1
|
Garcia Jimenez D, Vallaro M, Rossi Sebastiano M, Apprato G, D’Agostini G, Rossetti P, Ermondi G, Caron G. Chamelogk: A Chromatographic Chameleonicity Quantifier to Design Orally Bioavailable Beyond-Rule-of-5 Drugs. J Med Chem 2023; 66:10681-10693. [PMID: 37490408 PMCID: PMC10424176 DOI: 10.1021/acs.jmedchem.3c00823] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 07/27/2023]
Abstract
New chemical modalities in drug discovery include molecules belonging to the bRo5 chemical space. Because of their complex and flexible structure, bRo5 compounds often suffer from a poor solubility/permeability profile. Chameleonicity describes the capacity of a molecule to adapt to the environment through conformational changes; the design of molecular chameleons is a medicinal chemistry strategy simultaneously optimizing solubility and permeability. A default method to quantify chameleonicity in early drug discovery is still missing. Here we introduce Chamelogk, an automated, fast, and cheap chromatographic descriptor of chameleonicity. Moreover, we report measurements for 55 Ro5 and bRo5 compounds and validate our method with literature data. Then, selected case studies (macrocycles, nonmacrocyclic compounds, and PROTACs) are used to illustrate the application of Chamelogk in combination with lipophilicity (BRlogD) and polarity (Δ log kwIAM) descriptors. Overall, we show how Chamelogk deserves being included in property-based drug discovery strategies to design oral bioavailable bRo5 compounds.
Collapse
Affiliation(s)
- Diego Garcia Jimenez
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Maura Vallaro
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Apprato
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia D’Agostini
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Paolo Rossetti
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Caron
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| |
Collapse
|
2
|
Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From Toxins to Therapeutics. Toxins (Basel) 2021; 13:347. [PMID: 34065929 PMCID: PMC8150546 DOI: 10.3390/toxins13050347] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions. Here, we review each functional class of macrolides for their common structures, mechanisms of action, pharmacology, and human cellular targets.
Collapse
Affiliation(s)
| | | | | | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.D.L.); (K.E.K.); (H.M.)
| |
Collapse
|
3
|
Shi CC, Song YQ, He RJ, Guan XQ, Song LL, Chen ST, Sun MR, Ge GB, Zhang LR. Rapalogues as hCES2A Inhibitors: In Vitro and In Silico Investigations. Eur J Drug Metab Pharmacokinet 2020; 46:129-139. [PMID: 33140264 DOI: 10.1007/s13318-020-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Rapamycin and its semi-synthetic analogues (rapalogues) are frequently used in combination with other prescribed medications in clinical settings. Although the inhibitory effects of rapalogues on cytochrome P450 enzymes (CYPs) have been well examined, the inhibition potentials of rapalogues on human esterases have not been investigated. Herein, the inhibition potentials and inhibitory mechanisms of six marketed rapalogues on human esterases are investigated. METHODS The inhibitory effects of six marketed rapalogues (rapamycin, zotarolimus, temsirolimus, everolimus, pimecrolimus and tacrolimus) on three major esterases, including human carboxylesterases 1 (hCES1A), human carboxylesterases 2 (hCES2A) and butyrylcholinesterase (BuChE), were assayed using isozyme-specific substrates. Inhibition kinetic analyses and docking simulations were performed to investigate the inhibitory mechanisms of the rapalogues with strong hCES2A inhibition potency. RESULTS Zotarolimus and pimecrolimus displayed strong inhibition of human hCES2A but these agents did not inhibit hCES1A or BuChE. Further investigation demonstrated that zotarolimus could strongly inhibit intracellular hCES2A in living HepG2 cells, with an estimated IC50 value of 4.09 µM. Inhibition kinetic analyses revealed that zotarolimus inhibited hCES2A-catalyzed fluorescein diacetate hydrolysis in a mixed manner, with the Ki value of 1.61 µM. Docking simulations showed that zotarolimus could tightly bind on hCES2A at two district ligand-binding sites, consistent with its mixed inhibition mode. CONCLUSION Our findings demonstrate that several marketed rapalogues are potent and specific hCES2A inhibitors, and these agents can serve as leading compounds for the development of more efficacious hCES2A inhibitors to modulate the pharmacokinetic profiles and toxicity of hCES2A-substrate drugs (such as the anticancer agent irinotecan).
Collapse
Affiliation(s)
- Cheng-Cheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China. .,Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yun-Qing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Rong-Jing He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xiao-Qing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li-Lin Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shi-Tong Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Meng-Ru Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
4
|
Draelos Z, Nayak A, Pariser D, Shupack JL, Chon K, Abrams B, Paul CF. Pharmacokinetics of topical calcineurin inhibitors in adult atopic dermatitis: a randomized, investigator-blind comparison. J Am Acad Dermatol 2006; 53:602-9. [PMID: 16198779 DOI: 10.1016/j.jaad.2005.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 06/15/2005] [Accepted: 06/15/2005] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We sought to compare pharmacokinetics of pimecrolimus cream 1% and tacrolimus ointment 0.1% in adults with extensive, moderate to severe atopic dermatitis. Secondary end points included efficacy and safety. METHODS Patients received twice-daily treatment for 13 days. Blood concentrations of pimecrolimus and tacrolimus were measured at days 1, 5, and 13. Treatment success was defined as an Investigators' Global Assessment score of 0 (clear) or 1 (almost clear). RESULTS Tacrolimus was detectable in 36% of blood samples and pimecrolimus was detectable in 12%. In patients with measurable blood drug concentrations, systemic exposure to tacrolimus (mean area under the curve(0-10h) < 9.7 ng.h/mL; n = 7) was higher than to pimecrolimus (mean area under the curve(0-10h) < 2.5 ng.h/mL; n = 2). Whole-body treatment success (day 13) was achieved in 1 of 18 (5.6%) and 2 of 19 (10.5%) patients treated with pimecrolimus and tacrolimus, respectively, and face/neck treatment success in 5 of 18 (27.8%) and 5 of 19 (26.3%) patients, respectively. Patients included in the study were adult patients with severe atopic dermatitis. The results and conclusions drawn from this study population may not be applicable for the majority of patients with atopic dermatitis who have mild to moderate disease. CONCLUSION Pimecrolimus appears to be associated with lower systemic drug exposure than tacrolimus.
Collapse
Affiliation(s)
- Zoe Draelos
- Dermatology Consulting Services, High Point, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Zollinger M, Waldmeier F, Hartmann S, Zenke G, Zimmerlin AG, Glaenzel U, Baldeck JP, Schweitzer A, Berthier S, Moenius T, Grassberger MA. Pimecrolimus: absorption, distribution, metabolism, and excretion in healthy volunteers after a single oral dose and supplementary investigations in vitro. Drug Metab Dispos 2006; 34:765-74. [PMID: 16467136 DOI: 10.1124/dmd.105.007732] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The absorption and disposition of pimecrolimus, a calcineurin inhibitor developed for the treatment of inflammatory skin diseases, was investigated in four healthy volunteers after a single oral dose of 15 mg of [(3)H]pimecrolimus. Supplementary information was obtained from in vitro experiments. Pimecrolimus was rapidly absorbed. After t(max) (1-3 h), its blood concentrations fell quickly to 3% of C(max) at 24 h, followed by a slow terminal elimination phase (average t(1/2) 62 h). Radioactivity in blood decreased more slowly (8% of C(max) at 24 h). The tissue and blood cell distribution of pimecrolimus was high. The metabolism of pimecrolimus in vivo, which could be well reproduced in vitro (human liver microsomes), was highly complex and involved multiple oxidative O-demethylations and hydroxylations. In blood, pimecrolimus was the major radiolabeled component up to 24 h (49% of radioactivity area under the concentration-time curve(0-24) h), accompanied by a large number of minor metabolites. The average fecal excretion of radioactivity between 0 and 240 h amounted to 78% of dose and represented predominantly a complex mixture of metabolites. In urine, 0 to 240 h, only about 2.5% of the dose and no parent drug was excreted. Hence, pimecrolimus was eliminated almost exclusively by oxidative metabolism. The biotransformation of pimecrolimus was largely catalyzed by CYP3A4/5. Metabolite pools generated in vitro showed low activity in a calcineurin-dependent T-cell activation assay. Hence, metabolites do not seem to contribute significantly to the pharmacological activity of pimecrolimus.
Collapse
Affiliation(s)
- Markus Zollinger
- Novartis Pharma AG, WKL-135.2.21, P.O. box, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marsland AM, Soundararajan S, Joseph K, Kaplan AP. Effects of calcineurin inhibitors on an in vitro assay for chronic urticaria. Clin Exp Allergy 2005; 35:554-9. [PMID: 15898974 DOI: 10.1111/j.1365-2222.2005.02242.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic urticaria is a common skin disorder, which causes considerable morbidity. In approximately 40% of cases, patients have an autoimmune disorder in which functional antibodies cause degranulation of mast cells and basophils, and C5a complement augments this in varying amounts from patient to patient. Since the calcineurin inhibitor ciclosporin has been used in chronic autoimmune urticaria, we examined the effect of ciclosporin and other drugs on the release of histamine from basophils when stimulated by sera from patients with chronic autoimmune urticaria. METHODS Leucocytes from healthy donors were isolated and incubated in varying concentrations of ciclosporin, ascomycin, methotrexate, diphenhydramine or hydroxyzine for 30 min prior to stimulation with serum from urticaria patients known to have functional immunoglobulin (Ig)G antibodies directed against the alpha subunit of the IgE receptor. Histamine release was then measured. RESULTS Pre-incubating cells with ciclosporin and ascomycin produced dose-dependent inhibition of histamine release when cells were stimulated by sera of urticaria patients, by purified IgG from these sera, but not by C5a. Inhibition was not prevented by C5a receptor blocking antibodies. No inhibition was seen with methotrexate, diphenhydramine or hydroxyzine. CONCLUSIONS This is the first demonstration of inhibition of histamine release by calcineurin inhibitors employing sera of patients with chronic autoimmune urticaria. These drugs may work by interfering with intracellular signalling in cells following cross-linking of the IgE receptor, but not following stimulation of the C5a receptor.
Collapse
Affiliation(s)
- A M Marsland
- Department of Medicine, Division of Pulmonary and Critical Care, Allergy and the Clinical Immunology and the Konishi-MUSC Institute for Inflammation Research, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|