, the P. berghei ookinete surface antigen PSOP25, with different types of adjuvants, including the TLR4 agonist monophosphoryl lipid A (MPLA), the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotides (CpG ODN 1826) (CpG), a saponin adjuvant QS-21, aluminum hydroxide (Alum), and two combination adjuvants MPLA + QS-21 and QS-21 + CpG. We demonstrated that adjuvanted vaccines results in elevated elicited antibody levels, increased proliferation of plasma cells, and efficient formation of germinal centers (GCs), leading to enhanced long-term protective immune responses. Furthermore, CpG group exhibited the most potent inhibition of ookinete formation and transmission-blocking activity. We found that the rPSOP25 with CpG adjuvant was more effective than MPLA, QS-21, MPLA + QS-21, QS-21 + CpG adjuvants in dendritic cells (DCs) activation and differentiation. Additionally, the CpG adjuvant elicited more rubust immune memory response than Alum adjuvant. CpG and QS-21 adjuvants could activate the Th1 response and promote the secretion of IFN-γ and TNF-α. PSOP25 induced a higher number of Tfh cells in splenocytes when combined with MPLA, CpG, and QS-21 + CpG; and there was no increase in these cell populations when PSOP25 was administered with Alum. In conclusion, CpG may confer enhanced efficacy for the rPSOP25 vaccine, as evidenced by the ability of the elicited antisera to induce protective immune responses and improved transmission-blocking activity.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Guixiang Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Di Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Biying Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Muyan Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
13
|
Malik S, Waheed Y. Recent advances on vaccines against malaria: A review. ASIAN PAC J TROP MED 2024; 17:143-159. [DOI: 10.4103/apjtm.apjtm_678_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/21/2024] [Indexed: 12/06/2024] Open
Abstract
This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines. Data on malaria vaccine development was collected through a comprehensive review. The literature search was performed using databases including Google Scholar, PubMed, NIH, and Web of Science. Various novel approaches of vaccination are being developed, including those based on radiation-attenuated strategies, monoclonal antibodies, targeted immunogenic peptides, RNA and DNA vaccines, nanoparticle-based vaccines, protein-based vaccination protocols, and whole organism-based vaccination strategies. Trials on RTS, S have entered phase III testing, and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials. Mathematical modeling, combined drug and vaccine strategies, mass drug administration, polyvalent vaccine formulations, and targeted vaccination campaigns is playing an important role in malarial prevention. Furthermore, assessing coverage, accessibility, acceptability, deployment, compilation, and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
| |
Collapse
|
14
|
Avalos-Padilla Y, Fernàndez-Busquets X. Nanotherapeutics against malaria: A decade of advancements in experimental models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1943. [PMID: 38426407 DOI: 10.1002/wnan.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Hawadak J, Kojom Foko LP, Dongang Nana RR, Yadav K, Pande V, Das A, Singh V. Genetic diversity and natural selection of apical membrane antigen-1 (ama-1) in Cameroonian Plasmodium falciparum isolates. Gene 2024; 894:147956. [PMID: 37925116 DOI: 10.1016/j.gene.2023.147956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Antigenic variation associated with genetic diversity in global Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major impediment to designing an effective malaria vaccine. Here, we report the first study on genetic diversity and natural selection of the Pfama-1 gene in P. falciparum isolates from Cameroon. A total of 328 P. falciparum positive samples collected during 2016 and 2019 from five localities of Cameroon were analysed. The ectodomain coding fragment of Pfama-1 gene was amplified for polymorphism profiling and natural selection analysis. A total of 108 distinct haplotypes were found in 203 P. falciparum isolates with considerable nucleotide diversity (π = 0.016) and haplotype diversity (Hd = 0.976). Most amino acid substitutions detected were scattered in ectodomain-I and few specific mutations viz P145L, K148Q, K462I, L463F, N471K, S482L, E537G, K546R and I547F were seen only in Cameroonian isolates. A tendency of natural selection towards positive diversifying selection was observed (Taj-D = 2.058). Five positively selected codon sites (P145L, S283L, Q308E/K, P330S and I547F) were identified, which overlapped with predicted B-cell epitopes and red blood cell (RBC) binding sites, suggesting their potential implication in host immune pressure and parasite-RBC binding complex modulation. The Cameroonian P. falciparum populations indicated a moderate level of genetic differentiation when compared with global sequences, with few exceptions from Vietnam and Venezuela. Our findings provide baseline data on existing Pfama-1 gene polymorphisms in Cameroonian field isolates, which will be useful information for malaria vaccine design.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Loick Pradel Kojom Foko
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rodrigue Roman Dongang Nana
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Institut de Recherches Médicales et D'Etudes des Plantes Médicinales (IMPM), Yaoundé, Cameroon
| | - Karmveer Yadav
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Aparup Das
- ICMR-National Institute for Research in Tribal Health (NIRTH), Jabalpur, India.
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India.
| |
Collapse
|
16
|
Evbuomwan IO, Alejolowo OO, Elebiyo TC, Nwonuma CO, Ojo OA, Edosomwan EU, Chikwendu JI, Elosiuba NV, Akulue JC, Dogunro FA, Rotimi DE, Osemwegie OO, Ojo AB, Ademowo OG, Adeyemi OS, Oluba OM. In silico modeling revealed phytomolecules derived from Cymbopogon citratus (DC.) leaf extract as promising candidates for malaria therapy. J Biomol Struct Dyn 2024; 42:101-118. [PMID: 36974933 DOI: 10.1080/07391102.2023.2192799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ikponmwosa Owen Evbuomwan
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | - Charles Obiora Nwonuma
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Group, Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Evelyn Uwa Edosomwan
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | | | | | | | | | - Damilare Emmanuel Rotimi
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | - Olusegun George Ademowo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Drug Research Laboratory, Institute of Advanced Medical Research and Training (IMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluyomi Stephen Adeyemi
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Olarewaju Michael Oluba
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
17
|
Onyango OH, Mwenda CM, Gitau G, Muoma J, Okoth P. In-silico analysis of potent Mosquirix vaccine adjuvant leads. J Genet Eng Biotechnol 2023; 21:155. [PMID: 38032502 PMCID: PMC10689608 DOI: 10.1186/s43141-023-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND World Health Organization recommend the use of malaria vaccine, Mosquirix, as a malaria prevention strategy. However, Mosquirix has failed to reduce the global burden of malaria because of its inefficacy. The Mosquirix vaccine's modest effectiveness against malaria, 36% among kids aged 5 to 17 months who need at least four doses, fails to aid malaria eradication. Therefore, highly effective and efficacious malaria vaccines are required. The well-characterized P. falciparum circumsporozoite surface protein can be used to discover adjuvants that can increase the efficacy of Mosquirix. Therefore, the study sought to undertake an in-silico discovery of Plasmodium falciparum circumsporozoite surface protein inhibitors with pharmacological properties on Mosquirix using hierarchical virtual screening and molecular dynamics simulation. RESULTS Monoclonal antibody L9, an anti-Plasmodium falciparum circumsporozoite surface protein molecule, was used to identify Plasmodium falciparum circumsporozoite surface protein inhibitors with pharmacological properties on Mosquirix during a virtual screening process in ZINCPHARMER that yielded 23 hits. After drug-likeness and absorption, distribution, metabolism, excretion, and toxicity property analysis in the SwissADME web server, only 9 of the 23 hits satisfied the requirements. The 9 compounds were docked with Plasmodium falciparum circumsporozoite surface protein using the PyRx software to understand their interactions. ZINC25374360 (-8.1 kcal/mol), ZINC40144754 (-8.3 kcal/mol), and ZINC71996727 (-8.9 kcal/mol) bound strongly to Plasmodium falciparum circumsporozoite surface protein with binding affinities of less than -8.0 kcal/mol. The stability of these molecularly docked Plasmodium falciparum circumsporozoite surface protein-inhibitor complexes were assessed through molecular dynamics simulation using GROMACS 2022. ZINC25374360 and ZINC71996727 formed stable complexes with Plasmodium falciparum circumsporozoite surface protein. They were subjected to in vitro validation for their inhibitory potential. The IC50 values ranging between 250 and 350 ng/ml suggest inhibition of parasite development. CONCLUSION Therefore, the two Plasmodium falciparum circumsporozoite surface protein inhibitors can be used as vaccine adjuvants to increase the efficacy of the existing Mosquirix vaccine. Nevertheless, additional in vivo tests, structural optimization studies, and homogenization analysis are essential to determine the anti-plasmodial action of these adjuvants in humans.
Collapse
Affiliation(s)
- Okello Harrison Onyango
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya.
| | - Cynthia Mugo Mwenda
- Department of Biological Sciences, School of Pure and Applied Sciences, Meru University of Science and Technology, P.O. BOX 972-60200, Meru, Kenya
| | - Grace Gitau
- Department of Biochemistry and Biotechnology, School of Biological and Life Sciences, The Technical University of Kenya, P.O. BOX 52428-00200, Nairobi, Kenya
| | - John Muoma
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya
| | - Patrick Okoth
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya
| |
Collapse
|
18
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
19
|
Kim CL, Agampodi S, Marks F, Kim JH, Excler JL. Mitigating the effects of climate change on human health with vaccines and vaccinations. Front Public Health 2023; 11:1252910. [PMID: 37900033 PMCID: PMC10602790 DOI: 10.3389/fpubh.2023.1252910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Climate change represents an unprecedented threat to humanity and will be the ultimate challenge of the 21st century. As a public health consequence, the World Health Organization estimates an additional 250,000 deaths annually by 2030, with resource-poor countries being predominantly affected. Although climate change's direct and indirect consequences on human health are manifold and far from fully explored, a growing body of evidence demonstrates its potential to exacerbate the frequency and spread of transmissible infectious diseases. Effective, high-impact mitigation measures are critical in combating this global crisis. While vaccines and vaccination are among the most cost-effective public health interventions, they have yet to be established as a major strategy in climate change-related health effect mitigation. In this narrative review, we synthesize the available evidence on the effect of climate change on vaccine-preventable diseases. This review examines the direct effect of climate change on water-related diseases such as cholera and other enteropathogens, helminthic infections and leptospirosis. It also explores the effects of rising temperatures on vector-borne diseases like dengue, chikungunya, and malaria, as well as the impact of temperature and humidity on airborne diseases like influenza and respiratory syncytial virus infection. Recent advances in global vaccine development facilitate the use of vaccines and vaccination as a mitigation strategy in the agenda against climate change consequences. A focused evaluation of vaccine research and development, funding, and distribution related to climate change is required.
Collapse
Affiliation(s)
- Cara Lynn Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Suneth Agampodi
- International Vaccine Institute, Seoul, Republic of Korea
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Madagascar Institute for Vaccine Research, University of Antananarivo, Antananarivo, Madagascar
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
- College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
20
|
Tukwasibwe S, Mboowa G, Sserwadda I, Nankabirwa JI, Arinaitwe E, Ssewanyana I, Taremwa Y, Tumusiime G, Kamya MR, Jagannathan P, Nakimuli A. Impact of high human genetic diversity in Africa on immunogenicity and efficacy of RTS,S/AS01 vaccine. Immunogenetics 2023; 75:207-214. [PMID: 37084013 PMCID: PMC10119520 DOI: 10.1007/s00251-023-01306-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda.
- School of Medicine, Uganda Christian University, Kampala, Uganda.
| | - Gerald Mboowa
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ivan Sserwadda
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | | - Yoweri Taremwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gerald Tumusiime
- School of Medicine, Uganda Christian University, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Annettee Nakimuli
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
21
|
Mumtaz H, Nadeem A, Bilal W, Ansar F, Saleem S, Khan QA, Tango T, Farkouh C, Belay NF, Verma R, Farkouh M, Saqib M. Acceptance, availability, and feasibility of RTS, S/AS01 malaria vaccine: A review. Immun Inflamm Dis 2023; 11:e899. [PMID: 37382251 PMCID: PMC10266133 DOI: 10.1002/iid3.899] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 05/13/2023] [Indexed: 06/30/2023] Open
Abstract
INTRODUCTION In malaria-stricken regions, malaria continues to be one of the primary causes of mortality for children. The number of malaria-related fatalities has drastically decreased because of artemisinin-based pharmacological regimens. METHODS Two independent researchers did a comprehensive literature search using PubMed/MEDLINE and Google Scholar from its inception to September 2022. RESULTS After evaluating RTS, S/AS01 for its safety, effectiveness, and feasibility, the European Medicines Agency (EMA) issued a favorable conclusion. It was suggested that the RTS, S malaria vaccine be used extensively by the World Health Organization on October 6, 2021. The successful pilot program testing the malaria vaccine in Ghana, Kenya, and Malawi served as the basis for this proposal. CONCLUSION Several challenges need to be addressed to ensure the success of vaccination programs. From the acceptability perspective, issues such as inadequate community engagement, concerns about side effects, and issues with the delivery and quality of healthcare services can affect the acceptance of the vaccine. From the feasibility standpoint, factors such as lack of transportation or long distances to healthcare facilities and the perception of completion of the vaccination calendar can affect the feasibility of the vaccine. Lastly, the availability of the vaccine is also a major concern as it may not be readily available to meet the demands.
Collapse
|
22
|
Fikadu M, Ashenafi E. Malaria: An Overview. Infect Drug Resist 2023; 16:3339-3347. [PMID: 37274361 PMCID: PMC10237628 DOI: 10.2147/idr.s405668] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Malaria is a global public health burden with an estimated 229 million cases reported worldwide in 2019. About 94% of the reported cases were recorded in the African region. About 200 different species of protozoa have been identified so far and among them, at least 13 species are known to be pathogenic to humans. The life cycle of the malaria parasite is a complex process comprising an Anopheles mosquito and a vertebrate host. Its pathophysiology is characterized by fever secondary to the rupture of erythrocytes, macrophage ingestion of merozoites, and/or the presence of antigen-presenting trophozoites in the circulation or spleen which mediates the release of tumor necrosis factor α (TNF-α). Malaria can be diagnosed through clinical observation of the signs and symptoms of the disease. Other diagnostic techniques used to diagnose malaria are the microscopic detection of parasites from blood smears and antigen-based rapid diagnostic tests. The management of malaria involves preventive and/or curative approaches. Since untreated uncomplicated malaria can progress to severe malaria. To prevent or delay the spread of antimalarial drug resistance, WHO recommends the use of combination therapy for all episodes of malaria with at least two effective antimalarial agents having a different mechanism of action. The Centers for Disease Control (CDC) emphasizes that there is no prophylactic agent that can prevent malaria 100%. Therefore, prophylaxis shall be augmented with the use of personal protective measures.
Collapse
Affiliation(s)
- Muluemebet Fikadu
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Ashenafi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
El-Moamly AA, El-Sweify MA. Malaria vaccines: the 60-year journey of hope and final success-lessons learned and future prospects. Trop Med Health 2023; 51:29. [PMID: 37198702 DOI: 10.1186/s41182-023-00516-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The world has made great strides towards beating malaria, although about half of the world population is still exposed to the risk of contracting malaria. Developing an effective malaria vaccine was a huge challenge for medical science. In 2021 the World Health Organization (WHO) approved the first malaria vaccine, RTS,S/AS01 vaccine (Mosquirix™), for widespread use. This review highlights the history of development, and the different approaches and types of malaria vaccines, and the literature to date. It covers the developmental stages of RTS,S/AS01 and recommends steps for its deployment. The review explores other potential vaccine candidates and their status, and suggests options for their further development. It also recommends future roles for vaccines in eradicating malaria. Questions remain on how RTS,S vaccine will work in widespread use and how it can best be utilized to benefit vulnerable communities. CONCLUSION Malaria vaccines have been in development for almost 60 years. The RTS,S/AS01 vaccine has now been approved, but cannot be a stand-alone solution. Development should continue on promising candidates such as R21, PfSPZ and P. vivax vaccines. Multi-component vaccines may be a useful addition to other malaria control techniques in achieving eradication of malaria.
Collapse
Affiliation(s)
- Amal A El-Moamly
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed A El-Sweify
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
24
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
25
|
Siddiqui AJ, Bhardwaj J, Saxena J, Jahan S, Snoussi M, Bardakci F, Badraoui R, Adnan M. A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines (Basel) 2023; 11:vaccines11040792. [PMID: 37112704 PMCID: PMC10146311 DOI: 10.3390/vaccines11040792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Malaria and schistosomiasis are two major parasitic diseases that remain leading causes of morbidity and mortality worldwide. Co-infections of these two parasites are common in the tropics, where both diseases are endemic. The clinical consequences of schistosomiasis and malaria are determined by a variety of host, parasitic, and environmental variables. Chronic schistosomiasis causes malnutrition and cognitive impairments in children, while malaria can cause fatal acute infections. There are effective drugs available to treat malaria and schistosomiasis. However, the occurrence of allelic polymorphisms and the rapid selection of parasites with genetic mutations can confer reduced susceptibility and lead to the emergence of drug resistance. Moreover, the successful elimination and complete management of these parasites are difficult due to the lack of effective vaccines against Plasmodium and Schistosoma infections. Therefore, it is important to highlight all current vaccine candidates undergoing clinical trials, such as pre-erythrocytic and erythrocytic stage malaria, as well as a next-generation RTS,S-like vaccine, the R21/Matrix-M vaccine, that conferred 77% protection against clinical malaria in a Phase 2b trial. Moreover, this review also discusses the progress and development of schistosomiasis vaccines. Furthermore, significant information is provided through this review on the effectiveness and progress of schistosomiasis vaccines currently under clinical trials, such as Sh28GST, Sm-14, and Sm-p80. Overall, this review provides insights into recent progress in malarial and schistosomiasis vaccines and their developmental approaches.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Ludhiana—Chandigarh State Hwy, Mohali 140413, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaharHaddas BP74, Monastir 5000, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
26
|
Dieng CC, Ford CT, Lerch A, Doniou D, Vegesna K, Janies D, Cui L, Amoah L, Afrane Y, Lo E. Genetic variations of Plasmodium falciparum circumsporozoite protein and the impact on interactions with human immunoproteins and malaria vaccine efficacy. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105418. [PMID: 36841398 DOI: 10.1016/j.meegid.2023.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
In October 2021, the world's first malaria vaccine RTS,S was endorsed by WHO for broad use in children, despite its low efficacy. This study examined polyclonal infections and the associations of parasite genetic variations with binding affinity to human leukocyte antigen (HLA). Multiplicity of infection was determined by amplicon deep sequencing of PfMSP1. Genetic variations in PfCSP were examined across 88 samples from Ghana and analyzed together with 1655 PfCSP sequences from other African and non-African isolates. Binding interactions of PfCSP peptide variants and HLA were predicted using NetChop and HADDOCK. High polyclonality was detected among infections, with each infection harboring multiple non-3D7 PfCSP variants. Twenty-seven PfCSP haplotypes were detected in the Ghanaian samples, and they broadly represented PfCSP diversity across Africa. The number of genetic differences between 3D7 and non-3D7 PfCSP variants does not influence binding to HLA. However, CSP peptide length after proteolytic degradation significantly affects its molecular weight and binding affinity to HLA. Despite the high diversity of HLA, the majority of the HLAI and II alleles interacted/bound with all Ghana CSP peptides. Multiple non-3D7 strains among P. falciparum infections could impact the effectiveness of RTS,S. Longer peptides of the Th2R/Th3R CSP regions should be considered in future versions of RTS,S.
Collapse
Affiliation(s)
- Cheikh Cambel Dieng
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Colby T Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Anita Lerch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Dickson Doniou
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kovidh Vegesna
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Linda Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana; West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Yaw Afrane
- Department of Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
27
|
Ngulube P. Humoral Immune Responses to P. falciparum Circumsporozoite Protein (Pfcsp) Induced by the RTS, S Vaccine - Current Update. Infect Drug Resist 2023; 16:2147-2157. [PMID: 37077252 PMCID: PMC10106824 DOI: 10.2147/idr.s401247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Malaria vaccines targeting the circumsporozoite protein (CSP) of the P. falciparum parasite have been overall relatively promising. RTS, S is a pre-erythrocytic recombinant protein-based malaria vaccine that targets CSP. RTS, S effectiveness shows some limited success regardless of its 58% efficacy for severe disease. P. falciparum circumsporozoite protein (Pfcsp) has stood to be the main candidate protein for most pre-erythrocytic stage vaccines. Studies on the structural and biophysical characteristics of antibodies specific to CSP (anti-CSP) are underway to achieve fine specificity with the CSP polymorphic regions. More recent studies have proposed the use of different kinds of monoclonal antibodies, the use of appropriate adjuvants, ideal vaccination dose and frequency, and improved targeting of particular epitopes for the robust production of functional antibodies and high complement-fixing activity as other potential methods for achieving long-lasting RTS, S. This review highlights recent findings regarding humoral immune responses to CSP elicited by RTS, S vaccine.
Collapse
Affiliation(s)
- Peter Ngulube
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
- Correspondence: Peter Ngulube, Email
| |
Collapse
|
28
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
29
|
Sun Y, Shi X, Lu F, Fu H, Yin Y, Xu J, Jin C, Han ET, Huang X, Chen Y, Dong C, Cheng Y. Vesicular stomatitis virus-based vaccine targeting plasmodium blood-stage antigens elicits immune response and protects against malaria with protein booster strategy. Front Microbiol 2022; 13:1042414. [PMID: 36504817 PMCID: PMC9731671 DOI: 10.3389/fmicb.2022.1042414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Merozoite invasion of the erythrocytes in humans is a key step in the pathogenesis of malaria. The proteins involved in the merozoite invasion could be potential targets for the development of malaria vaccines. Novel viral-vector-based malaria vaccine regimens developed are currently under clinical trials. Vesicular stomatitis virus (VSV) is a single-stranded negative-strand RNA virus widely used as a vector for virus or cancer vaccines. Whether the VSV-based malarial vaccine is more effective than conventional vaccines based on proteins involved in parasitic invasion is still unclear. In this study, we have used the reverse genetics system to construct recombinant VSVs (rVSVs) expressing apical membrane protein 1 (AMA1), rhoptry neck protein 2 (RON2), and reticulocyte-binding protein homolog 5 (RH5), which are required for Plasmodium falciparum invasion. Our results showed that VSV-based viral vaccines significantly increased Plasmodium-specific IgG levels and lymphocyte proliferation. Also, VSV-PyAMA1 and VSV-PyRON2sp prime-boost regimens could significantly increase the levels of IL-2 and IFN-γ-producing by CD4+ and CD8+ T cells and suppress invasion in vitro. The rVSV prime-protein boost regimen significantly increase Plasmodium antigen-specific IgG levels in the serum of mice compared to the homologous rVSV prime-boost. Furthermore, the protective efficacy of rVSV prime protein boost immunization in the mice challenged with P. yoelii 17XL was better compared to traditional antigen immunization. Together, our results show that VSV vector is a novel strategy for malarial vaccine development and preventing the parasitic diseases.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China,Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaodan Shi
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Haitian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China,Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jiahui Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Eun-taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Xuan Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China,*Correspondence: Chunsheng Dong,
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China,Yang Cheng,
| |
Collapse
|
30
|
Dey S, Kaur H, Mazumder M, Brodsky E. Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation. Genomics Inform 2022; 20:e32. [PMID: 36239109 PMCID: PMC9576474 DOI: 10.5808/gi.22049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
- Pine Biotech, New Orleans, LA 70112, USA
- Corresponding author: ,
| | | | | | | |
Collapse
|
31
|
Somanathan A, Mian SY, Chaddha K, Uchoi S, Bharti PK, Tandon R, Gaur D, Chauhan VS. Process development and preclinical evaluation of a major Plasmodium falciparum blood stage vaccine candidate, Cysteine-Rich Protective Antigen (CyRPA). Front Immunol 2022; 13:1005332. [PMID: 36211427 PMCID: PMC9535676 DOI: 10.3389/fimmu.2022.1005332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is an essential, highly conserved merozoite antigen that forms an important multi-protein complex (RH5/Ripr/CyRPA) necessary for erythrocyte invasion. CyRPA is a promising blood-stage vaccine target that has been shown to elicit potent strain-transcending parasite neutralizing antibodies. Recently, we demonstrated that naturally acquired immune anti-CyRPA antibodies are invasion-inhibitory and therefore a correlate of protection against malaria. Here, we describe a process for the large-scale production of tag-free CyRPA vaccine in E. coli and demonstrate its parasite neutralizing efficacy with commonly used adjuvants. CyRPA was purified from inclusion bodies using a one-step purification method with high purity (>90%). Biochemical and biophysical characterization showed that the purified tag-free CyRPA interacted with RH5, readily detected by a conformation-specific CyRPA monoclonal antibody and recognized by sera from malaria infected individuals thus indicating that the recombinant antigen was correctly folded and retained its native conformation. Tag-free CyRPA formulated with Freund’s adjuvant elicited highly potent parasite neutralizing antibodies achieving inhibition of >90% across diverse parasite strains. Importantly, we identified tag-free CyRPA/Alhydrogel formulation as most effective in inducing a highly immunogenic antibody response that exhibited efficacious, cross-strain in vitro parasite neutralization achieving ~80% at 10 mg/ml. Further, CyRPA/Alhydrogel vaccine induced anti-parasite cytokine response in mice. In summary, our study provides a simple, scalable, cost-effective process for the production of tag-free CyRPA that in combination with human-compatible adjuvant induces efficacious humoral and cell-mediated immune response.
Collapse
Affiliation(s)
- Anjali Somanathan
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seemalata Uchoi
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Praveen K. Bharti
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Virander Singh Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- *Correspondence: Virander Singh Chauhan,
| |
Collapse
|
32
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Fernandes B, Sousa M, Castro R, Schäfer A, Hauser J, Schulze K, Amacker M, Tamborrini M, Pluschke G, Alves PM, Fleury S, Roldão A. Scalable Process for High-Yield Production of PfCyRPA Using Insect Cells for Inclusion in a Malaria Virosome-Based Vaccine Candidate. Front Bioeng Biotechnol 2022; 10:879078. [PMID: 35669054 PMCID: PMC9163744 DOI: 10.3389/fbioe.2022.879078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) has been identified as a promising blood-stage candidate antigen to include in a broadly cross-reactive malaria vaccine. In the last couple of decades, substantial effort has been committed to the development of scalable cost-effective, robust, and high-yield PfCyRPA production processes. Despite insect cells being a suitable expression system due to their track record for protein production (including vaccine antigens), these are yet to be explored to produce this antigen. In this study, different insect cell lines, culture conditions (baculovirus infection strategy, supplementation schemes, culture temperature modulation), and purification strategies (affinity tags) were explored aiming to develop a scalable, high-yield, and high-quality PfCyRPA for inclusion in a virosome-based malaria vaccine candidate. Supplements with antioxidants improved PfCyRPA volumetric titers by 50% when added at the time of infection. In addition, from three different affinity tags (6x-His, 4x-His, and C-tag) evaluated, the 4x-His affinity tag was the one leading to the highest PfCyRPA purification recovery yields (61%) and production yield (26 mg/L vs. 21 mg/L and 13 mg/L for 6x-His and C-tag, respectively). Noteworthy, PfCyRPA expressed using High Five cells did not show differences in protein quality or stability when compared to its human HEK293 cell counterpart. When formulated in a lipid-based virosome nanoparticle, immunized rabbits developed functional anti-PfCyRPA antibodies that impeded the multiplication of P. falciparum in vitro. This work demonstrates the potential of using IC-BEVS as a qualified platform to produce functional recombinant PfCyRPA protein with the added benefit of being a non-human expression system with short bioprocessing times and high expression levels.
Collapse
Affiliation(s)
- Bárbara Fernandes
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos Sousa
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute Castro
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Julia Hauser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kai Schulze
- Helmhotz Center for Infecion Research, Braunschweig, Germany
| | - Mario Amacker
- Mymetics SA, Épalinges, Switzerland
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Tamborrini
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Paula M Alves
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - António Roldão
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: António Roldão,
| |
Collapse
|
34
|
Adderley J, Doerig C. Comparative analysis of the kinomes of Plasmodium falciparum, Plasmodium vivax and their host Homo sapiens. BMC Genomics 2022; 23:237. [PMID: 35346035 PMCID: PMC8960227 DOI: 10.1186/s12864-022-08457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background Novel antimalarials should be effective across all species of malaria parasites that infect humans, especially the two species that bear the most impact, Plasmodium falciparum and Plasmodium vivax. Protein kinases encoded by pathogens, as well as host kinases required for survival of intracellular pathogens, carry considerable potential as targets for antimalarial intervention (Adderley et al. Trends Parasitol 37:508–524, 2021; Wei et al. Cell Rep Med 2:100423, 2021). To date, no comprehensive P. vivax kinome assembly has been conducted; and the P. falciparum kinome, first assembled in 2004, requires an update. The present study, aimed to fill these gaps, utilises a recently published structurally-validated multiple sequence alignment (MSA) of the human kinome (Modi et al. Sci Rep 9:19790, 2019). This MSA is used as a scaffold to assist the alignment of all protein kinase sequences from P. falciparum and P. vivax, and (where possible) their assignment to specific kinase groups/families. Results We were able to assign six P. falciparum previously classified as OPK or ‘orphans’ (i.e. with no clear phylogenetic relation to any of the established ePK groups) to one of the aforementioned ePK groups. Direct phylogenetic comparison established that despite an overall high level of similarity between the P. falciparum and P. vivax kinomes, which will help in selecting targets for intervention, there are differences that may underlie the biological specificities of these species. Furthermore, we highlight a number of Plasmodium kinases that have a surprisingly high level of similarity with their human counterparts and therefore not well suited as targets for drug discovery. Conclusions Direct comparison of the kinomes of Homo sapiens, P. falciparum and P. vivax sheds additional light on the previously documented divergence of many P. falciparum and P. vivax kinases from those of their human host. We provide the first direct kinome comparison between the phylogenetically distinct species of P. falciparum and P. vivax, illustrating the key similarities and differences which must be considered in the context of kinase-directed antimalarial drug discovery, and discuss the divergences and similarities between the human and Plasmodium kinomes to inform future searches for selective antimalarial intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08457-0.
Collapse
|
35
|
Yang JX, Tseng JC, Yu GY, Luo Y, Huang CYF, Hong YR, Chuang TH. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14020423. [PMID: 35214155 PMCID: PMC8878135 DOI: 10.3390/pharmaceutics14020423] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host’s response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants’ effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 37611)
| |
Collapse
|
36
|
D'Souza J, Nderitu D. Ethical considerations for introducing RTS,S/AS01 in countries with moderate to high Plasmodium falciparum malaria transmission. Lancet Glob Health 2021; 9:e1642-e1643. [PMID: 34798015 DOI: 10.1016/s2214-109x(21)00498-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jeff D'Souza
- Institute for Better Health, Trillium Health Partners, Mississauga, ON L5B 1B8, Canada.
| | - David Nderitu
- Department of Philosophy, History and Religious Studies, Egerton University, Njoro, Kenya
| |
Collapse
|
37
|
Efforts Made to Eliminate Drug-Resistant Malaria and Its Challenges. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5539544. [PMID: 34497848 PMCID: PMC8421183 DOI: 10.1155/2021/5539544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
Since 2000, a good deal of progress has been made in malaria control. However, there is still an unacceptably high burden of the disease and numerous challenges limiting advancement towards its elimination and ultimate eradication. Among the challenges is the antimalarial drug resistance, which has been documented for almost all antimalarial drugs in current use. As a result, the malaria research community is working on the modification of existing treatments as well as the discovery and development of new drugs to counter the resistance challenges. To this effect, many products are in the pipeline and expected to be marketed soon. In addition to drug and vaccine development, mass drug administration (MDA) is under scientific scrutiny as an important strategy for effective utilization of the developed products. This review discusses the challenges related to malaria elimination, ongoing approaches to tackle the impact of drug-resistant malaria, and upcoming antimalarial drugs.
Collapse
|