1
|
Tsai FJ, Nelson LT, Kline GM, Jäger M, Berk JL, Sekijima Y, Powers ET, Kelly JW. Characterising diflunisal as a transthyretin kinetic stabilizer at relevant concentrations in human plasma using subunit exchange. Amyloid 2023; 30:220-224. [PMID: 36444793 PMCID: PMC10225472 DOI: 10.1080/13506129.2022.2148094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
Transthyretin (TTR) dissociation is the rate limiting step for both aggregation and subunit exchange. Kinetic stabilisers, small molecules that bind to the native tetrameric structure of TTR, slow TTR dissociation and inhibit aggregation. One such stabiliser is the non-steroidal anti-inflammatory drug (NSAID), diflunisal, which has been repurposed to treat TTR polyneuropathy. Previously, we compared the efficacy of diflunisal, tafamidis, tolcapone, and AG10 as kinetic stabilisers for transthyretin. However, we could not meaningfully compare diflunisal because we were unsure of its plasma concentration after long-term oral dosing. Herein, we report the diflunisal plasma concentrations measured by extraction, reversed phase HPLC separation, and fluorescence detection after long-term 250 mg BID oral dosing in two groups: a placebo-controlled diflunisal clinical trial group and an open-label Japanese polyneuropathy treatment cohort. The measured mean diflunisal plasma concentration from both groups was 282.2 μ M ± 143.7 μ M (mean ± standard deviation). Thus, quantification of TTR kinetic stabilisation using subunit exchange was carried out at 100, 200, 300, and 400 μM diflunisal concentrations, all observed in patients after 250 mg BID oral dosing. A 250 μ M diflunisal plasma concentration reduced the wild-type TTR dissociation rate in plasma by 95%, which is sufficient to stop transthyretin aggregation, consistent with the clinical efficacy of diflunisal for ameliorating transthyretin polyneuropathy.
Collapse
Affiliation(s)
- Felix J. Tsai
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Luke T. Nelson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel M. Kline
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Marcus Jäger
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - John L. Berk
- Boston University Amyloidosis Center, Boston MA, USA
| | - Yoshiki Sekijima
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, Japan
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
Duff MR, Gabel SA, Pedersen LC, DeRose EF, Krahn JM, Howell EE, London RE. The Structural Basis for Nonsteroidal Anti-Inflammatory Drug Inhibition of Human Dihydrofolate Reductase. J Med Chem 2020; 63:8314-8324. [PMID: 32658475 DOI: 10.1021/acs.jmedchem.0c00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although nonsteroidal anti-inflammatory drugs (NSAIDs) target primarily cyclooxygenase enzymes, a subset of NSAIDs containing carboxylate groups also has been reported to competitively inhibit dihydrofolate reductase (DHFR). In this study, we have characterized NSAID interactions with human DHFR based on kinetic, NMR, and X-ray crystallographic methods. The NSAIDs target a region of the folate binding site that interacts with the p-aminobenzoyl-l-glutamate (pABG) moiety of folate and inhibit cooperatively with ligands that target the adjacent pteridine-recognition subsite. NSAIDs containing benzoate or salicylate groups were identified as having the highest potency. Among those tested, diflunisal, a salicylate derivative not previously identified to have anti-folate activity, was found to have a Ki of 34 μM, well below peak plasma diflunisal levels reached at typical dosage levels. The potential of these drugs to interfere with the inflammatory process by multiple pathways introduces the possibility of further optimization to design dual-targeted analogs.
Collapse
Affiliation(s)
- Michael R Duff
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| |
Collapse
|
3
|
Organic solute carrier 22 (SLC22) family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 2018; 26:S45-S60. [PMID: 29703386 PMCID: PMC9326878 DOI: 10.1016/j.jfda.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
|
4
|
Kim BR, Coyaud E, Laurent EMN, St-Germain J, Van de Laar E, Tsao MS, Raught B, Moghal N. Identification of the SOX2 Interactome by BioID Reveals EP300 as a Mediator of SOX2-dependent Squamous Differentiation and Lung Squamous Cell Carcinoma Growth. Mol Cell Proteomics 2017; 16:1864-1888. [PMID: 28794006 PMCID: PMC5629269 DOI: 10.1074/mcp.m116.064451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, with squamous cell carcinoma (SQCC) being the second most common form. SQCCs are thought to originate in bronchial basal cells through an injury response to smoking, which results in this stem cell population committing to hyperplastic squamous rather than mucinous and ciliated fates. Copy number gains in SOX2 in the region of 3q26-28 occur in 94% of SQCCs, and appear to act both early and late in disease progression by stabilizing the initial squamous injury response in stem cells and promoting growth of invasive carcinoma. Thus, anti-SOX2 targeting strategies could help treat early and/or advanced disease. Because SOX2 itself is not readily druggable, we sought to characterize SOX2 binding partners, with the hope of identifying new strategies to indirectly interfere with SOX2 activity. We now report the first use of proximity-dependent biotin labeling (BioID) to characterize the SOX2 interactome in vivo We identified 82 high confidence SOX2-interacting partners. An interaction with the coactivator EP300 was subsequently validated in both basal cells and SQCCs, and we demonstrate that EP300 is necessary for SOX2 activity in basal cells, including for induction of the squamous fate. We also report that EP300 copy number gains are common in SQCCs and that growth of lung cancer cell lines with 3q gains, including SQCC cells, is dependent on EP300. Finally, we show that EP300 inhibitors can be combined with other targeted therapeutics to achieve more effective growth suppression. Our work supports the use of BioID to identify interacting protein partners of nondruggable oncoproteins such as SOX2, as an effective strategy to discover biologically relevant, druggable targets.
Collapse
Affiliation(s)
- Bo Ram Kim
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Etienne Coyaud
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Estelle M N Laurent
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Jonathan St-Germain
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Emily Van de Laar
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Ming-Sound Tsao
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- ¶Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Brian Raught
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Nadeem Moghal
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada;
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
5
|
Shirakawa K, Wang L, Man N, Maksimoska J, Sorum AW, Lim HW, Lee IS, Shimazu T, Newman JC, Schröder S, Ott M, Marmorstein R, Meier J, Nimer S, Verdin E. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity. eLife 2016; 5. [PMID: 27244239 PMCID: PMC4931907 DOI: 10.7554/elife.11156] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI:http://dx.doi.org/10.7554/eLife.11156.001 People have been using a chemical called salicylate, which was once extracted from willow tree bark, as medicine for pain, fever and inflammation since ancient Greece. Aspirin is derived from salicylate but is a more potent drug. Aspirin exerts its anti-inflammatory effect by shutting down the activity of proteins that would otherwise boost inflammation. Aspirin achieves this by releasing a chemical marker, called an acetyl group, to be added to these proteins via a process known as protein acetylation. However, salicylate cannot trigger protein acetylation and so it was not clear how it reduces inflammation. An anti-diabetes drug that is converted into salicylate in the body reduces inflammation by inhibiting a protein called NF-κB. In 2001, a group of researchers reported that NF-κB becomes active when an enzyme called p300 adds an acetyl group to it. This raised the question: does salicylate reduce inflammation by blocking, instead of triggering, protein acetylation. Now, Shirakawa et al. – who include a researcher involved in the 2001 study – show that salicylate does indeed block the activity of the p300 enzyme. Shirakawa et al. then searched a database looking for drugs that have salicylate as part of their molecular structure. The search led to a drug called diflunisal, which was even more effective at blocking p300 in laboratory tests. Some cancers, including a blood cancer, rely on p300 to grow; diflunisal was shown to stop this kind of cancer cell from growing, both in the laboratory and in mice. Together, the experiments suggest that salicylate and drugs that share some of its structure might represent useful treatments for certain cancers, as well as other diseases that involve the p300 enzyme. DOI:http://dx.doi.org/10.7554/eLife.11156.002
Collapse
Affiliation(s)
- Kotaro Shirakawa
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States.,Department of Hematology and Oncology, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Lan Wang
- University of Miami, Gables, United States.,Sylvester Comprehensive Cancer Center, Miami, United States
| | - Na Man
- University of Miami, Gables, United States.,Sylvester Comprehensive Cancer Center, Miami, United States
| | - Jasna Maksimoska
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Philadelphia, United States
| | - Alexander W Sorum
- Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
| | - Hyung W Lim
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Intelly S Lee
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Tadahiro Shimazu
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - John C Newman
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Sebastian Schröder
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Melanie Ott
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| | - Ronen Marmorstein
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Philadelphia, United States
| | - Jordan Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
| | - Stephen Nimer
- University of Miami, Gables, United States.,Sylvester Comprehensive Cancer Center, Miami, United States
| | - Eric Verdin
- Gladstone Institutes, University of California, San Francisco, United States.,Department of Medicine, University of California, San Francisco, United States
| |
Collapse
|
6
|
Zampronio AR, Soares DM, Souza GEP. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2015; 2:506-21. [PMID: 27227071 PMCID: PMC4843933 DOI: 10.1080/23328940.2015.1102802] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 11/13/2022] Open
Abstract
Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.
Collapse
Affiliation(s)
- Aleksander R Zampronio
- Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
| | - Denis M Soares
- Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
| | - Glória E P Souza
- Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Zampronio AR, Soares DM, Souza GEP. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2015. [PMID: 27227071 DOI: 10.1080/23328940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.
Collapse
Affiliation(s)
- Aleksander R Zampronio
- Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
| | - Denis M Soares
- Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
| | - Glória E P Souza
- Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Maher A, El-Sayed NSE, Breitinger HG, Gad MZ. Overexpression of NMDAR2B in an inflammatory model of Alzheimer's disease: Modulation by NOS inhibitors. Brain Res Bull 2014; 109:109-16. [DOI: 10.1016/j.brainresbull.2014.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022]
|
9
|
Uusi-Oukari M, Maksay G. Allosteric modulation of [3H]EBOB binding to GABAA receptors by diflunisal analogues. Neurochem Int 2006; 49:676-82. [PMID: 16884828 DOI: 10.1016/j.neuint.2006.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 06/06/2006] [Indexed: 11/30/2022]
Abstract
Allosteric modulatory effects of 12 biphenyl derivatives of diflunisal and two fenamates were studied on A-type receptors of GABA (GABAAR) via [3H]4'-ethynylbicycloorthobenzoate (EBOB) binding to synaptic membrane preparations of rat forebrain. A simplified ternary allosteric model was used to determine binding affinities of the compounds and the extents of cooperativity with GABA. Structure activity analysis revealed that 4-hydroxy substituents of the biphenyls contribute to their micromolar binding affinities more than 3-carboxyl groups. Electron-withdrawing fluorinated substituents, especially in ortho position, were also advantageous. These factors also strongly enhanced the cooperativity with GABA binding. The correlation between displacing potency of the allosteric agents and cooperativity with GABA suggests that these processes are associated with common mechanisms. The pharmacological relevance of these interactions is discussed. These data help to differentiate the structural requirements of these agents to act on GABAergic neurotransmission versus nonsteroidal anti-inflammatory effects.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Molecular Pharmacology, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, POB 17, Hungary.
| | | |
Collapse
|
10
|
Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 2006; 13:236-49. [PMID: 17107884 DOI: 10.1080/13506120600960882] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Rate-limiting transthyretin (TTR) tetramer dissociation and monomer misfolding enable misassembly into numerous aggregate morphologies including amyloid, a process genetically linked to and thought to cause amyloid pathology. T119M TTR trans-suppressor subunit inclusion into tetramers otherwise composed of disease-associated subunits ameliorates human amyloidosis by increasing the tetramer dissociation barrier. Diflunisal binding to the 99% unoccupied L-thyroxine binding sites in TTR also increases the tetramer dissociation barrier; hence, we investigated the feasibility of using diflunisal for the treatment of human TTR amyloidosis using healthy volunteers. METHODS Diflunisal (125, 250 or 500 mg bid) was orally administered to groups of 10 subjects for 7 days to evaluate serum diflunisal concentration, diflunisal binding stoichiometry to TTR, and the extent of diflunisal imposed TTR kinetic stabilization against urea- and acid-mediated TTR denaturation in human serum. The rates of urea-mediated tetramer dissociation and acid-mediated aggregation as a function of diflunisal concentration were also evaluated in vitro, utilizing physiologically relevant concentrations identified by the above experiments. RESULTS In the 250 mg bid group, 12 h after the 13th oral dose, the diflunisal serum concentration of 146 +/- 39 microM was sufficient to afford a TTR binding stoichiometry exceeding 0.95 +/- 0.13 ( approximately 1.75 corrected). Diflunisal binding to TTR at this dose slowed urea-mediated dissociation and acid-mediated TTR aggregation at least, threefold (p < 0.05) in serum and in vitro, consistent with kinetic stabilization of TTR. CONCLUSION Diflunisal-mediated kinetic stabilization of TTR should ameliorate TTR amyloidoses, provided that the nonsteroidal anti-inflammatory drug liabilities can be managed clinically.
Collapse
Affiliation(s)
- Yoshiki Sekijima
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
11
|
Tojo K, Sekijima Y, Kelly JW, Ikeda SI. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci Res 2006; 56:441-9. [PMID: 17028027 DOI: 10.1016/j.neures.2006.08.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 08/16/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Transthyretin (TTR) tetramer dissociation, misfolding and misassembly are required for the process of amyloid fibril formation associated with familial amyloid polyneuropathy (FAP). Preferential stabilization of the native TTR tetramer over the dissociative transition state by small molecule binding raises the kinetic barrier of tetramer dissociation, preventing amyloidogenesis. Two NSAIDs, diflunisal and flufenamic acid, and trivalent chromium have this ability. Here, we investigated the feasibility of using these molecules for the treatment of FAP utilizing serum samples from 37 FAP patients with 10 different mutations. We demonstrated that the TTR heterotetramer structures in FAP patients serum are significantly less stable than that in normal subjects, indicating the instability of the variant TTR structure is a fundamental cause of TTR amyloidosis. We also demonstrated that therapeutic serum concentrations of diflunisal (100-200 microM) stabilized serum variant TTR tetramer better than those of flufenamic acid (35-70 microM). Trivalent chromium at levels obtained by oral supplementation did not stabilize TTR in a statistically significant fashion. Importantly, diflunisal increased serum TTR stability in FAP patients beyond the level of normal controls.
Collapse
Affiliation(s)
- Kana Tojo
- Department of Neurology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | | | | | | |
Collapse
|
12
|
Reixach N, Adamski-Werner SL, Kelly JW, Koziol J, Buxbaum JN. Cell based screening of inhibitors of transthyretin aggregation. Biochem Biophys Res Commun 2006; 348:889-97. [PMID: 16904635 DOI: 10.1016/j.bbrc.2006.07.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 07/20/2006] [Indexed: 01/31/2023]
Abstract
The amyloidoses are the extracellular subset of a group of diseases in which in vivo protein misfolding leads to a pathologic gain of function, i.e., aggregation leading to protein deposition, with subsequent tissue damage. Wild-type and mutant transthyretins (TTR) are the etiologic agents in prototypic systemic amyloidoses. We describe a cell-based assay that measures the cytotoxicity of physiologic concentrations of the amyloidogenic Val30Met TTR variant (V30M TTR) using cells of the same lineage as the in vivo tissue target of amyloid deposition. We have utilized the assay to screen small molecules for their capacity to inhibit the TTR-induced cell damage. We compared the inhibitory activity of each compound with its ability to prevent TTR fibril formation in vitro. Our results emphasize the importance of screening compounds under physiologic conditions. Moreover, if a common conformational intermediate is responsible for cell death in all the amyloid diseases, the cell-based assay has the potential to aid in the discovery of compounds useful in the treatment of amyloidoses caused by other misfolded proteins as well as those caused by TTR.
Collapse
Affiliation(s)
- Natàlia Reixach
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
13
|
Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW. Diflunisal Analogues Stabilize the Native State of Transthyretin. Potent Inhibition of Amyloidogenesis. J Med Chem 2003; 47:355-74. [PMID: 14711308 DOI: 10.1021/jm030347n] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Analogues of diflunisal, an FDA-approved nonsteroidal antiinflammatory drug (NSAID), were synthesized and evaluated as inhibitors of transthyretin (TTR) aggregation, including amyloid fibril formation. High inhibitory activity was observed for 26 of the compounds. Of those, eight exhibited excellent binding selectivity for TTR in human plasma (binding stoichiometry >0.50, with a theoretical maximum of 2.0 inhibitors bound per TTR tetramer). Biophysical studies reveal that these eight inhibitors dramatically slow tetramer dissociation (the rate-determining step of amyloidogenesis) over a duration of 168 h. This appears to be achieved through ground-state stabilization, which raises the kinetic barrier for tetramer dissociation. Kinetic stabilization of WT TTR by these eight inhibitors is further substantiated by the decreasing rate of amyloid fibril formation as a function of increasing inhibitor concentration (pH 4.4). X-ray cocrystal structures of the TTR.18(2) and TTR.20(2) complexes reveal that 18 and 20 bind in opposite orientations in the TTR binding site. Moving the fluorines from the meta positions in 18 to the ortho positions in 20 reverses the binding orientation, allowing the hydrophilic aromatic ring of 20 to orient in the outer binding pocket where the carboxylate engages in favorable electrostatic interactions with the epsilon-ammonium groups of Lys 15 and 15'. The hydrophilic aryl ring of 18 occupies the inner binding pocket, with the carboxylate positioned to hydrogen bond to the serine 117 and 117' residues. Diflunisal itself appears to occupy both orientations based on the electron density in the TTR.1(2) structure. Structure-activity relationships reveal that para-carboxylate substitution on the hydrophilic ring and dihalogen substitution on the hydrophobic ring afford the most active TTR amyloid inhibitors.
Collapse
Affiliation(s)
- Sara L Adamski-Werner
- The Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institiute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Non-steroidal anti-inflammatory drugs have a direct action on spinal nociceptive processing in vivo with a relative order of potency which correlates with their capacity as inhibitors of cyclooxygenase activity. However, recent clinical surveys and new in vivo evidence strongly suggest that for some of these agents, centrally mediated analgesia may also be achieved by additional mechanisms, which are independent of prostaglandin synthesis inhibition. In this review we explore the likelihood for such mechanisms following an extensive survey of existing data. The implications of these mechanisms are discussed in the light of our current understanding of spinal nociceptive processing.
Collapse
Affiliation(s)
- Keith McCormack
- Drug Research Group, McCormack Ltd., Church House, Church Square, Leighton Buzzard LU7 7AE UK
| |
Collapse
|
15
|
McCormack K. The spinal actions of nonsteroidal anti-inflammatory drugs and the dissociation between their anti-inflammatory and analgesic effects. Drugs 1994; 47 Suppl 5:28-45; discussion 46-7. [PMID: 7525183 DOI: 10.2165/00003495-199400475-00006] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The traditional classification of nonsteroidal anti-inflammatory drugs (NSAIDs) as exclusively 'peripherally acting' agents is no longer valid. For many of these agents there is a growing body of evidence in favour of an additional central mechanism for their anti-inflammatory and analgesic effects. This view is further supported by the recent discovery that a substantial component of the hyperalgesia and allodynia that characterise postinjury hypersensitivity occurs in the CNS, notably the spinal dorsal horn. An important corollary is that inhibition of central nociceptive processing may represent an important analgesic mode of action for those NSAIDs that are effective in the management of pain after tissue injury. Historically, attempts to group this heterogeneous class of compounds into a single entity are largely derived from the observation that the majority of clinically useful NSAIDs are weak organic acids (pKa 3 to 5), bind extensively to plasma albumin (= 99%), and inhibit (to varying degrees) prostaglandin synthesis. However, the significance of these various unifying features is becoming increasingly obscure. While inhibition of prostaglandin synthesis apparently remains an important analgesic mode of action for NSAIDs both in the periphery and the CNS, other mechanisms should be considered. Some NSAIDs, in addition to their effects on prostaglandin synthesis, also affect the synthesis and activity of other neuroactive substances believed to have key roles in processing nociceptive input within the dorsal horn. It has been argued that these other actions, in conjunction with inhibition of prostaglandin synthesis, may synergistically augment the effects of NSAIDs on spinal nociceptive processing. Despite much effort, it remains a formidable task to assess the significance of these differential mechanisms upon clinical pain states. In the meantime, however, it may be possible, on the basis of in vivo studies, to evaluate the impact of putative spinal analgesic mechanisms that are unrelated to inhibition of prostaglandin synthesis. This approach has recently been extended to include the identification of pharmacokinetic and clinical correlates of these derived in vivo parameters, and in this way attempt to demonstrate clinical relevance.
Collapse
Affiliation(s)
- K McCormack
- Drug Research Group, McCormack Ltd., Bedfordshire, England
| |
Collapse
|
16
|
|