1
|
Wu H, Fu H, Xia F, Wu J, Wang P, Cao L, Xu RA, Shi L. Effect of ponatinib on the metabolism of cariprazine in vitro and in vivo and the underlying mechanism. Toxicol Appl Pharmacol 2025; 499:117353. [PMID: 40286877 DOI: 10.1016/j.taap.2025.117353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Cariprazine is an antipsychotic medication that has been approved for the treatment of schizophrenia and manic or mixed episodes. Patients with tumors frequently develop psychiatric disorders, necessitating the combination of antitumor and antipsychotic drugs. The objective of the present study was to examine the inhibitory impacts of three antitumor drugs (olmutinib, napabucasin and ponatinib) on the metabolism of cariprazine, and the molecular docking of cariprazine and ponatinib in relation to CYP3A4 was also evaluated. As the results, the half-maximal inhibitory concentration (IC50) values of ponatinib and olmutinib in vitro were < 10 μM, whereas napabucasin was >20 μM. Among these, ponatinib exhibited the smallest IC50 value. The metabolic stability of cariprazine was observed in the presence or absence of ponatinib in rat liver microsomes (RLM). The IC50 shift experiments demonstrated that the inhibition of cariprazine by ponatinib was non-time-dependent. In addition, ponatinib was shown to inhibit cariprazine in a mixed manner (RLM) and a competitive manner (HLM), respectively. In the in vivo study, the co-administration of ponatinib resulted in a significant 0.35-fold increase in both AUC(0-t) and AUC(0-∞) for cariprazine, accompanied by a significant 0.25-fold decrease in the CLz/F. Furthermore, the metabolites desmethyl-cariprazine (DCAR) and didesmethyl-cariprazine (DDCAR) exhibited disparate increases in both AUC(0-t) and AUC(0-∞). Molecular docking studies had demonstrated that both cariprazine and ponatinib could engage in hydrophobic interactions with residue PHE-304 on CYP3A4. Consequently, when ponatinib is employed in conjunction with cariprazine in a clinical setting, it is imperative to assess the efficacy and adverse effects, and adjust the dosage to attain the optimal efficacy.
Collapse
Affiliation(s)
- Hualu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoxin Fu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangyuan Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Jun Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Cao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Lu Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Mucci F, Arone A, Gurrieri R, Weiss F, Russomanno G, Marazziti D. Third-Generation Antipsychotics: The Quest for the Key to Neurotrophism. Life (Basel) 2025; 15:391. [PMID: 40141736 PMCID: PMC11944073 DOI: 10.3390/life15030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Antipsychotic drugs (APs) have profoundly changed the treatment landscape for psychiatric disorders, yet their impact on neuroplasticity and neurotrophism remains only partially understood. While second-generation antipsychotics (SGAs) are associated with a better side effect profile than their predecessors, the emergence of third-generation antipsychotics (TGAs)-such as brexpiprazole, cariprazine, lurasidone, iloperidone, lumateperone, pimavanserin, and roluperidone-has prompted renewed interest in their potential neuroprotective and pro-cognitive effects. This review attempts to carefully examine the evidence on the neurotrophic properties of TGAs and their role in modulating brain plasticity by analyzing studies published between 2010 and 2024. Although data remain limited and focused primarily on earlier SGAs, emerging findings suggest that some TGAs may exert positive effects on neuroplastic processes, including the modulation of brain-derived neurotrophic factors (BDNFs) and synaptic architecture. However, robust clinical data on their long-term effects and comparative efficacy are lacking; therefore, further research is necessary to validate their role in preventing neurodegenerative changes and improving cognitive outcomes in patients with psychiatric conditions.
Collapse
Affiliation(s)
- Federico Mucci
- Department of Psychiatry, Lucca Zone, Azienda USL Toscana Nord Ovest, 55100 Lucca, Italy;
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Riccardo Gurrieri
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Francesco Weiss
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Gerardo Russomanno
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| |
Collapse
|
3
|
Zhang P, Chen L, Qin Q, Liu C, Zhu H, Hu W, He X, Tang K, Yan Q, Shen H. Enhanced computerized cognitive remediation therapy improved cognitive function, negative symptoms, and GDNF in male long-term inpatients with schizophrenia. Front Psychiatry 2025; 15:1477285. [PMID: 39886050 PMCID: PMC11780405 DOI: 10.3389/fpsyt.2024.1477285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025] Open
Abstract
Objective Negative and cognitive symptoms present significant challenges in patients with schizophrenia, and cognitive remediation is a promising approach to alleviate these symptoms. This study aimed to explore the efficacy of computerized cognitive remediation therapy (CCRT) on psychiatric symptoms, cognitive deficits, and serum levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in patients with schizophrenia. Materials and methods Forty male long-term institutionalized inpatients with schizophrenia were assigned to either a CCRT group (n = 20) or a control group (n = 20). The CCRT intervention consisted of 40 individual 40-min sessions over 8 weeks, conducted five times a week. Psychiatric symptoms, cognition, and serum levels of BDNF and GDNF were assessed at baseline, 4 weeks, and 8 weeks. Results Compared to the control group, the CCRT group exhibited decreased total Positive and Negative Syndrome Scale and negative subscale scores, as well as increased Montreal Cognitive Assessment and Repeatable Battery for the Assessment of Neuropsychological Status scores. Moreover, improvements in list recall were associated with reduced negative symptoms. Additionally, CCRT ameliorated the decrease in serum GDNF levels in patients with schizophrenia. Conclusion The effectiveness of CCRT in alleviating negative symptoms was associated with improvements in list recall, and GDNF may play a role in the observed effects of CCRT in patients with schizophrenia.
Collapse
Affiliation(s)
- Peiyun Zhang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
| | - Lingyun Chen
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
| | - Qianqian Qin
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
| | - Chao Liu
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
| | - Haijiao Zhu
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
| | - Wenqing Hu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Xinyu He
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
| | - Kaihong Tang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
| | - Qi Yan
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
| | - Hongmei Shen
- Laboratory of Biological Psychiatry, Nantong Mental Health Center, Nantong Brain Hospital & Affiliated Mental Health Center of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
4
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Millán-Santiago J, Vitagliano R, Mondella F, Mandrioli R, Sardella R, Vovk T, Lucena R, Cárdenas S, Boaron F, Serretti A, Petio C, Protti M, Mercolini L. Volumetric absorptive microsampling for the therapeutic drug monitoring of psychiatric patients treated with cariprazine. J Pharm Biomed Anal 2023; 236:115740. [PMID: 37776628 DOI: 10.1016/j.jpba.2023.115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Psychiatric disorders are usually treated with antipsychotic agents belonging to different pharmacological and chemical classes, the most recent ones collectively known as "third-generation antipsychotics", such as cariprazine, approved in 2015 for the treatment of patients affected by schizophrenia. For these patients, a frequent therapeutic drug monitoring (TDM) becomes essential to assess compliance and to optimise and personalise their therapy, also due to cariprazine interindividual variability and narrow therapeutic range. In this study, a bioanalytical method featuring miniaturised sampling and pretreatment was developed, based on volumetric absorptive microsampling (VAMS) for TDM of psychiatric patients under cariprazine treatment and compared to a reference method based on fluid plasma analysis. Minimally invasive whole blood VAMS was coupled to an original instrumental method based on ultra-high performance liquid chromatography hyphenated to mass spectrometry (UHPLC-MS). A feasible and streamlined, yet reliable VAMS pretreatment protocol was carefully optimised and the VAMS-UHPLC-MS methodology was validated with satisfactory results in terms of linearity (r2 > 0.9970 in the 1.5-100 ng/mL range), precision (%RSD < 11.7), extraction yield (> 90.0 %) and matrix effect (8.2 ≤ %RE ≤ 10.9). Finally, the microsampling approach coupled to UHPLC-MS was successfully applied to the TDM of psychiatric patients treated with cariprazine and compared with standard fluid plasma analysis, providing reliable quali-quantitative results, and proving to be readily applicable to the clinical practice in TDM programs as a useful alternative to cariprazine plasma analysis. This is the first report of a successful microsampling application, and in particular the first report of VAMS application, for the TDM of cariprazine.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Rosalba Vitagliano
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Fortunata Mondella
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Federico Boaron
- Forensic Psychiatry Unit, Department of Mental Health and Substance Abuse, AUSL of Bologna, Via Terracini 31, 40131 Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Viale C. Pepoli 5, 40123 Bologna, Italy
| | - Carmine Petio
- Psychiatric Diagnosis and Treatment Service, AUSL of Bologna, S. Orsola - Malpighi University Hospital, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
6
|
Tarzian M, Ndrio M, Kaja S, Beason E, Fakoya AO. Cariprazine for Treating Schizophrenia, Mania, Bipolar Depression, and Unipolar Depression: A Review of Its Efficacy. Cureus 2023; 15:e39309. [PMID: 37378203 PMCID: PMC10292137 DOI: 10.7759/cureus.39309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
This drug review presents a comprehensive review of Cariprazine, a medication that received FDA approval in 2015 for treating schizophrenia and bipolar disorder. The paper begins by exploring Cariprazine's mechanism of action, which involves modulating dopamine and serotonin receptors. Additionally, the review assesses Cariprazine's metabolic profile and notes its low potential for weight gain and metabolic side effects. The study examines Cariprazine's efficacy and safety in treating various psychiatric disorders, such as schizophrenia, bipolar maintenance, mania, and bipolar depression. A meticulous analysis of clinical trials is included, demonstrating Cariprazine's potential advantages over existing medications used for these disorders. Additionally, the review covers Cariprazine's recent approval as an adjuvant treatment for unipolar depression. Furthermore, the paper examines the limitations of Cariprazine, such as the absence of head-to-head trials comparing it to other commonly used medications for these disorders. The paper concludes by emphasizing the need for more research to establish Cariprazine's position in treating schizophrenia and bipolar disorder and determine its comparative effectiveness with other available treatments.
Collapse
Affiliation(s)
- Martin Tarzian
- Psychiatry, University of Medicine and Health Sciences, Basseterre, KNA
| | - Mariana Ndrio
- Psychiatry and Behavioral Sciences, University of Medicine and Health Sciences, Basseterre, KNA
| | - Srujan Kaja
- Psychiatry, Larkin Community Hospital, Miami, USA
| | - Elisabeth Beason
- Cardiology, University of Medicine and Health Sciences, Basseterre, KNA
| | - Adegbenro O Fakoya
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
7
|
Zlatanova HI, Georgieva-Kotetarova MT, Vilmosh NB, Kandilarov IK. Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14748. [PMID: 36429467 PMCID: PMC9690696 DOI: 10.3390/ijerph192214748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The main symptoms of schizophrenia are categorized as positive, negative, and cognitive. Cognitive impairments do not generally respond to antipsychotics. Cariprazine is a novel antipsychotic conceived with the idea that high affinity for D3 receptors may elicit a favorable response in the management of cognitive deficits. We evaluated the pro-cognitive properties of 14-day long pre-treatment with cariprazine (0.25, 0.5, and 1 mg/kg b.w. intraperitoneally) in experimental rodent models with scopolamine-induced memory impairment employing novel object recognition test (NORT), T-maze, Y-maze, and passive avoidance tasks (step-through and step-down). Statistical analysis was performed with One Way ANOVA. In NORT cariprazine increased the recognition index. In T-maze and Y-maze cariprazine increased the working memory index as well as the percentage of spontaneous alternation. Cariprazine improved learning and memory in both short-term and long-term memory retention tests in step-down and step-through tasks. Cariprazine improves learning, recognition, and spatial memory in rats with scopolamine-induced memory impairment. Cariprazine's beneficial effect on cognition is likely due to its affinity for D3 receptors, as well as agonism at 5-HT1A receptors. Most probably, the cognitive-enhancing properties of cariprazine are the result of integrated modulation in the amygdala, hippocampus, and prefrontal cortex.
Collapse
|
8
|
Weise J, Schomerus G, Speerforck S. Add-on Cariprazine in Patients with Long-term Clozapine Treatment and Treatment Resistant Schizophrenia: Two Cases of Psychotic Deterioration and Pisa Syndrome. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:398-401. [PMID: 35466111 PMCID: PMC9048019 DOI: 10.9758/cpn.2022.20.2.398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023]
Abstract
An increasing number of studies deal with medical options for treatment resistant schizophrenia. If no remission can be achieved with clozapine, a combination of antipsychotics can be considered. The combination of clozapine and cariprazine is rarely studied. Cariprazine is a partial agonist on dopamine D2 and D3 receptors and a pharmaceutically rational add-on to clozapine. Stimulating D3 receptors has been linked to improved cognition and mood, with negligible extrapyramidal side effects. We present two patients with long-term treatment resistant schizophrenia receiving cariprazine and clozapine. Whereas psychotic symptoms worsened, the patients developed extrapyramidal side effects with a Pisa syndrome. The syndrome remitted after discontinuation of cariprazine. Possible explanations by pharmacodynamic interactions and drug specific receptor profiles are discussed.
Collapse
Affiliation(s)
- Judith Weise
- Department of Psychiatry and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| | - Georg Schomerus
- Department of Psychiatry and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| | - Sven Speerforck
- Department of Psychiatry and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
9
|
Oloyede E, Clark I, Mace S, Whiskey E, Taylor D. Clozapine augmentation with cariprazine for negative symptoms: a case series and literature review. Ther Adv Psychopharmacol 2022; 12:20451253211066642. [PMID: 35111297 PMCID: PMC8801710 DOI: 10.1177/20451253211066642] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Only about 50% of patients with treatment-resistant schizophrenia respond to clozapine, and many more patients continue to experience ongoing and prominent negative symptoms. These negative symptoms, for which there are limited pharmacological options, may represent the greatest barrier to functional recovery. Cariprazine is a novel antipsychotic drug that is a partial agonist at dopamine D2 and D3 receptors with preferential binding to the D3 receptor, antagonism of 5HT2B receptors, and partial agonism at 5HT1A receptors. Cariprazine is currently licenced for the treatment of schizophrenia in Europe and the United States and has also been approved for bipolar disorder in the United States. There is a limited body of evidence to suggest clinical effectiveness as an augmentation strategy for negative symptoms in those treated with clozapine. In this case series, we present five cases of successful treatment of negative symptoms by clozapine combined with cariprazine in treatment-resistant psychosis.
Collapse
Affiliation(s)
- Ebenezer Oloyede
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Ivana Clark
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Shubhra Mace
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Eromona Whiskey
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - David Taylor
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| |
Collapse
|
10
|
Batinic B, Ristic I, Zugic M, Baldwin DS. Treatment of Symptom Clusters in Schizophrenia, Bipolar Disorder and Major Depressive Disorder With the Dopamine D3/D2 Preferring Partial Agonist Cariprazine. Front Psychiatry 2021; 12:784370. [PMID: 34887792 PMCID: PMC8649660 DOI: 10.3389/fpsyt.2021.784370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023] Open
Abstract
Cariprazine is currently approved for the treatment of patients with schizophrenia (USA and EU), and for manic, depressive, and episodes with mixed features in bipolar I disorder (USA): several randomized controlled studies have also explored its efficacy in patients with major depressive disorder. This review summarizes its current therapeutic uses and potential advantages for treating the main symptoms of schizophrenia, bipolar I and major depressive disorder, considering its pharmacodynamic properties, efficacy, and tolerability. Its predominantly D3 receptor preferring affinity, with functional selectivity according to the prevailing neuronal environment, contributes to its efficacy across a wide array of psychopathological symptoms (including reality distortion, disorganized thought, negative symptoms, mood disturbance, anhedonia, and cognitive impairment), and to a favorable side effect profile. Cariprazine may be a "drug of choice" in patients with predominant negative and cognitive symptoms of schizophrenia, as well as those with metabolic syndrome. Further investigation of its relative efficacy when compared to aripiprazole or other active comparators is warranted. Its effectiveness in the treatment of bipolar mania, bipolar I depression and bipolar I episodes with mixed features, with minimal accompanying metabolic changes is well-established. The longer half-life and delayed time to relapse in patients diagnosed with schizophrenia when compared to other second-generation antipsychotics represent other advantages, given the high rates of non-adherence and frequent relapses seen in clinical practice. Its efficacy in overlapping symptom domains in other major psychiatric disorders appears promising.
Collapse
Affiliation(s)
- Borjanka Batinic
- Clinic of Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia
- Department of Psychology, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia
| | - Ivan Ristic
- Department of Epidemiology, Medical School, University of Belgrade, Belgrade, Serbia
- Department of Psychiatry, Institute of Mental Health, Belgrade, Serbia
| | - Milica Zugic
- Department of Psychiatry, Institute of Mental Health, Belgrade, Serbia
| | - David S. Baldwin
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Wang Y, He Y, Yang F, Abame MA, Wu C, Peng Y, Feng L, Shen J, Wang Z, He L. TPN672: A Novel Serotonin-Dopamine Receptor Modulator for the Treatment of Schizophrenia. J Pharmacol Exp Ther 2021; 378:20-30. [PMID: 33975897 DOI: 10.1124/jpet.120.000414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
TPN672 [7-(2-(4-(benzothiophen-4-yl) piperazin-1-yl)ethyl)quinolin-2(1H)-one maleate] is a novel antipsychotic candidate with high affinity for serotonin and dopamine receptors that is currently in clinical trial for the treatment of psychiatric disorders. In vitro binding study showed that TPN672 exhibited extremely high affinity for serotonin 1A receptor (5-HT1AR) (K i = 0.23 nM) and 5-HT2AR (K i = 2.58 nM) as well as moderate affinity for D3R (K i = 11.55 nM) and D2R (K i = 17.91 nM). In vitro functional assays demonstrated that TPN672 acted as a potent 5-HT1AR agonist, D2R/D3R partial agonist, and 5-HT2AR antagonist. TPN672 displayed robust antipsychotic efficacy in rodent models (e.g., blocking phencyclidine-induced hyperactivity), significantly better than aripiprazole, and ameliorated negative symptoms and cognitive deficits in the sociability test, dark avoidance response, Morris water maze test, and novel object recognition test. The results of electrophysiological experiments showed that TPN672 might inhibit the excitability of the glutamate system through activating 5-HT1AR in medial prefrontal cortex, thereby improving cognitive and negative symptoms. Moreover, the safety margin (the ratio of minimum catalepsy-inducing dose to minimum effective dose) of TPN672 was about 10-fold, which was superior to aripiprazole. In conclusion, TPN672 is a promising new drug candidate for the treatment of schizophrenia and has been shown to be more effective in attenuating negative symptoms and cognitive deficits while having lower risk of extrapyramidal symptoms and hyperprolactinemia. SIGNIFICANCE STATEMENT: TPN672 is a promising new drug candidate for the treatment of schizophrenia and has been shown to be more effective in attenuating negative symptoms and cognitive deficits while having a lower risk of extrapyramidal symptoms and hyperprolactinemia. A phase I clinical trial is now under way to test its tolerance, pharmacokinetics, and pharmacodynamic effects in human volunteers. Accordingly, the present results will have significant impact on the development of new antischizophrenia drugs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Yang He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Feipu Yang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Melkamu Alemu Abame
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Chunhui Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Yanmin Peng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Linyin Feng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Jingshan Shen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Zhen Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| |
Collapse
|
12
|
Gao L, Hao C, Ma R, Chen J, Zhang G, Chen Y. Synthesis and biological evaluation of a new class of multi-target heterocycle piperazine derivatives as potential antipsychotics. RSC Adv 2021; 11:16931-16941. [PMID: 35479681 PMCID: PMC9031908 DOI: 10.1039/d1ra02426d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, we designed and synthesized a novel series of multi-receptor ligands as polypharmacological antipsychotic agents by using a multi-receptor affinity strategy. Among them, 3w combines a multi-receptor mechanism with high mixed affinities for D2, 5-HT1A, 5-HT2A and H3 receptors, and low efficacy at the off-target receptors (5-HT2C, H1 and α1 receptor) and human ether-à-go-go-related gene (hERG) channel. In addition, compound 3w exhibits favorable antipsychotic drug-like activities in in vivo assessment. An animal behavioral study revealed that compound 3w significantly reverses apomorphine-induced climbing and MK-801-induced hyperactivity, and avoidance behavior in the CAR test, with a high threshold for catalepsy. Moreover, compound 3w demonstrates memory enhancement in a novel object recognition task and low liabilities for weight gain and hyperprolactinemia in a long-term metabolic adverse effects model. Thus, 3w was selected as an antipsychotic candidate for further development. In this study, we designed and synthesized a novel series of multi-receptor ligands as polypharmacological antipsychotic agents by using a multi-receptor affinity strategy.![]()
Collapse
Affiliation(s)
- Lanchang Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University Lianyungang 222005 China +86-518-85586628 +86-518-85586628.,Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Chao Hao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Ru Ma
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University Lianyungang 222005 China +86-518-85586628 +86-518-85586628
| | - Jiali Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University Lianyungang 222005 China +86-518-85586628 +86-518-85586628.,Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University Lianyungang 222005 China +86-518-85586628 +86-518-85586628
| |
Collapse
|
13
|
Genaro-Mattos T, Anderson A, Allen LB, Korade Z, Mirnics K. Altered Cholesterol Biosynthesis Affects Drug Metabolism. ACS OMEGA 2021; 6:5490-5498. [PMID: 33681590 PMCID: PMC7931400 DOI: 10.1021/acsomega.0c05817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The last step of cholesterol biosynthesis is the conversion of 7-dehydrocholesterol (7-DHC) into cholesterol, a reaction catalyzed by dehydrocholesterol reductase 7 (DHCR7). Investigation of the effect of Dhcr7 single-allele mutations on the metabolism of aripiprazole (ARI) and cariprazine (CAR) in maternally exposed transgenic pups revealed that ARI, CAR, and their active metabolites were decreased in the liver and brain of Dhcr7 +/- . This difference in the drug and metabolite levels resulted in an increased turnover of ARI and CAR in tissues from Dhcr7 +/- animals, indicating an enhanced metabolism, which was at least partially due to increased levels of Cyp2d6 in the liver of Dhcr7 +/- mice. Finally, experiments with both WT and DHCR7 +/- human fibroblasts revealed lower drug levels in DHCR7 +/- heterozygous cells. Our findings have potential clinical implications, as DHCR7 heterozygosity is present in 1-3% in the human population, and these individuals might have reduced therapeutic levels of Cyp2d6-metabolized medications and are putatively more susceptible to unwanted side effects.
Collapse
Affiliation(s)
- Thiago
C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Allison Anderson
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Luke B. Allen
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Zeljka Korade
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Pediatrics, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Károly Mirnics
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
14
|
Do A, Keramatian K, Schaffer A, Yatham L. Cariprazine in the Treatment of Bipolar Disorder: Within and Beyond Clinical Trials. Front Psychiatry 2021; 12:769897. [PMID: 34970166 PMCID: PMC8712443 DOI: 10.3389/fpsyt.2021.769897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Abstract
Bipolar disorder (BD) is chronic psychiatric disorder associated with significant impairment in psychosocial functioning and quality of life. Although current pharmacological treatments for BD have improved its clinical management, many patients do not achieve remission, particularly those suffering from bipolar depression. In addition, available treatments are associated with a myriad of potential adverse effects, which highlights the need for novel therapeutic agents that can be effective for both phases of the illness with a reduced side effect burden. Cariprazine is a novel antipsychotic that is a dopamine D2/D3 partial agonist with a preference for D3 receptors. In this review, we examine the pharmacological properties, clinical efficacy and tolerability profile of cariprazine in patients with BD, taking into account the latest clinical trials data. We also review post hoc analyses addressing clinically relevant subgroups and symptom domains in BD. Current evidence suggests efficacy for cariprazine 3-12 mg/day in the treatment of acute manic and mixed episodes; for bipolar depression, the efficacy of cariprazine appears to be dose-related, with doses of 1.5-3 mg/day beneficial as monotherapy. Cariprazine is overall well-tolerated by patients in both manic and depressive episodes. Its most common side effects relative to placebo include akathisia, extrapyramidal symptoms and nausea. There are no metabolic concerns reported with cariprazine use. In summary, the latest evidence suggests that cariprazine is an effective and safe treatment option for BD.
Collapse
Affiliation(s)
- André Do
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Kamyar Keramatian
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Ayal Schaffer
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Lakshmi Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Reznik AM, Arbuzov AL, Murin SP. Negative Symptoms of Schizophrenia: New Prospects of Cariprazine Treatment. CONSORTIUM PSYCHIATRICUM 2020; 1:43-51. [PMID: 39006904 PMCID: PMC11240126 DOI: 10.17650/2712-7672-2020-1-2-43-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 07/16/2024] Open
Abstract
Background Cariprazine is a new piperazine derivative atypical antipsychotic, like aripiprazole and brexpiprazole. It has been approved for treating schizophrenia in many countries and has recently been included on the List of Essential Medicines in Russia. Unlike most other atypical antipsychotics, it shows high in vivo occupancy of dopamine D2 and D3 receptors at clinically relevant doses. In animal models, cariprazine has demonstrated dopamine D3 receptor-dependent pro-cognitive and anti-anhedonic effects, suggesting its potential for treating negative symptoms. This review summarizes the efficacy of cariprazine in the treatment of negative symptoms of schizophrenia. Methods A literature search of databases covering international and Russian journals, for articles published between 1st January 2010 and 1st June 2020. Results Cariprazine demonstrated at least comparable efficacy in the treatment of schizophrenia symptoms to active comparators including risperidone, olanzapine or aripiprazole. The drug has a good safety profile. It appeared to be associated with a lower risk of metabolic syndromes and most extrapyramidal symptoms. The positive effect of cariprazine on the negative symptoms of schizophrenia may be associated with the elimination of secondary negative symptoms. However, of all the atypical antipsychotics to date, only cariprazine has a convincingly, methodologically robust proven advantage over risperidone in eliminating the predominant negative symptoms of schizophrenia. Yet only four studies have investigated the effect of cariprazine on the negative symptoms of schizophrenia. There is a lack of research into its direct impact on emotional-volitional disorders, anhedonia, cognitive symptoms and personality changes. However, there is evidence to suggest cariprazine is effective in treatment-resistant cases, but this requires further confirmation. Conclusion Cariprazine is an effective and well-tolerated agent for the treatment of schizophrenia and may be effective in cases where other antipsychotics have failed. Cariprazine has been shown to have a positive effect on negative symptoms. Further studies are needed to collect more data on long-term treatment of schizophrenia and especially negative symptoms.
Collapse
Affiliation(s)
- Aleksandr M Reznik
- Medical Institute of Continuing Education of «Moscow National University of Food Production»
- Mental-health Clinic No. 1 named after N.A. Alexeev
| | - Aleksandr L Arbuzov
- Medical Institute of Continuing Education of «Moscow National University of Food Production»
- Mental Health Clinic No. 5
| | - Sergey P Murin
- Medical Institute of Continuing Education of «Moscow National University of Food Production»
| |
Collapse
|
16
|
Abstract
The urea functionality is inherent to numerous bioactive compounds, including a variety of clinically approved therapies. Urea containing compounds are increasingly used in medicinal chemistry and drug design in order to establish key drug-target interactions and fine-tune crucial drug-like properties. In this perspective, we highlight physicochemical and conformational properties of urea derivatives. We provide outlines of traditional reagents and chemical procedures for the preparation of ureas. Also, we discuss newly developed methodologies mainly aimed at overcoming safety issues associated with traditional synthesis. Finally, we provide a broad overview of urea-based medicinally relevant compounds, ranging from approved drugs to recent medicinal chemistry developments.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Excellence of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
17
|
Saraf G, Pinto JV, Yatham LN. Efficacy and safety of cariprazine in the treatment of bipolar disorder. Expert Opin Pharmacother 2019; 20:2063-2072. [DOI: 10.1080/14656566.2019.1660319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Gayatri Saraf
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Jairo Vinícius Pinto
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lakshmi N. Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Effects of cariprazine on hERG 1A and hERG 1A/3.1 potassium channels. Eur J Pharmacol 2019; 854:92-100. [DOI: 10.1016/j.ejphar.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
|
19
|
Demyttenaere K, Detraux J, Racagni G, Vansteelandt K. Medication-Induced Akathisia with Newly Approved Antipsychotics in Patients with a Severe Mental Illness: A Systematic Review and Meta-Analysis. CNS Drugs 2019; 33:549-566. [PMID: 31065941 DOI: 10.1007/s40263-019-00625-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Akathisia is a common and distressing movement disorder that can be associated with the use of antipsychotics. It is characterized by a subjective (inner restlessness) and an objective (excessive movements) component. Akathisia can have a negative impact on clinical outcome and even lead to treatment discontinuation. Although medication-induced akathisia is more commonly associated with the use of first-generation antipsychotics (FGAs), it also occurs with second-generation antipsychotics (SGAs), including the newly approved antipsychotics (NAPs) asenapine, lurasidone, iloperidone, cariprazine, and brexpiprazole. Until now, no meta-analysis has been published on the risk of akathisia for all NAPs, as monotherapy or adjunctive treatment, in patients with a severe mental illness. OBJECTIVE The primary objectives of this systematic review and meta-analysis were to (i) compare akathisia incidence rates of the NAPs, as monotherapy or adjunctive treatment, in adult patients with a severe mental illness (i.e., schizophrenia, bipolar disorder, or major depressive disorder), using data from published and unpublished randomized controlled trials; and (ii) examine the role of several study characteristics explaining differences in akathisia incidence rates between studies. METHODS A systematic literature search, using the PubMed, EMBASE, and Cochrane Library databases (until October 2018), was conducted for English-language placebo- as well as active-controlled clinical trials, including subjective (percentage of patients reporting akathisia) and/or scale-defined medication-induced akathisia incidence rates with NAPs (as monotherapy or as adjunctive treatment) in adult patients with schizophrenia, bipolar disorder, or major depressive disorder. Additional unpublished clinical trials were identified through the ClinicalTrials.gov electronic database. Two meta-analyses (incidence rates and odds ratio [OR] [placebo vs. active] of medication-induced akathisia with NAPs) were performed to obtain an optimal estimation of akathisia risks of adult patients with a severe mental illness under these treatment conditions and to assess the role of study characteristics. RESULTS Two hundred and thirteen reports were selected as potentially eligible for our meta-analysis. Of these, 48 met the inclusion criteria. Eight records, identified through the ClinicalTrials.gov database and cross-referencing, and which fulfilled the inclusion criteria, were added, resulting in a total of 56 records (iloperidone = 5, asenapine = 11, lurasidone = 15, brexpiprazole = 13, cariprazine = 12). The estimated weighted mean incidence rate of akathisia was 7.7% (95% confidence interval [CI] 6.5-9.1), with estimates being 3.9% (95% CI 2.4-6.3) for iloperidone, 6.8% (95% CI 5.1-9.0) for asenapine, 10.0% (95% CI 7.4-13.5) for brexpiprazole, 12.7% (95% CI 10.1-16.1) for lurasidone, and 17.2% (95% CI 13.4-22.1) for cariprazine. After Tukey-adjustment for multiple testing, the incidence rate of akathisia was significantly (p < 0.05) lower for iloperidone than for brexpiprazole, lurasidone, and cariprazine. In addition, the incidence rate of akathisia was significantly (p < 0.05) lower for asenapine than for lurasidone and cariprazine. Finally, the incidence rate of akathisia was significantly (p < 0.05) lower for brexpiprazole than for cariprazine. Type of medication (p < 0.0001), diagnosis (p = 0.02), and race (p = 0.0003) significantly explained part of the heterogeneity of the incidence estimates of akathisia between studies. The estimated weighted OR of akathisia under medication, compared with placebo, was 2.43 (95% CI 1.91-3.10). The OR was smallest for iloperidone (OR 1.20; 95% CI 0.42-3.45) and increased for brexpiprazole (OR 2.04; 95% CI 1.09-3.83), asenapine (OR 2.37; 95% CI 1.32-4.27), lurasidone (OR 3.74; 95% CI 2.32-6.02), and cariprazine (OR 4.35; 95% CI 2.80-6.75). Only type of medication (p = 0.03) explained systematic differences in the OR for akathisia between placebo versus active treatment across studies. After Tukey-adjustment for multiple testing, no significant differences between these ORs were found. The severity of akathisia with NAPs generally is mild to moderate, only leading to treatment discontinuation in a minority of cases (< 5%). CONCLUSIONS The use of a NAP raises the akathisia risk more than two-fold when compared with patients receiving placebo. Although distinctions between the different NAPs were not clear in placebo-controlled trials, the results of our meta-analyses and systematic review generally indicate that these differences more than likely reflect real differences, with iloperidone showing the most and cariprazine showing the least benign akathisia profile. Moreover, due to patient characteristics and methodological issues, incidence rates of akathisia with NAPs found in this meta-analysis may even be an underestimation of true incidence rates.
Collapse
Affiliation(s)
- Koen Demyttenaere
- Department of Neurosciences, Research Group Psychiatry, Department of Psychiatry, Faculty of Medicine, University Psychiatric Center KU Leuven and University of Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Louvain, Belgium.
| | - Johan Detraux
- Department of Neurosciences, Research Group Psychiatry, KU Leuven, University Psychiatric Centre, 3070, Kortenberg, Belgium
| | - Giorgio Racagni
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kristof Vansteelandt
- Department of Neurosciences, Research Group Psychiatry, KU Leuven, University Psychiatric Centre, 3070, Kortenberg, Belgium
| |
Collapse
|
20
|
Furuse K, Ukai W, Hashimoto E, Hashiguchi H, Kigawa Y, Ishii T, Tayama M, Deriha K, Shiraishi M, Kawanishi C. Antidepressant activities of escitalopram and blonanserin on prenatal and adolescent combined stress-induced depression model: Possible role of neurotrophic mechanism change in serum and nucleus accumbens. J Affect Disord 2019; 247:97-104. [PMID: 30658246 DOI: 10.1016/j.jad.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND There has been number of studies suggesting experiences of adversity in early life interrelated subsequent brain development, however, neurobiological mechanisms confer risk for onset of psychiatric illness remains unclear. METHODS In order to elucidate the pathogenic mechanisms underlying early life adversity-induced refractory depression in more detail, we administered corticosterone (CORT) to adolescent rats with or without prenatal ethanol exposure followed by an antidepressant or antipsychotic and examined alterations in depressive and social function behaviors and brain-derived neurotrophic factor (BDNF) levels in serum, the hippocampus, anterior cingulate cortex, and nucleus accumbens. RESULTS The combined stress exposure of prenatal ethanol and adolescent CORT prolonged immobility times in the forced swim test (FST), and increased investigation times and numbers in the social interaction test (SIT). A treatment with escitalopram reversed depression-like behavior accompanied by reductions in BDNF levels in serum and the nucleus accumbens, while a treatment with blonanserin ameliorated abnormal social interaction behavior with reductions in serum BDNF levels. LIMITATIONS Further studies are needed to clarify the clinical evinces responding to these results, and many questions remain regarding the mechanisms by which refractory depression and antidepressant/antipsychotic treatments cause changes in serum and brain regional BDNF levels. CONCLUSION These results strongly implicate changes in BDNF levels in serum and the nucleus accumbens in the pathophysiology and treatment of early life combined stress-induced depression and highlight the therapeutic potential of escitalopram and new generation antipsychotic blonanserin for treatment-resistant refractory depression.
Collapse
Affiliation(s)
- Kengo Furuse
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Wataru Ukai
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan.
| | - Eri Hashimoto
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Hanako Hashiguchi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Yoshiyasu Kigawa
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Takao Ishii
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Masaya Tayama
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Kenta Deriha
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Masaki Shiraishi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| | - Chiaki Kawanishi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo 0608543, Japan
| |
Collapse
|
21
|
|
22
|
Lian J, Deng C. Early antipsychotic exposure affects NMDA and GABAA receptor binding in the brains of juvenile rats. Psychiatry Res 2019; 273:739-745. [PMID: 31207861 DOI: 10.1016/j.psychres.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 01/07/2023]
Abstract
Antipsychotics were developed to treat schizophrenia in adults; however they have been increasingly prescribed in children and adolescents. The NMDA and GABAA receptors are involved in neurodevelopment and the pathophysiology of various mental disorders in children and adolescents. Male and female juvenile rats were treated orally with risperidone (0.3 mg/kg, 3 times/day), aripiprazole (1 mg/kg), olanzapine (1 mg/kg) or vehicle (control), starting from postnatal day (PD) 23 (±1 day) for 3 weeks (corresponding to the childhood-adolescent period in humans). Quantitative autoradiography was used to detect the binding density of [3H]MK-801 (an NMDA receptor antagonist) and [3H]muscimol (a selective GABAA receptor agonist). Aripiprazole elevated the [3H]MK801 binding levels in the NAcC of male rats, and the NAcS and CPu of female rats. Risperidone increased [3H]MK801 levels in the CPu of female rats, and the NAcS of male rats. Aripiprazole upregulated [3H]muscimol binding levels in the CPu and NAcC of male rats, while it elevated the [3H]muscimol levels in the PFC of female rats, compared to controls. These results suggest that early treatment with these antipsychotics modulates NMDA and GABAA neurotransmission in juveniles, which may play a role in their clinical efficacy in the control of mental disorders in children and adolescents.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia.
| |
Collapse
|
23
|
Mauri MC, Paletta S, Di Pace C, Reggiori A, Cirnigliaro G, Valli I, Altamura AC. Clinical Pharmacokinetics of Atypical Antipsychotics: An Update. Clin Pharmacokinet 2018; 57:1493-1528. [DOI: 10.1007/s40262-018-0664-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Wesołowska A, Partyka A, Jastrzębska-Więsek M, Kołaczkowski M. The preclinical discovery and development of cariprazine for the treatment of schizophrenia. Expert Opin Drug Discov 2018; 13:779-790. [PMID: 29722587 DOI: 10.1080/17460441.2018.1471057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cariprazine is approved in the United States and Europe for the treatment of manic or mixed episodes associated with bipolar I disorder and for the treatment of schizophrenia in adult patients. It is typically administered orally once a day (a dose range 1.5 - 6 mg/day), does require titration, and may be given with or without food. It has a half-life of 2 - 4 days with an active metabolite that has a terminal half-life of 2 - 3 weeks. Areas covered: This review article focuses on the preclinical discovery of cariprazine providing details regarding its pharmacological, behavioral, and neurochemical mechanisms and its contribution to clinical therapeutic benefits. This article is based on the available literature with respect to the preclinical and clinical findings and product labels of cariprazine. Expert opinion: Cariprazine shows highest affinity toward D3 receptors, followed by D2, 5-HT2B, and 5-HT1A receptors. It also shows moderate affinity toward σ1, 5-HT2A, and histamine H1 receptors. Long-term administration of cariprazine altered the abundance of dopamine, serotonin, and glutamate receptor subtypes in different brain regions. All these mechanisms of cariprazine may contribute toward its unique preclinical profile and its clinically observed benefits in the treatment of schizophrenia, bipolar mania, and possibly other psychiatric disorders.
Collapse
Affiliation(s)
- Anna Wesołowska
- a Department of Clinical Pharmacy , Jagiellonian University Medical College , Kraków , Poland
| | - Anna Partyka
- a Department of Clinical Pharmacy , Jagiellonian University Medical College , Kraków , Poland
| | | | - Marcin Kołaczkowski
- b Department of Pharmaceutical Chemistry , Jagiellonian University Medical College , Kraków , Poland
| |
Collapse
|
25
|
Salem H, Pigott T, Zhang XY, Zeni CP, Teixeira AL. Antipsychotic-induced Tardive dyskinesia: from biological basis to clinical management. Expert Rev Neurother 2017; 17:883-894. [PMID: 28750568 DOI: 10.1080/14737175.2017.1361322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tardive dyskinesia (TD) is a chronic and disabling movement disorder with a complex pathophysiological basis. A significant percentage of patients does not receive correct diagnosis, resulting in delayed or inaccurate treatment and poor outcome. Therefore, there is a critical need for prompt recognition, implementation of efficacious treatment regimens and long-term follow up of patients with TD. Areas covered: The current paper provides an overview of emerging data concerning proposed pathophysiology theories, epidemiology, risk factors, and therapeutic strategies for TD. Expert commentary: Despite considerable research efforts, TD remains a challenge in the treatment of psychosis as the available strategies remain sub-optimal. The best scenario will always be the prophylaxis or prevention of TD, which entails limiting the use of antipsychotics.
Collapse
Affiliation(s)
- Haitham Salem
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Teresa Pigott
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Xiang Y Zhang
- b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Cristian P Zeni
- c Pediatric mood disorder/ADHD program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Antonio L Teixeira
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| |
Collapse
|
26
|
Abstract
Polypharmacy is common in psychiatry. Usage of cognitive enhancers is increasing in the psychiatric population. Many clinicians are not familiar with these new psychoactive compounds. This paper reviews the potential drug-drug interactions when these cognitive enhancers are used together with psychotropic drugs and their confounding effects on diagnosis and clinical management.
Collapse
|
27
|
Findlay LJ, El-Mallakh PL, El-Mallakh RS. Cariprazine for the Treatment of Bipolar Disorder. Perspect Psychiatr Care 2017; 53:148-155. [PMID: 27059102 DOI: 10.1111/ppc.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To review the data regarding a new antipsychotic, cariprazine. CONCLUSIONS Cariprazine is a dopamine D3, D2 partial agonist, with greater affinity to D3. It has been examined for schizophrenia, bipolar mania, bipolar depression, and unipolar depression. It has demonstrated efficacy in schizophrenia and mania, and has recently been approved by the U.S. Food and Drug Administration. However, it has a more inconsistent effect in depression, both unipolar and bipolar. Adverse effects include extrapyramidal symptoms, akathisia, and gastrointestinal distress. PRACTICE IMPLICATIONS Cariprazine will be a promising addition in the treatment of patients with acute mania and schizophrenia.
Collapse
Affiliation(s)
- Lillian Jan Findlay
- Lillian Jan Findlay, PhD, is Assistant Professor, and Coordinator, Psychiatric Mental Health Academic Program, School of Nursing, University of Kentucky, Lexington, Kentucky, USA
| | - Peggy L El-Mallakh
- Peggy L. El-Mallakh, PhD, is Assistant Professor, School of Nursing, University of Kentucky, Lexington, Kentucky, USA
| | - Rif S El-Mallakh
- Rif S. El-Mallakh, MD, Director, Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
28
|
Flick AC, Ding HX, Leverett CA, Kyne RE, Liu KKC, Fink SJ, O’Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2015. J Med Chem 2017; 60:6480-6515. [DOI: 10.1021/acs.jmedchem.7b00010] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew C. Flick
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X. Ding
- Pharmacodia (Beijing) Co., Ltd., Beijing, 100085, China
| | - Carolyn A. Leverett
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert E. Kyne
- Celgene Corporation, 200 Cambridge
Park Drive, Cambridge, Massachusetts 02140, United States
| | - Kevin K. -C. Liu
- China Novartis Institutes for BioMedical Research Co., Ltd., Shanghai, 201203, China
| | | | - Christopher J. O’Donnell
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
29
|
RP5063, an atypical antipsychotic drug with a unique pharmacologic profile, improves declarative memory and psychosis in mouse models of schizophrenia. Behav Brain Res 2017; 332:180-199. [PMID: 28373127 DOI: 10.1016/j.bbr.2017.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/11/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
Abstract
Various types of atypical antipsychotic drugs (AAPDs) modestly improve the cognitive impairment associated with schizophrenia (CIAS). RP5063 is an AAPD with a diverse and unique pharmacology, including partial agonism at dopamine (DA) D2, D3, D4, serotonin (5-HT)1A, and 5-HT2A receptors (Rs), full agonism at α4β2 nicotinic acetylcholine (ACh)R (nAChR), and antagonism at 5-HT2B, 5-HT6, and 5-HT7Rs. Most atypical APDs are 5-HT2A inverse agonists. The efficacy of RP5063 in mouse models of psychosis and episodic memory were studied. RP5063 blocked acute phencyclidine (PCP)-as well as amphetamine-induced hyperactivity, indicating antipsychotic activity. Acute administration of RP5063 significantly reversed subchronic (sc)PCP-induced impairment in novel object recognition (NOR), a measure of episodic memory, but not reversal learning, a measure of executive function. Co-administration of a sub-effective dose (SED) of RP5063 with SEDs of a 5-HT7R antagonist, a 5-HT1BR antagonist, a 5-HT2AR inverse agonist, or an α4β2 nAChR agonist, restored the ability of RP5063 to ameliorate the NOR deficit in scPCP mice. Pre-treatment with a 5-HT1AR, a D4R, antagonist, but not an α4β2 nAChR antagonist, blocked the ameliorating effect of RP5063. Further, co-administration of scRP5063 prior to each dose of PCP prevented the effect of PCP to produce a deficit in NOR for one week. RP5063, given to scPCP-treated mice for one week restored NOR for one week only. Acute administration of RP5063 significantly increased cortical DA efflux, which may be critical to some of its cognitive enhancing properties. These results indicate that RP5063, by itself, or as an adjunctive treatment has a multifaceted basis for improving some cognitive deficits associated with schizophrenia.
Collapse
|
30
|
Affiliation(s)
- Norah Essali
- Texila American University; 309 Waterford Place NE Atlanta Georgia USA
| | - Ibrahem Hanafi
- Damascus University; Faculty of Medicine; Mazzah Damascus Syrian Arab Republic
| | - Adib Essali
- Waikato District Health Board; Manaaki Centre; crn Rolleston and Mary Streets Thames New Zealand 3575
| |
Collapse
|
31
|
Watson DJG, King MV, Gyertyán I, Kiss B, Adham N, Fone KCF. The dopamine D₃-preferring D₂/D₃ dopamine receptor partial agonist, cariprazine, reverses behavioural changes in a rat neurodevelopmental model for schizophrenia. Eur Neuropsychopharmacol 2016; 26:208-224. [PMID: 26723167 DOI: 10.1016/j.euroneuro.2015.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 02/07/2023]
Abstract
Current antipsychotic medication is largely ineffective against the negative and cognitive symptoms of schizophrenia. One promising therapeutic development is to design new molecules that balance actions on dopamine D2 and D3 receptors to maximise benefits and limit adverse effects. This study used two rodent paradigms to investigate the action of the dopamine D3-preferring D3/D2 receptor partial agonist cariprazine. In adult male rats, cariprazine (0.03-0.3 mg/kg i.p.), and the atypical antipsychotic aripiprazole (1-3 mg/kg i.p.) caused dose-dependent reversal of a delay-induced impairment in novel object recognition (NOR). Treating neonatal rat pups with phencyclidine (PCP) and subsequent social isolation produced a syndrome of behavioural alterations in adulthood including hyperactivity in a novel arena, deficits in NOR and fear motivated learning and memory, and a reduction and change in pattern of social interaction accompanied by increased ultrasonic vocalisations (USVs). Acute administration of cariprazine (0.1 and 0.3 mg/kg) and aripiprazole (3 mg/kg) to resultant adult rats reduced neonatal PCP-social isolation induced locomotor hyperactivity and reversed NOR deficits. Cariprazine (0.3 mg/kg) caused a limited reversal of the social interaction deficit but neither drug affected the change in USVs or the deficit in fear motivated learning and memory. Results suggest that in the behavioural tests investigated cariprazine is at least as effective as aripiprazole and in some paradigms it showed additional beneficial features further supporting the advantage of combined dopamine D3/D2 receptor targeting. These findings support recent clinical studies demonstrating the efficacy of cariprazine in treatment of negative symptoms and functional impairment in schizophrenia patients.
Collapse
Affiliation(s)
- David J G Watson
- School of Life Sciences, Queen׳s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, Queen׳s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Istvan Gyertyán
- Pharmacological and Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, Budapest H-1103 Hungary
| | - Béla Kiss
- Pharmacological and Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, Budapest H-1103 Hungary
| | - Nika Adham
- Forest Research Institute, Inc., Harborside Financial Center, Plaza V, Jersey City, NJ 07311, USA
| | - Kevin C F Fone
- School of Life Sciences, Queen׳s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
32
|
Werner FM, Coveñas R. New developments in the management of schizophrenia and bipolar disorder: potential use of cariprazine. Ther Clin Risk Manag 2015; 11:1657-61. [PMID: 26586950 PMCID: PMC4636086 DOI: 10.2147/tcrm.s64915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cariprazine is a recently developed antipsychotic drug with a partial agonism for the D2 and D3 receptors. It shows a tenfold greater affinity for the D3 receptor. In clinical trials, its therapeutic effect has been tested in patients with an acute exacerbation of schizophrenia and in patients with acute mania in bipolar disorder. Like risperidone, cariprazine improves positive and negative schizophrenic symptoms, and ameliorates cognitive functions. Cariprazine induces extrapyramidal symptoms less often than risperidone and can cause acute akathisia. It is a prolactin-sparing antipsychotic drug and has a favorable metabolic profile. In acute mania in bipolar disorder, it treats manic symptoms significantly better than placebo. As a consequence of its improved adverse effects, cariprazine improves patients’ quality of life to a greater extent than other second-generation antipsychotic drugs. Cariprazine is a promising antipsychotic drug in the treatment of schizophrenia, acute mania in bipolar disorder, and in schizophrenia with mania. In these patients, its long-term therapeutic effect and its action in comparison with other second-generation antipsychotic drugs, above all aripiprazole, remain to be tested in clinical trials.
Collapse
Affiliation(s)
- Felix-Martin Werner
- Euro Akademie Pößneck, Higher Vocational School for Elderly Care and Occupational Therapy, Pößneck, Germany ; Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| |
Collapse
|
33
|
Pich EM, Collo G. Pharmacological targeting of dopamine D3 receptors: Possible clinical applications of selective drugs. Eur Neuropsychopharmacol 2015; 25:1437-47. [PMID: 26298833 DOI: 10.1016/j.euroneuro.2015.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 06/26/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022]
Abstract
Dopamine D3 receptors have been pharmacologically engaged in humans since the development of the first antipsychotics and ergot-derivative dopamine (DA) agonists, even without knowing it. These agents were generally non-selective, developed primarily to target D2 receptors. In the last 10 years the understanding of the clinical implication of D3 receptors has been progressing also due to the identification of D3 gene polymorphisms, the use of more selective PET ligands such as [(11)C]-(+)-PHNO and the learning regarding the clinical use of the D3-preferential D2/D3 agonists ropinirole and pramipexole. A new specific neuroplasticity role of D3 receptor regarding dendrite arborisation outgrowth in dopaminergic neurons was also proposed to support, at least in part, the slowing of disease observed in subjects with Parkinson׳s Disease treated with DA agonists. Similar mechanisms could be at the basis of the antidepressant-like effects observed with DA agonists when co-administered with standard of care. Severe adverse event occurring with the use of anti-parkinsonian DA agonists in predisposed subjects, i.e., impulse control disorders, are now suggested to be putatively related to overactive D3 receptors. Not surprisingly, blockade of D3 receptors was proposed as treatment for addictive disorders, a goal that could be potentially achieved by repositioning buspirone, an anxiolytic drug with D3-preferential antagonistic features, or with novel selective D3 antagonists or partial agonists currently in development for schizophrenia. At the moment ABT-925 is the only selective D3 antagonist tested in schizophrenic patients in Phase II, showing an intriguing cognitive enhancing effects supported by preclinical data. Finally, exploratory pharmacogenetic analysis suggested that ABT-925 could be effective in a subpopulation of patients with a polymorphism on the D3 receptor, opening to a possible personalised medicine approach.
Collapse
Affiliation(s)
- Emilio Merlo Pich
- Experimental Medicine CNS, Takeda Development Centre Europe, London, UK.
| | - Ginetta Collo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
34
|
Mauri M, Paletta S, Maffini M, Colasanti A, Dragogna F, Di Pace C, Altamura A. Clinical pharmacology of atypical antipsychotics: an update. EXCLI JOURNAL 2014; 13:1163-91. [PMID: 26417330 PMCID: PMC4464358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/27/2014] [Indexed: 11/25/2022]
Abstract
This review will concentrate on the clinical pharmacology, in particular pharmacodynamic data, related to atypical antipsychotics, clozapine, risperidone, paliperidone, olanzapine, que¬tiapine, amisulpride, ziprasidone, aripiprazole, asenapine, iloperidone, lurasidone and cariprazine. A summary of their acute pharmacokinetics properties are also reported. Four new second-generation antipsychotics are available: iloperidone, asenapine, lurasidone and in the next future cariprazine. Similar to ziprasidone and aripiprazole, these new agents are advisable for the lower propensity to give weight gain and metabolic abnormalities in comparison with older second-generation antipsychotics such as olanzapine or clozapine. Actually lurasidone seems to be best in terms of minimizing unwanted alterations in body weight and metabolic variables. Therapeutic drug monitoring is not strictly necessary for all of the new antipsychotic drugs because there are no unequivocal data supporting a relationship between plasma drug levels and clinical outcomes or side effects. The exception can be represented by clozapine for which plasma levels of 350-420 ng/ml are reported to be associated with an increased probability of a good clinical response. Also for olanzapine an established therapeutic range (20-50 ng/ml) is proposed to yield an optimal response and minimize side effects.
Collapse
Affiliation(s)
- M.C. Mauri
- Department of Neuroscience and Mental Health, Pychiatric Unit, Clinical Neuropsychopharmacology Unit, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy,*To whom correspondence should be addressed: M.C. Mauri, Department of Neuroscience and Mental Health, Pychiatric Unit, Clinical Neuropsychopharmacology Unit, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; Tel: +390255035997; FAX: +390255035990, E-mail:
| | - S. Paletta
- Department of Neuroscience and Mental Health, Pychiatric Unit, Clinical Neuropsychopharmacology Unit, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - M. Maffini
- Department of Neuroscience and Mental Health, Pychiatric Unit, Clinical Neuropsychopharmacology Unit, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - A. Colasanti
- Center for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College Denmark Hill, London SE5 8AF, England
| | - F. Dragogna
- Department of Neuroscience and Mental Health, Pychiatric Unit, Clinical Neuropsychopharmacology Unit, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - C. Di Pace
- Department of Neuroscience and Mental Health, Pychiatric Unit, Clinical Neuropsychopharmacology Unit, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - A.C. Altamura
- Department of Neuroscience and Mental Health, Pychiatric Unit, Clinical Neuropsychopharmacology Unit, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| |
Collapse
|
35
|
Rangel-Barajas C, Malik M, Taylor M, Neve KA, Mach RH, Luedtke RR. Characterization of [(3) H]LS-3-134, a novel arylamide phenylpiperazine D3 dopamine receptor selective radioligand. J Neurochem 2014; 131:418-31. [PMID: 25041389 DOI: 10.1111/jnc.12825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/23/2022]
Abstract
LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit: (i) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100-fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low-affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [(3) H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [(3) H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [(3) H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | | | | | |
Collapse
|
36
|
Werner FM, Coveñas R. Safety of antipsychotic drugs: focus on therapeutic and adverse effects. Expert Opin Drug Saf 2014; 13:1031-42. [DOI: 10.1517/14740338.2014.935761] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Möller D, Kling RC, Skultety M, Leuner K, Hübner H, Gmeiner P. Functionally selective dopamine D₂, D₃ receptor partial agonists. J Med Chem 2014; 57:4861-75. [PMID: 24831693 DOI: 10.1021/jm5004039] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dopamine D2 receptor-promoted activation of Gα(o) over Gα(i) may increase synaptic plasticity and thereby might improve negative symptoms of schizophrenia. Heterocyclic dopamine surrogates comprising a pyrazolo[1,5-a]pyridine moiety were synthesized and investigated for their binding properties when low- to subnanomolar K(i) values were determined for D(2L), D(2S), and D3 receptors. Measurement of [(35)S]GTPγS incorporation at D(2S) coexpressed with G-protein subunits indicated significant bias for promotion of Gα(o1) over Gα(i2) coupling for several test compounds. Functionally selective D(2S) activation was most striking for the carbaldoxime 8b (Gα(o1), pEC50 = 8.87, E(max) = 65%; Gα(i2), pEC50 = 6.63, E(max) = 27%). In contrast, the investigated 1,4-disubstituted aromatic piperazines (1,4-DAPs) behaved as antagonists for β-arrestin-2 recruitment, implying significant ligand bias for G-protein activation over β-arrestin-2 recruitment at D(2S) receptors. Ligand efficacy and selectivity between D(2S) and D3 activation were strongly influenced by regiochemistry and the nature of functional groups attached to the pyrazolo[1,5-a]pyridine moiety.
Collapse
Affiliation(s)
- Dorothee Möller
- Department of Chemistry and Pharmacy, Medicinal Chemistry, and ‡Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, 91052 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|