1
|
Wang Q, Qi Y, Gao X, Gong L, Wan R, Lei W, Wang Z, Mao J, Guan H, Li W, Walsh PJ. Recent trends and developments in the asymmetric synthesis of profens. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
2
|
Böselt L, Aerts R, Herrebout W, Riniker S. Improving the IR spectra alignment algorithm with spectra deconvolution and combination with Raman or VCD spectroscopy. Phys Chem Chem Phys 2023; 25:2063-2074. [PMID: 36546852 PMCID: PMC9847344 DOI: 10.1039/d2cp04907d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The relative stereochemistry of organic molecules can be determined by comparing theoretical and experimental infrared (IR) spectra of all isomers and assessing the best match. For this purpose, we have recently developed the IR spectra alignment (IRSA) algorithm for automated optimal alignment. IRSA provides a set of quantitative metrics to identify the candidate structure that agrees best with the experimental spectrum. While the correct diastereomer could be determined for the tested sets of rigid and flexible molecules, two issues were identified with more complex compounds that triggered further development. First, strongly overlapping peaks in the IR spectrum are not treated adequately in the current IRSA implementation. Second, the alignment of multiple spectra from different sources (e.g. IR and VCD or Raman) can be improved. In this study, we present an in-depth discussion of these points, followed by the description of modifications to the IRSA algorithm to address them. In particular, we introduce the concept of deconvolution of the experimental and theoretical spectra with a set of pseudo-Voigt bands. The pseudo-Voigt bands have a set of parameters, which can be employed in the alignment algorithm, leading to improved scoring functions. We test the modified algorithm on two data sets. The first set contains compounds with IR and Raman spectra measured in this study, and the second set contains compounds with IR and VCD spectra available in the literature. We show that the algorithm is able to determine the correct diastereomer in all cases. The results highlight that vibrational spectroscopy can be a valuable alternative or complementary method to inform about the stereochemistry of compounds, and the performance of the updated IRSA algorithm suggests that it is a powerful tool for quantitative-based spectral assignments in academia and industry.
Collapse
Affiliation(s)
- Lennard Böselt
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Roy Aerts
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Fanali C, D’Orazio G, Gentili A, Fanali S. Analysis of Nonsteroidal Anti-inflammatory Drugs by using Microfluidic Techniques: A Review. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200401124059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this review paper, miniaturized techniques, including both electromigration and liquid
chromatographic techniques, have been discussed considering their main features in the analytical field
for the separation and analysis of Nonsteroidal Anti-inflammatory Drugs (NSAIDs). In Capillary Electrophoresis
(CE) and nano-liquid chromatography (nano-LC), separation is performed in capillaries
with Internal Diameter (I.D.) lower than 100 μm and therefore flow rates in the range 100-1000 nL/min
are applied. Therefore, due to the low flow rate, high mass sensitivity can be obtained. Usually, conventional
UV detectors are used on-line; however, these techniques can be coupled with Mass Spectrometry
(MS). CE and nano-LC have also been applied to the separation of NSAIDs using silica stationary
phases (SP) modified with C<sub>18</sub> promoting interaction with analytes mainly based on hydrophobic
interaction. Besides, the use of chiral SP was found to be effective for the chiral resolution of these
compounds. In addition to silica phases, monolithic (both organic and inorganic) material has also been
used. Although most of the presented studies aimed to demonstrate the usefulness of the considered
microfluidic techniques, some applications to real samples have also been reported.
Collapse
Affiliation(s)
- Chiara Fanali
- Faculty of Science, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome,Italy
| | - Giovanni D’Orazio
- Istituto per i Sistemi Biologici, Consiglio Nazionale delle Ricerche, Via Salaria km 29,300 - 00015 Monterotondo,Italy
| | - Alessandra Gentili
- Department of Chemistry, University of Rome “La Sapienza“, Piazzale Aldo Moro 5, P.O. Box 34, Posta 62, 00185 Roma,Italy
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Natural Science and Engineering, University of Verona, Verona,Italy
| |
Collapse
|
4
|
Liu X, Zhao M, Fan X, Fu Y. Reshaping the active pocket of esterase Est816 for resolution of economically important racemates. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01028j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight 2-arylpropionic acids with high E values were generated by engineered Est816, which overcomes the contradiction between the wide substrate scope and high enantioselectivity of esterases.
Collapse
Affiliation(s)
- Xiaolong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng Zhao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
|
6
|
Zhang P, Cheng Q, Zeng L, Xu W, Yuan X, Tang K. Enzymatic enantioselective hydrolysis of 2-phenylpropionic acid ester: Experiment and simulation. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Zhang P, Cheng Q, Xu W, Tang K. Modeling and optimization of lipase-catalyzed hydrolysis for production of (S)-2-phenylbutyric acid enhanced by hydroxyethyl-β-cyclodextrin. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Atalah J, Cáceres-Moreno P, Espina G, Blamey JM. Thermophiles and the applications of their enzymes as new biocatalysts. BIORESOURCE TECHNOLOGY 2019; 280:478-488. [PMID: 30826176 DOI: 10.1016/j.biortech.2019.02.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/20/2023]
Abstract
Ecological and efficient alternatives to industrial processes have sparked interest for using microorganisms and enzymes as biocatalysts. One of the difficulties is finding candidates capable of resisting the harsh conditions in which industrial processes usually take place. Extremophiles, microorganisms naturally found in "extreme" ecological niches, produce robust enzymes for bioprocesses and product development. Thermophiles like Geobacillus, Alyciclobacillus, Anoxybacillus, Pyrococcus and Thermoccocus are some of the extremophiles containing enzymes showing special promise for biocatalysis. Glutamate dehydrogenase used in food processes, laccases and xylanases in pulp and paper processes, nitrilases and transaminases for pharmaceutical drug synthesis and lipases present in detergents, are examples of the increasing use of enzymes for biocatalytic synthesis from thermophilic microorganisms. Some of these enzymes from thermophiles have been expressed as recombinant enzymes and are already in the market. Here we will review recent discoveries of thermophilic enzymes and their current and potential applications in industry.
Collapse
Affiliation(s)
- Joaquín Atalah
- Fundación Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile
| | | | - Giannina Espina
- Fundación Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile
| | - Jenny M Blamey
- Fundación Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
9
|
Böselt L, Sidler D, Kittelmann T, Stohner J, Zindel D, Wagner T, Riniker S. Determination of Absolute Stereochemistry of Flexible Molecules Using a Vibrational Circular Dichroism Spectra Alignment Algorithm. J Chem Inf Model 2019; 59:1826-1838. [DOI: 10.1021/acs.jcim.8b00789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lennard Böselt
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Dominik Sidler
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Tobias Kittelmann
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Jürgen Stohner
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Daniel Zindel
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Trixie Wagner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Sidler D, Bleiziffer P, Riniker S. Beyond the Rosenfeld Equation: Computation of Vibrational Circular Dichroism Spectra for Anisotropic Solutions. J Chem Theory Comput 2019; 15:2492-2503. [PMID: 30802403 DOI: 10.1021/acs.jctc.8b01156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The difference in absorption of left and right circularly polarized light by chiral molecules can be described by the Rosenfeld equation for isotropic samples. It allows the assignment of the absolute stereochemistry by comparing experimental and computationally derived spectra. Despite the simple form of the Rosenfeld equation, its evaluation in the infrared regime remained challenging, as the contribution from the magnetic dipole operator is zero within the Born-Oppenheimer (BO) approximation. In order to resolve this issue, "beyond BO" theories had to be developed, among which Stephen's magnetic field perturbation (MFP) approach offers a computationally easily accessible form. In this work, optical activity is discussed for cylindrically symmetric solutions, which cannot be described anymore by Rosenfeld's equation due to broken spherical symmetry. Mathematical properties of natural and electric-field induced anisotropies are discussed on the basis of the gauge-independent theoretical framework of Buckingham and Dunn. The issue of achiral noise arising from external field perturbations is considered, and potential remedies are introduced. Natural anisotropic vibrational circular dichroism (VCD) equations are solved numerically by applying the MFP approach within the Hartree-Fock (HF) formalism. Properties of anisotropic VCD spectra are discussed for R-(+)-methyloxirane and (1 S,2 S)-cyclopropane-1,2-dicarbonitrile. In particular, by using a group theoretical argument, a gauge-independent lower bound for the quadrupole contribution of C2-symmetric molecules can be identified, which allows the importance of additional quadrupole terms in anisotropic VCD spectra calculation to be assessed.
Collapse
Affiliation(s)
- Dominik Sidler
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Patrick Bleiziffer
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| |
Collapse
|
11
|
Pawlędzio S, Makal A, Trzybiński D, Woźniak K. Crystal structure, interaction energies and experimental electron density of the popular drug ketoprophen. IUCRJ 2018; 5:841-853. [PMID: 30443368 PMCID: PMC6211533 DOI: 10.1107/s2052252518013222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
The crystal and molecular structure of the pure (S)-enantiomer of the popular analgesic and anti-inflammatory drug ketoprophen (α-ket) is reported. A detailed aspherical charge-density model based on high-resolution X-ray diffraction data has been refined, yielding a high-precision geometric description and classification of the O-H⋯O interactions as medium strength hydrogen bonds. The crystal structure of the racemic form of ketoprophen (β-ket) was also redetermined at 100 K, at 0.5 Å resolution. A previously unreported disorder (10% occupancy) was discovered. In contrast to the racemic β-ket case, the (S)-enantiomer crystallizes with two independent molecules in the asymmetric unit with two distinct conformations. The major difference between the β-ket and α-ket crystal forms lies in the formation of distinct hydrogen-bonded motifs: a closed ring motif in β-ket versus infinite chains of hydrogen bonds in the chiral α-ket structure. However, the overall crystal packing of both forms is surprisingly similar, with close-packed layers of antiparallel-oriented benzo-phenone moieties bound by C-H⋯π interactions. Notably, the most important stabilizing term in the total lattice energies in both instances proved to be the dispersion related to these interactions. Both forms of the title compound (α- and β-ket) were additionally characterized by differential scanning calorimetry and thermogravimetric analysis.
Collapse
Affiliation(s)
- Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Anna Makal
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
12
|
Wu S, Zhou Y, Seet D, Li Z. Regio- and Stereoselective Oxidation of Styrene Derivatives to Arylalkanoic AcidsviaOne-Pot Cascade Biotransformations. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700416] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| | - Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| | - Daniel Seet
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| |
Collapse
|
13
|
Efficient resolution of profen ethyl ester racemates by engineered Yarrowia lipolytica Lip2p lipase. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Sharma S, Kanwar SS. Organic solvent tolerant lipases and applications. ScientificWorldJournal 2014; 2014:625258. [PMID: 24672342 PMCID: PMC3929378 DOI: 10.1155/2014/625258] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022] Open
Abstract
Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.
Collapse
Affiliation(s)
- Shivika Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher S. Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| |
Collapse
|
15
|
|
16
|
Determination of (S)-(+)- and (R)-(-)-ibuprofen enantiomers in human plasma after chiral precolumn derivatization by reversed-phase LC–ESI-MS/MS. Bioanalysis 2012; 4:2909-27. [DOI: 10.4155/bio.12.275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: A selective, sensitive and high-throughput LC–ESI-MS/MS method has been developed and validated for the chromatographic separation and quantitation of (S)-(+)-ibuprofen and (R)-(-)-ibuprofen after derivatization with (S)-(-)-1-(1-napthyl)ethylamine using 1-hydroxybenzotriazole as the activator of the carboxylic acid group and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as the coupling reagent in human plasma. Results: Both the analytes were chromatographically separated with a resolution factor of 1.27 on a Kinetex PFP (50 × 4.6 mm, 2.6 µm) analytical column. The method was validated over the concentration range of 0.10–32.0 µg/ml for both the enantiomers. The magnitude of matrix effect was assessed by post-column analyte infusion and also by precision (%CV) values for the calculated slopes of calibration curves. The mean extraction recovery was >91% for both the enantiomers. Conclusion: The method was successfully applied to a bioequivalence study in 34 healthy human subjects. The assay reproducibility was confirmed by reanalysis of 130 subject samples.
Collapse
|
17
|
Chow J, Kovacic F, Dall Antonia Y, Krauss U, Fersini F, Schmeisser C, Lauinger B, Bongen P, Pietruszka J, Schmidt M, Menyes I, Bornscheuer UT, Eckstein M, Thum O, Liese A, Mueller-Dieckmann J, Jaeger KE, Streit WR. The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases. PLoS One 2012; 7:e47665. [PMID: 23112831 PMCID: PMC3480424 DOI: 10.1371/journal.pone.0047665] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 11/18/2022] Open
Abstract
Triacylglycerol lipases (EC 3.1.1.3) catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates rendering them especially suitable for many biotechnological applications. Most lipases used today originate from mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here, we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75 °C and screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70 °C. The lipT gene encoded for a multimeric enzyme with a half-life of 3 h at 70 °C. LipS had an optimum temperature at 70 °C and LipT at 75 °C. Both enzymes catalyzed hydrolysis of long-chain (C(12) and C(14)) fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates. LipS was highly specific for (R)-ibuprofen-phenyl ester with an enantiomeric excess (ee) of 99%. Furthermore, LipS was able to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70 °C with rates similar to those of the lipase CalB from Candida antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis activities. Its X-ray structure was solved with a resolution of 1.99 Å revealing an unusually compact lid structure.
Collapse
Affiliation(s)
- Jennifer Chow
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Yuliya Dall Antonia
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Francesco Fersini
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Christel Schmeisser
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Benjamin Lauinger
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Patrick Bongen
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Joerg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Marlen Schmidt
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Ina Menyes
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Marrit Eckstein
- Bioprocess Development Consumer Specialties and Biocatalysis Biotechnology, Evonik Industries AG, Essen, Germany
| | - Oliver Thum
- Bioprocess Development Consumer Specialties and Biocatalysis Biotechnology, Evonik Industries AG, Essen, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Hamburg, Germany
| | - Jochen Mueller-Dieckmann
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Shi D, Jin YX, Tang YH, Hu HH, Xu SY, Yu LS, Jiang HD, Zeng S. Stereoselective binding of mexiletine and ketoprofen enantiomers with human serum albumin domains. Acta Pharmacol Sin 2012; 33:710-6. [PMID: 22555373 DOI: 10.1038/aps.2012.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate the stereoselective binding of mexiletine or ketoprofen enantiomers with different recombinant domains of human serum albumin (HSA). METHODS Three domains (HSA DOM I, II and III) were expressed in Pichia pastoris GS115 cells. Blue Sepharose 6 Fast Flow was employed to purify the recombinant HSA domains. The binding properties of the standard ligands, digitoxin, phenylbutazone and diazepam, and the chiral drugs to HSA domains were investigated using ultrafiltration. The concentrations of the standard ligands, ketoprofen and mexiletine were analyzed with HPLC. RESULTS The recombinant HSA domains were highly purified as shown by SDS-PAGE and Western blotting analyses. The standard HSA ligands digitoxin, phenylbutazone and diazepam selectively binds to DOM I, DOM II and DOM III, respectively. For the chiral drugs, R-ketoprofen showed a higher binding affinity toward DOM III than S-ketoprofen, whereas S-mexiletine bound to DOM II with a greater affinity than R-mexiletine. CONCLUSION The results demonstrate that HSA DOM III possesses the chiral recognition ability for the ketoprofen enantiomers, whereas HSA DOM II possesses that for the mexiletine enantiomers.
Collapse
|
19
|
Fickers P, Marty A, Nicaud JM. The lipases from Yarrowia lipolytica: Genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 2011; 29:632-44. [DOI: 10.1016/j.biotechadv.2011.04.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 11/29/2022]
|
20
|
Song YS, Lee HU, Lee JH, Park C, Kim SW. Enzyme-catalyzed resolution of racemate using enzyme functionalized silica nanoparticles in the presence of surfactants. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
|
22
|
Xin JY, Zhao YJ, Zhao GL, Zheng Y, Ma XS, Xia CG, Li SB. Enzymatic resolution of (R,S)-Naproxen in water-saturated ionic liquid. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500292401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Lakshmi BS, Kangueane P, Guo Y, Chen YZ, Gautam P. Molecular Basis for the Stereospecificity of Candida Rugosa Lipase (Crl) Towards Ibuprofen. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420009003637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Smith CR, RajanBabu TV. Catalytic asymmetric synthesis using feedstocks: an enantioselective route to 2-arylpropionic acids and 1-arylethyl amines via hydrovinylation of vinyl arenes. J Org Chem 2009; 74:3066-72. [PMID: 19317393 PMCID: PMC2748116 DOI: 10.1021/jo900198b] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A three-step procedure for the synthesis of 2-arylpropionic acids (profens) from vinyl arenes in nearly enantiomerically pure form has been developed. Excellent yields (>97%), regioselectivities (>99%), and enantioselectivities (>97% ee) for the desired branched products were obtained in the asymmetric hydrovinylation reactions of vinyl arenes, and the products from these reactions were transformed into 2-arylpropionic acids via oxidative degradation. Subsequent Curtius or Schmidt rearrangements of these acids provided highly valued 1-arylethyl amines, including a prototypical primary amine with an alpha-chiral tertiary N-alkyl group, in very good yields.
Collapse
Affiliation(s)
- Craig R. Smith
- Department of Chemistry, The Ohio State University, 100 W 18 Avenue, Columbus, OH 43210
| | - T. V. RajanBabu
- Department of Chemistry, The Ohio State University, 100 W 18 Avenue, Columbus, OH 43210
| |
Collapse
|
25
|
Liu Y, Wang F, Tan T. Cyclic resolution of racemic ibuprofen via coupled efficient lipase and acid-base catalysis. Chirality 2009; 21:349-53. [DOI: 10.1002/chir.20578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Two-step enzymatic selective synthesis of water-soluble ketoprofen–saccharide conjugates in organic media. Bioorg Med Chem 2009; 17:1905-10. [DOI: 10.1016/j.bmc.2009.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/30/2022]
|
27
|
|
28
|
Zaidi SA, Cheong WJ. Robust open tubular layer ofS-ketoprofen imprinted polymer for chiral LC separation. J Sep Sci 2008; 31:2962-70. [DOI: 10.1002/jssc.200800160] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Chen YZ, Yang CT, Ching CB, Xu R. Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8877-84. [PMID: 18656972 DOI: 10.1021/la801384c] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Our study has demonstrated for the first time that zirconia nanoparticles modified by a simple carboxylic surfactant of a very long alkyl chain can significantly enhance the activity of the immobilized lipases for asymmetric synthesis in organic media. Zirconia nanoparticles of ca. 20 nm diameter were grafted with carboxylic surfactant modifiers from Tween 85 and erucic acid. The surface of nanoparticles was successfully changed from hydrophilic to hydrophobic. Lipases from Candida rugosa and Pseudomonas cepacia were immobilized on the modified zirconia nanoparticles by adsorption in aqueous solution. The immobilized lipases were used for the resolution of ( R, S)-ibuprofen and ( R, S)-1-phenylethanol through esterification and acylation, respectively, in isooctane organic solvent. When immobilized on erucic acid-modified zirconia, both lipases gave significantly higher activity and enantioselectivity compared with those from their corresponding crude lipase powders. The nanohybrid biocatalysts are stable and can be reused for eight cycles without loss in activity and selectivity. The interaction between the hydrophobic surface of zirconia support and lipases probably induces the conformational rearrangement of lipases into an active, stable form.
Collapse
Affiliation(s)
- Yi Zhao Chen
- Division of Chemical & Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
30
|
Nishigaki T, Yasufuku Y, Murakami S, Ebara Y, Ueji SI. A Great Improvement of the Enantioselectivity of Lipase-Catalyzed Hydrolysis and Esterification Using Co-Solvents as an Additive. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Bielory L, Leonov A. Stereoconfiguration of antiallergic and immunologic drugs. Ann Allergy Asthma Immunol 2008; 100:1-8; quiz 8-11, 36. [PMID: 18254475 DOI: 10.1016/s1081-1206(10)60396-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To review the concept of chirality and its current role in the pharmacology of antiallergic, antiasthmatic, and immunologic agents. DATA SOURCES Ovid MEDLINE and PubMed databases from 1950 to the present time were searched. STUDY SELECTION Articles that described the pharmacology of chiral antiallergic, antiasthmatic, and immunologic medications were used for this review. RESULTS Stereoselectivity affects the pharmacologic profiles of medications in different ways from class to class and within the classes. This summary illustrates that enantiomers differ not only in potency in receptor binding and physiologic effects but also in pharmacokinetic parameters such as volume of distribution, plasma protein binding, metabolism, and clearance. Different enantiomers may produce unrelated pharmacologic effects as well. This review summarizes the variety of possible effects that different stereoisomers may produce and further underlines the importance of the purification and in-depth analysis of chiral compounds. CONCLUSION Chirality plays an important role in pharmacokinetics and pharmacodynamics of various pharmaceutical agents. The importance of stereoisomeric purity in the pharmacologic industry has increased during the past decade as demonstrated by the increased number of studies that examined the in vivo and in vitro effects produced by changes in stereoconfiguration of pharmaceutical agents. This review highlights such effects in certain frequently used medications used in the treatment of asthma and various allergic and immunologic disorders.
Collapse
Affiliation(s)
- Leonard Bielory
- Division of Allergy, Immunology and Rheumatology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
32
|
Hung YF, Thomason M, Rhys-Williams W, Lloyd A, Hanlon G. Chiral inversion of 2-phenylpropionic acid by Cordyceps militaris. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1996.tb04324.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Kato DI, Teruya K, Yoshida H, Takeo M, Negoro S, Ohta H. New application of firefly luciferase − it can catalyze the enantioselective thioester formation of 2-arylpropanoic acid. FEBS J 2007; 274:3877-85. [PMID: 17617223 DOI: 10.1111/j.1742-4658.2007.05921.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We introduce a new application of firefly luciferase (EC 1.13.12.7). The firefly luciferases belong to a large superfamily that includes rat liver long-chain acyl-CoA synthetase (LACS1). LACS1 is the enzyme that is involved in the deracemization process of 2-arylpropanoic acid and catalyzes the enantioselective thioester formation of R-acids. Based on the similarity of the reaction mechanisms and the sequences between firefly luciferase and LACS1, we predicted that firefly luciferase also has thioesterification activity toward 2-arylpropanoic acid. From an investigation using three kinds of luciferases from North American firefly and Japanese fireflies, we have confirmed that these luciferases exhibit an enantioselective thioester formation activity and the R-form is transformed to a thioester in preference to the S-form in the presence of ATP, Mg(2+), and CoASH. The enantiomeric excesses of unreacted recovered acid and thioester were determined by chiral phase HPLC analysis and the resulting 2-arylpropanoyl-CoAs were identified by high resolution mass spectroscopy. The K(m) and k(cat) values of thermostable luciferase from Luciola lateralis (LUC-H) toward ketoprofen were determined as 0.22 mM and 0.11 s(-1), respectively. The affinity of ketoprofen was almost the same of d-luciferin. In addition, the calculated E-value toward ketoprofen was approximately 20. These results suggest that LUC-H could catalyze the kinetic resolution of 2-arylpropanoic acid efficiently and would be a new option for the preparation of optically active 2-substituted carboxylic acids.
Collapse
Affiliation(s)
- Dai-Ichiro Kato
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Strübing D, Krumlinde P, Piera J, Bäckvall JE. Dynamic Kinetic Resolution of Primary Alcohols with an Unfunctionalized Stereogenic Center in the β-Position. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700222] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Long ZD, Xu JH, Zhao LL, Pan J, Yang S, Hua L. Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcatb.2007.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Elend C, Schmeisser C, Hoebenreich H, Steele HL, Streit WR. Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. J Biotechnol 2007; 130:370-7. [PMID: 17601620 DOI: 10.1016/j.jbiotec.2007.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 04/23/2007] [Accepted: 05/08/2007] [Indexed: 11/30/2022]
Abstract
We report on the isolation and biochemical characterization of a novel, cold-active and metagenome-derived lipase with a high stereo-selectivity for pharmaceutically important substrates. The respective gene was isolated from a cosmid library derived from oil contaminated soil and designated lipCE. The deduced aa sequence indicates that the protein belongs to the lipase family l.3, with high similarity to Pseudomonas fluorescens lipases containing a C-terminal secretion signal for ABC dependent transport together with possible motifs for Ca(2+)-binding sites. The overexpressed protein revealed a molecular weight of 53.2kDa and was purified by refolding from inclusion bodies after expression in Escherichia coli. The optimum temperature of LipCE was determined to be 30 degrees C. However, the enzyme still displayed 28% residual activity at 0 degrees C and 16% at -5 degrees C. Calcium ions strongly increased activity and thermal stability of the protein. Further detailed biochemical characterization of the recombinant enzyme showed an optimum pH of 7 and that it retained activity in the presence of a range of metal ions and solvents. A detailed analysis of the enzyme's substrate spectrum with more than 34 different substrates indicated that the enzyme was able to hydrolyze a wide variety of substrates including the conversion of long chain fatty acid substrates with maximum activity for pNP-caprate (C(10)). Furthermore LipCE was able to hydrolyze stereo-selectively ibuprofen-pNP ester with a high preference for the (R) enantiomer of >91% ee and it demonstrated selectivity for esters of primary alcohols, whereas esters of secondary or tertiary alcohols were nearly not converted.
Collapse
Affiliation(s)
- C Elend
- Biozentrum Klein Flottbeck, Abteilung Mikrobiologie, University Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Monti S, Manet I, Manoli F, Sortino S. Binding and photochemistry of enantiomeric 2-(3-benzoylphenyl)propionic acid (ketoprofen) in the human serum albumin environment. Photochem Photobiol Sci 2007; 6:462-70. [PMID: 17404642 DOI: 10.1039/b614163c] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Global analysis of circular dichroism multiwavelength data and time resolved fluorescence was applied to investigate the interaction of R(-)- and S(+)-ketoprofen (KP) with human serum albumin (HSA) in buffer solution at neutral pH. The most stable drug:protein adducts of 1 : 1 and 2 : 1 stoichiometry were characterized as regards the stability constants and the absolute circular dichroism spectra. The spectra of the diastereomeric 1 : 1 conjugates are negative with minima at ca. 350 nm for R(-)-KP and 330 nm for S(+)-KP, those of the 2 : 1 complexes are both negative with minimum at 340 nm and quite similar in shape to each other, thereby showing that the protein loses chiral recognition capability upon multiple binding. HSA intrinsic time resolved fluorescence data obtained exciting at 295 nm point to Trp 214 being located in the secondary binding site for both KP enantiomers. The photodegradation of the S(+)- and R(-)-KP:HSA complexes was studied by steady state photolysis using lambda(irr) > 320 nm. No decrease of the photodegradation quantum yields was observed in 1 : 1 complexes. An induction time for the photodegradation course in 2 : 1 complexes was observed. Transient absorption spectroscopy at lambda(exc) = 355 nm showed that triplet KP species were formed with stereo-differentiated lifetimes and high quantum yields (0.7-0.9). Secondary transients were consistent with the occurrence of photodecarboxylation and/or photoreduction within the protein matrix.
Collapse
Affiliation(s)
- Sandra Monti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), CNR, Via P. Gobetti 101, 40129, Bologna, Italy.
| | | | | | | |
Collapse
|
38
|
Péhourcq F, Lagrange F, Labat L, Bannwarth B. Simultaneous Measurement of Flurbiprofen, Ibuprofen, and Ketoprofen Enantiomer Concentrations in Plasma Using L-Leucinamide as the Chiral Coupling Component. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/10826079508013739] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- F. Péhourcq
- a Department of Pharmacology, EA 525 , University of Bordeaux II , 33076, Bordeaux , Cedex , France
| | - F. Lagrange
- a Department of Pharmacology, EA 525 , University of Bordeaux II , 33076, Bordeaux , Cedex , France
| | - L. Labat
- a Department of Pharmacology, EA 525 , University of Bordeaux II , 33076, Bordeaux , Cedex , France
| | - B. Bannwarth
- a Department of Pharmacology, EA 525 , University of Bordeaux II , 33076, Bordeaux , Cedex , France
| |
Collapse
|
39
|
Szász G, Gyimesi-Forrás K, Budvári-Bárány Z. Optimized and Validated HPLC Methods for Compendial Quality Assessment. III. Testing of Optical Purity Applying α1-Acid-Glycoprotein Stationary Phase. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079808003597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Gy. Szász
- a Semmelweis University of Medicine Institute of Pharmaceutical Chemistry , Budapest, Hungary
| | - K. Gyimesi-Forrás
- a Semmelweis University of Medicine Institute of Pharmaceutical Chemistry , Budapest, Hungary
| | - Zs. Budvári-Bárány
- a Semmelweis University of Medicine Institute of Pharmaceutical Chemistry , Budapest, Hungary
| |
Collapse
|
40
|
Valliappan K, Kannan K, Sivakumar T, Manavalan R. Enantiospecific pharmacokinetic studies on ketoprofen in tablet formulation using indirect chiral HPLC analysis. J Appl Biomed 2006. [DOI: 10.32725/jab.2006.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
41
|
de O Carvalho P, Contesini FJ, Bizaco R, Calafatti SA, Macedo GA. Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger. J Ind Microbiol Biotechnol 2006; 33:713-8. [PMID: 16680456 DOI: 10.1007/s10295-006-0138-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 12/13/2005] [Indexed: 11/24/2022]
Abstract
Resolution of (R,S)-ibuprofen (2-(4-isobutylphenyl)propionic acid) enantiomers by esterification reaction with 1-propanol in different organic solvents was studied using native Aspergillus niger lipase. The main variables controlling the process (enzyme concentration and 1-propanol:ibuprofen molar ratio) have been optimized using response surface methodology based on a five-level, two-variable central composite rotatable design, in which the selected objective function was enantioselectivity. This enzyme preparation showed preferentially catalyzes the esterification of R(-)-ibuprofen, and under optimum conditions (7% w/v of enzyme and molar ratio of 2.41:1) the enantiomeric excess of active S(+)-ibuprofen and total conversion values were 79.1 and 48.0%, respectively, and the E-value was 32, after 168 h of reaction in isooctane.
Collapse
Affiliation(s)
- Patrícia de O Carvalho
- Curso de Farmácia, Universidade São Francisco, Av. São Francisco de Assis, 218, 12916-900, Bragança Paulista, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
42
|
A Facile Method for Preparation of Polymerizable, Optically Active Ketoprofen Prodrug by Irreversible Lipase-catalysed Resolution. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-005-9096-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Monti S, Manet I, Manoli F, Morrone R, Nicolosi G, Sortino S. Diastereoselectivity and Site Dependency in the Photochemistry of Ketoprofen in the Bovine Serum Albumin Matrix†. Photochem Photobiol 2006; 82:13-9. [PMID: 16489850 DOI: 10.1562/2005-07-11-ra-608] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The photodegradation of the S(+)- and R(-)-ketoprofen (KP) enantiomers in the bovine serum albumin matrix was studied by steady-state photolysis with the use of lambda(irr) > 320 nm and transient absorption spectroscopy with lambda(exc) = 355 nm, at 1/1 and 2/1 KP/BSA molar ratios. R(-)-KP was found to be more labile than S(+). Triplet ketoprofen species were evidenced with lifetimes of 400 ns for S(+) and 600 ns for R(-)-KP. Further longer-lived transients with lifetimes of 2.6 and 6.0 mus for S(+) and R(-), respectively, were detected. On the basis of the binding constants of the drug enantiomers to the two main binding sites of the protein, obtained from circular dichroism experiments, the individual disappearance quantum yields of the 1:1 and 2:1 diastereomeric KP:BSA complexes could be estimated. The photoreactivity in the BSA matrix was rationalized on the basis of diastereoselective photodecarboxylation in the two main protein sites.
Collapse
Affiliation(s)
- Sandra Monti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), CNR, Via P. Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Mori S, Yumoto H, Matsumi R, Nishigaki T, Ebara Y, Ueji SI. A method to greatly improve the enantioselectivity of lipase-catalyzed hydrolysis using sodium dodecyl sulfate (SDS) as an additive. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2005.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Wang LW, Cheng YC, Tsai SW. Process modeling of the lipase-catalyzed dynamic kinetic resolution of (R, S)-suprofen 2,2,2-trifluoroethyl thioester in a hollow-fiber membrane. Bioprocess Biosyst Eng 2004; 27:39-49. [PMID: 15645310 DOI: 10.1007/s00449-004-0379-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
A Candida rugosa lipase immobilized on polypropylene powder was employed as the biocatalyst for the enantioselective hydrolysis of (R, S)-suprofen 2,2,2-trifluorothioester in cyclohexane, in which trioctylamine was added as the catalyst to perform in situ racemization of the remaining (R)-thioester. A hollow-fiber membrane was also integrated with the dynamic kinetic resolution process in order to continuously extract the desired (S)-suprofen into an aqueous solution containing NaOH. A kinetic model for the whole process (operating in batch and feed-batch modes) was developed, in which enzymatic hydrolysis and deactivation, lipase activation, racemization and non-enantioselective hydrolysis of the substrate by trioctylamine, and reactive extraction of (R)- and (S)-suprofen into the aqueous phase in the membrane were considered. Theoretical predictions from the model for the time-course variations of substrate and product concentrations in each phase were compared with experimental data.
Collapse
Affiliation(s)
- L W Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | | | | |
Collapse
|
46
|
Liu YY, Xu JH, Wu HY, Shen D. Integration of purification with immobilization of Candida rugosa lipase for kinetic resolution of racemic ketoprofen. J Biotechnol 2004; 110:209-17. [PMID: 15121339 DOI: 10.1016/j.jbiotec.2004.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 01/30/2004] [Accepted: 02/12/2004] [Indexed: 10/26/2022]
Abstract
The two processes for the partial purification and for the immobilization of a crude lipase preparation (Candida rugosa Lipase OF) have been successfully integrated into one by simple adsorption of the enzyme onto a cation ion exchanger resin (SP-Sephadex C-50) at pH 3.5. Due to selective removal of the unfavorable lipase isoenzyme (L1), the enzyme components (mainly L2 and L3) that are tightly fixed on the resin displayed a significantly improved enantioselectivity (E value: 50 versus 13 with addition of Tween-80) in the biocatalytic hydrolysis of 2-chloroethyl ester of rac-ketoprofen. The activity yields of the immobilized lipase were 48 and 70%, respectively when emulsified and non-emulsified substrates were employed for enzyme assay. Moreover, the concentration of Tween-80 was found to be a factor affecting the lipase enantioselectivity. By using such an immobilized enzyme as biocatalyst, the process for preparing enantiopure (S)-ketoprofen becomes simpler and more practical as compared with the previously reported procedures and the product was obtained with >94% ee at 22.3% conversion in the presence of an optimal concentration (0.5 mg/ml) of Tween-80 at pH 3.5. Furthermore, the operational stability of the immobilized biocatalyst was examined in different types of reactors. In an air-bubbled column reactor, the productivity was much higher than that in a packed-bed column reactor, in spite of a slightly lower stability. Under optimal conditions, the air-bubbled column reactor could be operated smoothly for at least 350 h, remaining nearly 50% activity.
Collapse
Affiliation(s)
- You-Yan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | | | | | | |
Collapse
|
47
|
Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv 2004; 19:627-62. [PMID: 14550014 DOI: 10.1016/s0734-9750(01)00086-6] [Citation(s) in RCA: 751] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lipases (triacylglycerol acylhydrolases, EC 3.1.1.3) catalyze the hydrolysis and the synthesis of esters formed from glycerol and long-chain fatty acids. Lipases occur widely in nature, but only microbial lipases are commercially significant. The many applications of lipases include speciality organic syntheses, hydrolysis of fats and oils, modification of fats, flavor enhancement in food processing, resolution of racemic mixtures, and chemical analyses. This article discusses the production, recovery, and use of microbial lipases. Issues of enzyme kinetics, thermostability, and bioactivity are addressed. Production of recombinant lipases is detailed. Immobilized preparations of lipases are discussed. In view of the increasing understanding of lipases and their many applications in high-value syntheses and as bulk enzymes, these enzymes are having an increasing impact on bioprocessing.
Collapse
Affiliation(s)
- R Sharma
- National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Mohali, Punjab, India
| | | | | |
Collapse
|
48
|
Foster N, Mammucari R, Dehghani F, Barrett A, Bezanehtak K, Coen E, Combes G, Meure L, Ng A, Regtop HL, Tandya A. Processing Pharmaceutical Compounds Using Dense Gas Technology. Ind Eng Chem Res 2003. [DOI: 10.1021/ie030219x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neil Foster
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Raffaella Mammucari
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Fariba Dehghani
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Angela Barrett
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Keivan Bezanehtak
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Emma Coen
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Gary Combes
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Louise Meure
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Aaron Ng
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Hubert L. Regtop
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| | - Andrian Tandya
- School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney 2052, Australia; Eiffel Technologies Limited, Level 14/50 Market Street, Melbourne, Victoria 3000, Australia; and CRC for Polymers, 32 Business Park Drive, Notting Hill, Victoria 3168, Australia
| |
Collapse
|
49
|
Lin HY, Tsai SW. Dynamic kinetic resolution of (R, S)-naproxen 2,2,2-trifluoroethyl ester via lipase-catalyzed hydrolysis in micro-aqueous isooctane. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00145-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Mullangi R, Yao M, Srinivas NR. Resolution of enantiomers of ketoprofen by HPLC: a review. Biomed Chromatogr 2003; 17:423-34. [PMID: 14598325 DOI: 10.1002/bmc.277] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Today, a heightened awareness of the applicability of enantiomers in medicine and clinical practice has been gene-rated due to the continuous evolvement of the field of chirality. In this context, this article provides a review of separation of ketoprofen, an important drug, in a popular class of non-steroidal anti-inflammatory drugs (i.e. profens). This review highlights various methodologies, logistical considerations for separation and provides an exhaustive list of applications mainly focusing on the pharmacokinetic aspects. Clearly, the application of enantioselective methods for drug racemates paves the way to understand the in vivo behavior of individual enantiomer and hence an opportunity for an alternate and/or better option for treating the disease.
Collapse
Affiliation(s)
- Ramesh Mullangi
- Bioanalysis, Metabolism and Pharmacokinetics Laboratories, Discovery Research, Dr. Reddy's Laboratories Ltd., Miyapur, Hyderabad-500 050, India
| | | | | |
Collapse
|