1
|
Chhabra V, Meenakshi S, Maity S, Saini D, Saini M, Murti K, Kumar N. Impact of fluoride exposure on reproductive health: Insights into molecular mechanisms and health implications. Reprod Toxicol 2025; 135:108907. [PMID: 40222424 DOI: 10.1016/j.reprotox.2025.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
While the benefits of fluoride in preventing dental caries are well-established, concerns about its potential toxicity at high intake levels are rising. This review investigates the link between chronic fluoride exposure and reproductive health outcomes at the molecular level, focusing on population growth and child sex ratios in the fluorosis-affected and non-fluorosis regions. The exploration of the detrimental effects of fluoride on both male and female reproductive systems is necessary. In males, hormonal variations, alterations in spermatogenesis, capacitation, and sperm motility using molecular markers, epigenetic, transcriptomic, and proteomic data. For females, hormonal imbalances, disruptions in oocyte formation, teratogenicity (congenital disabilities), and compromised infant development due to maternal fluorosis using similar approaches. Furthermore, we explored drugs that address affected pathways, the potential benefits of vitamins and natural remedies, and lifestyle modifications to minimise adverse effects. The impact of various molecular pathways like apoptosis, autophagy, DNA damage, hormonal imbalance, inflammatory response, mitochondrial dynamics, and cell signalling pathways has been linked to reproductive toxicity induced by chronic and specific doses of fluoride. Analysing existing research and exploring potential therapeutic avenues contributes to the development of strategies to safeguard reproductive well-being in populations exposed to high fluoride levels.
Collapse
Affiliation(s)
- Vishal Chhabra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Shreya Maity
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Dheeraj Saini
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Mohit Saini
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| |
Collapse
|
2
|
He Z, Yan RG, Shang QB, Yang QE. Transcriptomic dynamics and cell-to-cell communication during the transition of prospermatogonia to spermatogonia revealed at single-cell resolution. BMC Genomics 2025; 26:58. [PMID: 39838296 PMCID: PMC11748353 DOI: 10.1186/s12864-025-11244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood. RESULTS In this study, we examined the gene expression patterns of prospermatogonia, spermatogonia and testicular somatic cells at 4 different stages, including embryonic day (E) 12.5, E17.5 and postnatal days (P) 1 and 6, using single-cell RNA sequencing (scRNA-seq). We identified 5 different molecular states in the prospermogonial population and revealed gene expression dynamics in corresponding testicular somatic cells. Specifically, we found that prospermatogonia mainly receive signals, while Leydig cells and peritubular myoid cells are the mediators for transmitting signals, indicating their potential roles in regulating the development and differentiation of prospermatogonia. Transcription regulon analyses revealed the involvement of basic helix-loop-helix (bHLH) transcription factors in directing prospermogonial fate decisions. We then disrupted this transcription network by ectopic expression of inhibitor of differentiation 2 (Id2), which is a negative regulator of bHLH transcription factors. The overexpression of Id2 in prospermatogonia caused severe defects in the progression of prospermatogonia to spermatogonia. CONCLUSION Together, these findings provide a crucial dataset for dissecting key genes that direct the establishment of the foundational spermatogonial pool and the fate transitions of different somatic cell lineages in the testis during fetal and neonatal periods of development.
Collapse
Affiliation(s)
- Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| |
Collapse
|
3
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
4
|
Peng F, Muhuitijiang B, Zhou J, Liang H, Zhang Y, Zhou R. An artificial neural network model to diagnose non-obstructive azoospermia based on RNA-binding protein-related genes. Aging (Albany NY) 2023; 15:3120-3140. [PMID: 37116198 PMCID: PMC10188335 DOI: 10.18632/aging.204674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
Non-obstructive azoospermia (NOA) is a severe form of male infertility, but its pathological mechanisms and diagnostic biomarkers remain obscure. Since the dysregulation of RNA-binding proteins (RBPs) had nonnegligible effects on spermatogenesis, we aimed to investigate the functions and diagnosis values of RBPs in NOA. 58 testicular samples (control = 11, NOA = 47) from Gene Expression Omnibus (GEO) were set as the training cohort. Three public datasets, containing GSE45885 (control = 4, NOA = 27), GSE45887 (control = 4, NOA = 16), and GSE145467 (control = 10, NOA = 10), and 44 clinical samples from the local hospital (control = 27, NOA = 17) were used for validation. Through a series of bioinformatical analyses and machine learning algorithms, including genomic difference detection, protein-protein interaction network analysis, LASSO, SVM-RFE, and Boruta, DDX20 and NCBP2 were determined as significant predictors of NOA. Single-cell RNA sequencing of 432 testicular cell samples from NOA patients indicated that DDX20 and NCBP2 were associated with spermatogenesis (false discovery rate < 0.05). Based on the transcriptome expressions of DDX20 and NCBP2, we constructed multiple diagnosis models using logistic regression, random forest, and artificial neural network (ANN). The ANN model exhibited the most reliable predictive performance in the training cohort (AUC = 0.840), GSE45885 (AUC = 0.731), GSE45887 (AUC = 0.781), GSE145467 (AUC = 0.850), and local cohort (AUC = 0.623). Totally, an ANN diagnosis model based on RBP DDX20 and NCBP2 was developed and externally validated in NOA, functioning as a promising tool in clinical practice.
Collapse
Affiliation(s)
- Fan Peng
- Department of Urology, Baoan Central Hospital of Shen Zhen, Shenzhen 518102, China
| | - Bahaerguli Muhuitijiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Haoyu Liang
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yu Zhang
- Department of Urology, Baoan Central Hospital of Shen Zhen, Shenzhen 518102, China
| | - Ranran Zhou
- Department of Urology, Baoan Central Hospital of Shen Zhen, Shenzhen 518102, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
5
|
Kavarthapu R, Anbazhagan R, Pal S, Dufau ML. Single-Cell Transcriptomic Profiling of the Mouse Testicular Germ Cells Reveals Important Role of Phosphorylated GRTH/DDX25 in Round Spermatid Differentiation and Acrosome Biogenesis during Spermiogenesis. Int J Mol Sci 2023; 24:3127. [PMID: 36834539 PMCID: PMC9962311 DOI: 10.3390/ijms24043127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH)/DDX25 is a member of DEAD-box family of RNA helicase essential for the completion of spermatogenesis and male fertility, as evident from GRTH-knockout (KO) mice. In germ cells of male mice, there are two species of GRTH, a 56 kDa non-phosphorylated form and 61 kDa phosphorylated form (pGRTH). GRTH Knock-In (KI) mice with R242H mutation abolished pGRTH and its absence leads to infertility. To understand the role of the GRTH in germ cell development at different stages during spermatogenesis, we performed single-cell RNA-seq analysis of testicular cells from adult WT, KO and KI mice and studied the dynamic changes in gene expression. Pseudotime analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to elongated spermatids in WT mice, while in both KO and KI mice the trajectory was halted at round spermatid stage indicating incomplete spermatogenesis process. The transcriptional profiles of KO and KI mice were significantly altered during round spermatid development. Genes involved in spermatid differentiation, translation process and acrosome vesicle formation were significantly downregulated in the round spermatids of KO and KI mice. Ultrastructure of round spermatids of KO and KI mice revealed several abnormalities in acrosome formation that includes failure of pro-acrosome vesicles to fuse to form a single acrosome vesicle, and fragmentation of acrosome structure. Our findings highlight the crucial role of pGRTH in differentiation of round spermatids into elongated spermatids, acrosome biogenesis and its structural integrity.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soumitra Pal
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Chromatoid Bodies in the Regulation of Spermatogenesis: Novel Role of GRTH. Cells 2022; 11:cells11040613. [PMID: 35203264 PMCID: PMC8870266 DOI: 10.3390/cells11040613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
Post-transcriptional and translational control of specialized genes play a critical role in the progression of spermatogenesis. During the early stages, mRNAs are actively transcribed and stored, temporarily bound to RNA binding proteins in chromatoid bodies (CBs). CBs are membrane-less dynamic organelles which serve as storehouses and processing centers of mRNAs awaiting translation during later stages of spermatogenesis. These CBs can also regulate the stability of mRNAs to secure the correct timing of protein expression at different stages of sperm formation. Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is an essential regulator of spermatogenesis. GRTH transports mRNAs from the nucleus to the cytoplasm and phospho-GRTH transports mRNAs from the cytoplasm to the CBs. During spermiogenesis, there is precise control of mRNAs transported by GRTH from and to the CBs, directing the timing of translation of critical proteins which are involved in spermatid elongation and acrosomal development, resulting in functional sperm formation. This chapter presents our current knowledge on the role of GRTH, phospho-GRTH and CBs in the control of spermiogenesis. In addition, it covers the components of CBs compared to those of stress granules and P-bodies.
Collapse
|
7
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Kavarthapu R, Anbazhagan R, Raju M, Morris CHT, Pickel J, Dufau ML. Targeted knock-in mice with a human mutation in GRTH/DDX25 reveals the essential role of phosphorylated GRTH in spermatid development during spermatogenesis. Hum Mol Genet 2021; 28:2561-2572. [PMID: 31009948 DOI: 10.1093/hmg/ddz079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/27/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is a testis specific member of the DEAD-box family of RNA helicases expressed in meiotic and haploid germ cells which plays an essential role in spermatogenesis. There are two species of GRTH the 56 kDa non-phospho and 61 kDa phospho forms. Our early studies revealed a missense mutation (R242H) of GRTH in azoospermic men that when expressed in COS1-cells lack the phospho-form of GRTH. To investigate the role of the phospho-GRTH species in spermatogenesis, we generated a GRTH knock-in (KI) transgenic mice with the R242H mutation. GRTH-KI mice are sterile with reduced testis size, lack sperm with spermatogenic arrest at round spermatid stage and loss of the cytoplasmic phospho-GRTH species. Electron microscopy studies revealed reduction in the size of chromatoid bodies (CB) of round spermatids (RS) and germ cell apoptosis. We observed absence of phospho-GRTH in the CB of RS. Complete loss of chromatin remodeling and related proteins such as TP2, PRM2, TSSK6 and marked reduction of their respective mRNAs and half-lives were observed in GRTH-KI mice. We showed that phospho-GRTH has a role in TP2 translation and revealed its occurrence in a 3' UTR dependent manner. These findings demonstrate the relevance of phospho-GRTH in the structure of the chromatoid body, spermatid development and completion of spermatogenesis and provide an avenue for the development of a male contraceptive.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Murugananthkumar Raju
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chon-Hwa Tsai Morris
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - James Pickel
- Transgenic Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Maria L Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Discrete roles of RNA helicases in human male germline and spermatogenesis. J Appl Genet 2020; 61:415-419. [PMID: 32328902 PMCID: PMC7413869 DOI: 10.1007/s13353-020-00558-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/05/2022]
Abstract
RNA helicases are known from their ability to bind and unwind double-stranded RNA initiating RNA processing events. These evolutionary conserved RNA binding proteins are broadly expressed in a variety of tissues; however, we can distinguish those, which represent tissue-specific expression pattern and play unique roles in certain cell lineages. For instance, some RNA helicases mediate transcriptomic changes triggering cell differentiation which results in specification and establishment of germline in a developing embryo. Others act as safeguards responsible for maintenance of DNA integrity in germ cell. In this article, we focus on selected DEAD/DEAH-box RNA helicases involved in germline development and spermatogenesis presenting their diverse functions and implications for male fertility.
Collapse
|
10
|
Lin J, Mao J, Wang X, Ma W, Hao M, Wu X. Optimal treatment for spermatogenesis in male patients with hypogonadotropic hypogonadism. Medicine (Baltimore) 2019; 98:e16616. [PMID: 31374027 PMCID: PMC6709243 DOI: 10.1097/md.0000000000016616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND To compare the efficacies of gonadotropin-releasing hormone (GnRH) pulse subcutaneous infusion with combined human chorionic gonadotropin and human menopausal gonadotropin (HCG/HMG) intramuscular injection have been performed to treat male hypogonadotropic hypogonadism (HH) spermatogenesis. METHODS In total, 220 idiopathic/isolated HH patients were divided into the GnRH pulse therapy and HCG/HMG combined treatment groups (n = 103 and n = 117, respectively). The luteinizing hormone and follicle-stimulating hormone levels were monitored in the groups for the 1st week and monthly, as were the serum total testosterone level, testicular volume and spermatogenesis rate in monthly follow-up sessions. RESULTS In the GnRH group and HCG/HMG group, the testosterone level and testicular volume at the 6-month follow-up session were significantly higher than were those before treatment. There were 62 patients (62/117, 52.99%) in the GnRH group and 26 patients in the HCG/HMG (26/103, 25.24%) group who produced sperm following treatment. The GnRH group (6.2 ± 3.8 months) had a shorter sperm initial time than did the HCG/HMG group (10.9 ± 3.5 months). The testosterone levels in the GnRH and HCG/HMG groups were 9.8 ± 3.3 nmol/L and 14.8 ± 8.8 nmol/L, respectively. CONCLUSION The GnRH pulse subcutaneous infusion successfully treated male patients with HH, leading to earlier sperm production than that in the HCG/HMG-treated patients. GnRH pulse subcutaneous infusion is a preferred method.
Collapse
Affiliation(s)
- Jianli Lin
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
- Department of Endocrinology, Key Laboratory of Endocrinology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| | - Xi Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| | - Wanlu Ma
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| | - Ming Hao
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| |
Collapse
|
11
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
12
|
Zhang J, Yan R, Wu C, Wang H, Yang G, Zhong Y, Liu Y, Wan L, Tang A. Spermatogenesis-associated 48 is essential for spermatogenesis in mice. Andrologia 2018; 50:e13027. [PMID: 29700843 DOI: 10.1111/and.13027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 01/03/2023] Open
Abstract
Azoospermia, oligospermia and teratozoospermia all seriously impact male reproductive health. Spermatogenesis is a complex and precisely regulated process in which germ cells proliferate and differentiate and involves the regulation of multiple testis-specific genes. Here, we identified testis-specific gene spermatogenesis-associated 48 (SPATA48), the expression of which was age-dependent, indicating that it is involved in spermatogenesis. In humans and mice with azoospermia, expression of SPATA48 disappeared in the testis. Spata48-/- knockout male mice had smaller testis and defective spermatogenesis compared to wild-type (WT) mice. This study can help in the exploration of the genetic basis of male infertility and identify new targets for the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- J Zhang
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pharmacology and Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - R Yan
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - C Wu
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - H Wang
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - G Yang
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Y Zhong
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Y Liu
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - L Wan
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - A Tang
- Institute of Transformational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Cai X, Yu S, Mipam T, Yang F, Zhao W, Liu W, Cao S, Shen L, Zhao F, Sun L, Xu C, Wu S. Comparative analysis of testis transcriptomes associated with male infertility in cattleyak. Theriogenology 2017; 88:28-42. [DOI: 10.1016/j.theriogenology.2016.09.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 01/29/2023]
|
14
|
The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 2016; 17:426-38. [PMID: 27251421 DOI: 10.1038/nrm.2016.50] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA helicases comprise the largest family of enzymes involved in the metabolism of mRNAs, the processing and fate of which rely on their packaging into messenger ribonucleoprotein particles (mRNPs). In this Review, we describe how the capacity of some RNA helicases to either remodel or lock the composition of mRNP complexes underlies their pleiotropic functions at different steps of the gene expression process. We illustrate the roles of RNA helicases in coordinating gene expression steps and programmes, and propose that RNA helicases function as molecular drivers and guides of the progression of their mRNA substrates from one RNA-processing factory to another, to a productive mRNA pool that leads to protein synthesis or to unproductive mRNA pools that are stored or degraded.
Collapse
|
15
|
Kavarthapu R, Dufau ML. Germ Cell Nuclear Factor (GCNF/RTR) Regulates Transcription of Gonadotropin-Regulated Testicular RNA Helicase (GRTH/DDX25) in Testicular Germ Cells--The Androgen Connection. Mol Endocrinol 2015; 29:1792-804. [PMID: 26484580 DOI: 10.1210/me.2015-1198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH) (GRTH/DDX25), is a testis-specific protein essential for completion of spermatogenesis. Transgenic mice carrying 5'-flanking regions of the GRTH gene/green fluorescence protein (GFP) reporter revealed a region (-6.4/-3.6 kb) which directs its expression in germ cells (GCs) via androgen action. This study identifies a functional cis-binding element on the GRTH gene for GC nuclear factor (GCNF) (GCNF/RTR) required to regulate GRTH gene expression in postmeiotic testis GCs and explore the action of androgen on GCNF and GRTH transcription/expression. GCNF expression decreased in mice testis upon flutamide (androgen receptor antagonist) treatment, indicating the presence of an androgen/GCNF network to direct GRTH expression in GC. Binding studies and chromatin immunoprecipitation demonstrated specific association of GCNF to a consensus half-site (-5270/-5252) of the GRTH gene in both round spermatids and spermatocytes, which was abolished by flutamide treatment in round spermatids. Moreover, flutamide treatment of wild-type mice caused selective reduction of GCNF and GRTH in round spermatids. GCNF knock-down in seminiferous tubules from GRTH-transgenic mice (dark zone, round spermatid rich) caused decreased GFP expression. Exposure of tubules to flutamide caused decrease in GCNF and GFP expression, whereas androgen exposure induced significant increase. Our studies provide evidence for actions of androgen on GCNF cell-specific regulation of GRTH expression in GC. GRTH associates with GCNF mRNA, its absence caused increase on GCNF expression and mRNA stability indicative of a negative autocrine regulation of GCNF by GRTH. These in vivo/in vitro models link androgen actions to GC through GCNF, as regulated transfactor that controls transcription/expression of GRTH.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria L Dufau
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
16
|
The expression of RNA helicase DDX5 is transcriptionally upregulated by calcitriol through a vitamin D response element in the proximal promoter in SiHa cervical cells. Mol Cell Biochem 2015; 410:65-73. [DOI: 10.1007/s11010-015-2538-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
|
17
|
Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:1-55. [PMID: 25201102 DOI: 10.1007/978-1-4939-1221-6_1] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
Collapse
|
18
|
Kavarthapu R, Tsai-Morris CH, Fukushima M, Pickel J, Dufau ML. A 5'-flanking region of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) gene directs its cell-specific androgen-regulated gene expression in testicular germ cells. Endocrinology 2013; 154:2200-7. [PMID: 23546600 PMCID: PMC3740490 DOI: 10.1210/en.2012-2230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a posttranscriptional regulator of genes that are essential for spermatid elongation and completion of spermatogenesis. It also prevents Leydig cells (LCs) from gonadotropin overstimulation of androgen production. In transgenic (Tg) mice carrying deletions of the GRTH 5'-flanking regions, we previously demonstrated that the -1085 bp to ATG contains the elements for basal and androgen-induced LC-specific expression. No expression in germ cells (GCs) was found with sequences extended up to -3.6 kb. To define regulatory regions of GRTH required for expression in GC, Tg mice were generated with 5'-flanking sequence 6.4 kb (6.4 Kb-Tg) and/or deletion using green fluorescent protein (GFP) as reporter gene in the present study. GFP was expressed in all lines. Immunohistochemistry analysis showed that 6.4 Kb-Tg directed GFP expression in both GCs and LCs. Deletion of the sequence -205 bp to -3.6 kb (6.4 Kb/del-Tg) directs GFP expression only in meiotic and haploid GCs. This indicated that the distal region -6.4 kb/-3.6 kb is required for GRTH cell-specific expression in GC. Also, it inhibits the expression of GRTH in LC directed by the 205-bp promoter, an effect that is neutralized by the -3.6-kb/-205-bp sequence. Androgen receptor antagonist, flutamide treatment prevents GFP/GRTH expression in Tg lines, demonstrating in vivo direct and indirect effects of endogenous androgen on LCs and GCs, respectively. Our studies have generated and characterized Tg lines that can be used to define requirements for cell-specific expression of the GRTH gene and to further advance our knowledge on the regulation of GRTH by androgen in GCs.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, National Institutes of Health, Building 49, 6A36, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res 2012; 349:679-90. [DOI: 10.1007/s00441-012-1469-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/21/2012] [Indexed: 12/27/2022]
|
20
|
Abstract
RNA helicases unwind their RNA substrates in an ATP-dependent reaction, and are central to all cellular processes involving RNA. They have important roles in viral life cycles, where RNA helicases are either virus-encoded or recruited from the host. Vertebrate RNA helicases sense viral infections, and trigger the innate antiviral immune response. RNA helicases have been implicated in protozoic, bacterial and fungal infections. They are also linked to neurological disorders, cancer, and aging processes. Genome-wide studies continue to identify helicase genes that change their expression patterns after infection or disease outbreak, but the mechanism of RNA helicase action has been defined for only a few diseases. RNA helicases are prognostic and diagnostic markers and suitable drug targets, predominantly for antiviral and anti-cancer therapies. This review summarizes the current knowledge on RNA helicases in infection and disease, and their growing potential as drug targets.
Collapse
Affiliation(s)
- Lenz Steimer
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany
| | | |
Collapse
|
21
|
Tsai-Morris CH, Sato H, Gutti R, Dufau ML. Role of gonadotropin regulated testicular RNA helicase (GRTH/Ddx25) on polysomal associated mRNAs in mouse testis. PLoS One 2012; 7:e32470. [PMID: 22479328 PMCID: PMC3316541 DOI: 10.1371/journal.pone.0032470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
Gonadotropin Regulated Testicular RNA Helicase (GRTH/Ddx25) is a testis-specific multifunctional RNA helicase and an essential post-transcriptional regulator of spermatogenesis. GRTH transports relevant mRNAs from nucleus to cytoplasmic sites of meiotic and haploid germ cells and associates with actively translating polyribosomes. It is also a negative regulator of steroidogenesis in Leydig cells. To obtain a genome-wide perspective of GRTH regulated genes, in particularly those associated with polyribosomes, microarray differential gene expression analysis was performed using polysome-bound RNA isolated from testes of wild type (WT) and GRTH KO mice. 792 genes among the entire mouse genome were found to be polysomal GRTH-linked in WT. Among these 186 were down-regulated and 7 up-regulated genes in GRTH null mice. A similar analysis was performed using total RNA extracted from purified germ cell populations to address GRTH action in individual target cells. The down-regulation of known genes concerned with spermatogenesis at polysomal sites in GRTH KO and their association with GRTH in WT coupled with early findings of minor or unchanged total mRNAs and abolition of their protein expression in KO underscore the relevance of GRTH in translation. Ingenuity pathway analysis predicted association of GRTH bound polysome genes with the ubiquitin-proteasome-heat shock protein signaling network pathway and NFκB/TP53/TGFB1 signaling networks were derived from the differentially expressed gene analysis. This study has revealed known and unexplored factors in the genome and regulatory pathways underlying GRTH action in male reproduction.
Collapse
Affiliation(s)
- Chon-Hwa Tsai-Morris
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
22
|
Androgen-induced activation of gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) transcription: essential role of a nonclassical androgen response element half-site. Mol Cell Biol 2012; 32:1566-80. [PMID: 22331472 DOI: 10.1128/mcb.06002-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GRTH, a testis-specific member of the DEAD-box family of RNA helicases essential for spermatogenesis, is present in Leydig cells (LC) and germ cells. In LC, it exerts an autocrine negative regulation on androgen production induced by gonadotropin. GRTH is transcriptionally upregulated by gonadotropin via cyclic AMP/androgen through androgen receptors (AR). For studies of GRTH regulation by androgen in LC, we utilized in vitro/in vivo models. Androgen-induced GRTH expression was prevented by an AR antagonist. Two putative atypical ARE half-sites are present at bp -200 and -827 (ARE1 and ARE2). Point mutation of ARE2 prevented androgen-induced AR binding/function and upregulation of GRTH transcription. Chromatin immunoprecipitation (ChIP) assays showed recruitment of AR, SRC-1, Med-1, transcription factor IIB (TFIIB), and polymerase II (PolII) to GRTH ARE2 (bp -980/-702) and to the promoter region (bp -80/+63). ChIP3C assays revealed short-range chromosomal looping between AR/ARE2 and the core transcriptional machinery at the promoter. Knockdown of Med-1 and/or SRC-1 demonstrated the presence of a nonproductive complex which included AR, TFIIB, and PolII and the essential role of these coactivators in the transcriptional activation of GRTH. Our findings provide new insights into the molecular mechanism of androgen-regulated transcription in LC.
Collapse
|
23
|
boetse YO, Ikechukwu DF, Olugbenga OA, Ayodele OA, Caramel NC. Histomorphological Alterations in the Prostate Gland and Epithelium of Seminiferous Tubule of Sprague-Dawley Rats Treated with Methanolic Extract of Momordica charantia Seeds. IRANIAN JOURNAL OF MEDICAL SCIENCES 2011; 36:266-72. [PMID: 23115411 PMCID: PMC3470280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/11/2011] [Accepted: 06/19/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND There is yet a dearth of literature on the antifertility effect of Momordica charantia on the male reproductive system. The aim of this study was to determine the effect of graded oral doses of methanolic seed extract of Momordica charantia on the histology of prostate gland and seminiferous tubules of rats. METHODS Forty male Sprague-Dawley rats, weighing 176±7 g were assigned randomly into four main groups A to D of 10 rats per group. Groups A to C received daily oral doses of15, 25 or 50 mg/100 g body weight of the seed extract for 56 days. Group D (control) received physiological saline. In each group, five rats were sacrificed on day 57, the remaining half on day 113 (56 days after withdrawal of the extract). The testes and prostate were processed for histological examination. RESULTS There was a dose-related alteration in the cytoarchitecture of seminiferous tubules with marked reduction in spermatogenic series. The prostate gland showed dilatation as well as increased intraluminal secretions with increasing dose. Moreover, there was a significant recovery of prostate tissue as the sections were similar to their control counterpart. CONCLUSION the findings of the present study indicate that methanolic extract of Momordica charantia seeds caused reversible histological alterations in the prostate and testes of Sprague-Dawley rats.
Collapse
|
24
|
Dai L, Tsai-Morris CH, Sato H, Villar J, Kang JH, Zhang J, Dufau ML. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 2011; 286:44306-18. [PMID: 22086916 DOI: 10.1074/jbc.m111.282756] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), a testis-specific member of the DEAD-box family, is an essential post-transcriptional regulator of spermatogenesis. Failure of expression of Transition protein 2 (TP2) and Protamine 2 (Prm2) proteins (chromatin remodelers, essential for spermatid elongation and completion of spermatogenesis) with preservation of their mRNA expression was observed in GRTH-null mice (azoospermic due to failure of spermatids to elongate). These were identified as target genes for the testis-specific miR-469, which is increased in the GRTH-null mice. Further analysis demonstrated that miR-469 repressed TP2 and Prm2 protein expression at the translation level with minor effect on mRNA degradation, through binding to the coding regions of TP2 and Prm2 mRNAs. The corresponding primary-microRNAs and the expression levels of Drosha and DGCR8 (both mRNA and protein) were increased significantly in the GRTH-null mice. miR-469 silencing of TP2 and Prm2 mRNA in pachytene spermatocytes and round spermatids is essential for their timely translation at later times of spermiogenesis, which is critical to attain mature sperm. Collectively, these studies indicate that GRTH, a multifunctional RNA helicase, acts as a negative regulator of miRNA-469 biogenesis and consequently their function during spermatogenesis.
Collapse
Affiliation(s)
- Lisheng Dai
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kleene KC, Cullinane DL. Maybe repressed mRNAs are not stored in the chromatoid body in mammalian spermatids. Reproduction 2011; 142:383-8. [DOI: 10.1530/rep-11-0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromatoid body is a dynamic organelle that is thought to coordinate the cytoplasmic regulation of mRNA translation and degradation in mammalian spermatids. The chromatoid body is also postulated to function in repression of mRNA translation by sequestering dormant mRNAs where they are inaccessible to the translational apparatus. This review finds no convincing evidence that dormant mRNAs are localized exclusively in the chromatoid body. This discrepancy can be explained by two hypotheses. First, experimental artifacts, possibly related to peculiarities of the structure and function of the chromatoid body, preclude obtaining an accurate indication of mRNA localization. Second, mRNA is not stored in the chromatoid body, because, like perinuclear P granules in Caenorhabditis elegans, the chromatoid body functions as a center for mRNP remodeling and export to other cytoplasmic sites.
Collapse
|
26
|
Fukushima M, Villar J, Tsai-Morris CH, Dufau ML. Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), a negative regulator of luteinizing/chorionic gonadotropin hormone-induced steroidogenesis in Leydig cells: central role of steroidogenic acute regulatory protein (StAR). J Biol Chem 2011; 286:29932-40. [PMID: 21719703 DOI: 10.1074/jbc.m111.236083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is a testis-specific gonadotropin-regulated RNA helicase that is present in Leydig cells (LCs) and germ cells and is essential for spermatid development and completion of spermatogenesis. Normal basal levels of testosterone in serum and LCs were observed in GRTH null (GRTH(-/-)) mice. However, testosterone production was enhanced in LCs of GRTH(-/-) mice compared with WT mice by both in vivo and in vitro human chorionic gonadotropin stimulation. LCs of GRTH(-/-) mice had swollen mitochondria with a significantly increased cholesterol content in the inner mitochondrial membrane. Basal protein levels of SREBP2, HMG-CoA reductase, and steroidogenic acute regulatory protein (StAR; a protein that transports cholesterol to the inner mitochondrial membrane) were markedly increased in LCs of GRTH(-/-) mice compared with WT mice. Gonadotropin stimulation caused an increase in StAR mRNA levels and protein expression in GRTH(-/-) mice versus WT mice, with no further increase in SREBP2 and down-regulation of HMG-CoA reductase protein. The half-life of StAR mRNA was significantly increased in GRTH(-/-) mice. Moreover, association of StAR mRNA with GRTH protein was observed in WT mice. Human chorionic gonadotropin increased GRTH gene expression and its associated StAR protein at cytoplasmic sites. Taken together, these findings indicate that, through its negative role in StAR message stability, GRTH regulates cholesterol availability at the mitochondrial level. The finding of an inhibitory action of GRTH associated with gonadotropin-mediated steroidogenesis has provided insights into a novel negative autocrine molecular control mechanism of this helicase in the regulation of steroid production in the male.
Collapse
Affiliation(s)
- Masato Fukushima
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
27
|
Dufau ML, Sato H, Gutti R, Tsai-Morris CH. Gonadotropin-Regulated Testicular Helicase (GRTH/DDX25): A Master Post-transcriptional Regulator of Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 707:23-9. [DOI: 10.1007/978-1-4419-8002-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Hawkins SM, Buchold GM, Matzuk MM. Minireview: The roles of small RNA pathways in reproductive medicine. Mol Endocrinol 2011; 25:1257-79. [PMID: 21546411 DOI: 10.1210/me.2011-0099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The discovery of small noncoding RNA, including P-element-induced wimpy testis-interacting RNA, small interfering RNA, and microRNA, has energized research in reproductive medicine. In the two decades since the identification of small RNA, first in Caenorhabditis elegans and then in other animals, scientists in many disciplines have made significant progress in elucidating their biology. A powerful battery of tools, including knockout mice and small RNA mimics and antagonists, has facilitated investigation into the functional roles and therapeutic potential of these small RNA pathways. Current data indicate that small RNA play significant roles in normal development and physiology and pathological conditions of the reproductive tracts of females and males. Biologically plausible mRNA targets for these microRNA are aggressively being discovered. The next phase of research will focus on elucidating the clinical utility of small RNA-selective agonists and antagonists.
Collapse
Affiliation(s)
- Shannon M Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
29
|
Tang A, Yan Q, Sun L, Diao R, Yu Z, Zhang Z, Gui Y, Cai Z. Developmental expression of ACRV1 in humans and mice. Andrologia 2011; 44:16-22. [PMID: 21488928 DOI: 10.1111/j.1439-0272.2010.01095.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To identify the developmental expression of the ACRV1 gene in humans and mice, testes cDNA samples were collected at different post-natal days (days 4, 9, 18, 35, 54, and 6 months) from Balb/c mice and were hybridised to the mouse whole genome 430 2.0 Array (Affymetrix Inc.) chip. The characteristics of ACRV1 were analysed using various cellular and molecular biotechnologies. The results showed that the expression of mouse ACRV1 was not detected in mouse testes on days 4, 9, and 18 but was present on days 35, 54, and 6 months. Using RT-PCR analysis of mouse ACRV1, we determined that mouse ACRV1 was expressed specifically in the mouse testis, and its expression began at days 35. Western blot analysis demonstrated that human ACRV1 was primarily expressed in human testes, and immunofluorescent and immunohistochemistry staining showed that human ACRV1 protein was predominantly located in round and elongated spermatids in human testes, indicating that ACRV1 may play an important role in mammalian spermatogenesis and may be a target of a contraceptive vaccine.
Collapse
Affiliation(s)
- A Tang
- Guangdong Key Lab of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|