1
|
Sun SS, Shao K, Lu JQ, An HM, Shi HQ, Zhou PJ, Chen B. Influence of Calcineurin Inhibitors and Genetic Polymorphism of Transporters on Enterohepatic Circulation and Exposure of Mycophenolic Acid in Chinese Adult Renal Allograft Recipients. J Clin Pharmacol 2023; 63:410-420. [PMID: 36394393 DOI: 10.1002/jcph.2176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
Abstract
There is significant enterohepatic circulation (EHC) during the disposition of mycophenolic acid (MPA). The aim of this study was to elucidate factors influencing the EHC of MPA in Chinese adult renal allograft recipients. After 2 weeks of therapy with mycophenolate mofetil or enteric-coated mycophenolate sodium, blood samples were collected from 125 patients at 0 to 12 hours post-administration and MPA concentrations were determined. The influence of calcineurin inhibitors (CNIs) and genetic polymorphisms on MPA exposure and EHC was studied. The Shapley additive explanations method was used to estimate the impact of various factors on the area under the plasma drug concentration-time curve (AUC0-12h ) for MPA. An extreme gradient boosting (XGboost) machine learning-based model was established to predict AUC0-12h . Results showed that the dose-normalized AUC6-12h (dn-AUC6-12h ) of MPA was significantly lower in patients co-administered with cyclosporine (CsA) than in patients co-administered with tacrolimus (TAC) (P < .05). For patients co-administered with TAC, patients with ABCC2 C-24T CC or SLCO1B1 T521C TT genotypes had significantly higher values of dn-AUC6-12h (P < .05). Patients with SLCO1B3 334T/699G alleles had significantly lower dn-AUC6-12h values than homozygotes (P < .05). By introducing body weight, age, and EHC-related factors, including co-administered CNIs and genetic polymorphism of drug transporters, as covariates in the XGboost machine learning model, the prediction performance of AUC0-12h for MPA in Chinese adult renal allograft recipients can be improved.
Collapse
Affiliation(s)
- Sha-Sha Sun
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Shao
- Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Qian Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Min An
- Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao-Qiang Shi
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Jun Zhou
- Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Chen
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Estimation of Mycophenolic Acid Exposure in Chinese Renal Transplant Patients by a Joint Deep Learning Model. Ther Drug Monit 2022; 44:738-746. [PMID: 36070781 DOI: 10.1097/ftd.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/04/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND To predict mycophenolic acid (MPA) exposure in renal transplant recipients using a deep learning model based on a convolutional neural network with bilateral long short-term memory and attention methods. METHODS A total of 172 Chinese renal transplant patients were enrolled in this study. The patients were divided into a training group (n = 138, Ruijin Hospital) and a validation group (n = 34, Zhongshan Hospital). Fourteen days after renal transplantation, rich blood samples were collected 0-12 hours after MPA administration. The plasma concentration of total MPA was measured using an enzyme-multiplied immunoassay technique. A limited sampling strategy based on a convolutional neural network-long short-term memory with attention (CALS) model for the prediction of the area under the concentration curve (AUC) of MPA was established. The established model was verified using the data from the validation group. The model performance was compared with that obtained from multiple linear regression (MLR) and maximum a posteriori (MAP) methods. RESULTS The MPA AUC 0-12 of the training and validation groups was 54.28 ± 18.42 and 41.25 ± 14.53 µg·ml -1 ·h, respectively. MPA plasma concentration after 2 (C 2 ), 6 (C 6 ), and 8 (C 8 ) hours of administration was the most significant factor for MPA AUC 0-12 . The predictive performance of AUC 0-12 estimated using the CALS model of the validation group was better than the MLR and MAP methods in previous studies (r 2 = 0.71, mean prediction error = 4.79, and mean absolute prediction error = 14.60). CONCLUSIONS The CALS model established in this study was reliable for predicting MPA AUC 0-12 in Chinese renal transplant patients administered mycophenolate mofetil and enteric-coated mycophenolic acid sodium and may have good generalization ability for application in other data sets.
Collapse
|
3
|
Sobiak J, Resztak M. A Systematic Review of Multiple Linear Regression-Based Limited Sampling Strategies for Mycophenolic Acid Area Under the Concentration-Time Curve Estimation. Eur J Drug Metab Pharmacokinet 2021; 46:721-742. [PMID: 34480746 PMCID: PMC8599354 DOI: 10.1007/s13318-021-00713-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
Background and Objective One approach of therapeutic drug monitoring in the case of mycophenolic acid (MPA) is a limited sampling strategy (LSS), which allows the evaluation of the area under the concentration–time curve (AUC) based on few concentrations. The aim of this systematic review was to review the MPA LSSs and define the most frequent time points for MPA determination in patients with different indications for mycophenolate mofetil (MMF) administration. Methods The literature was comprehensively searched in July 2021 using PubMed, Scopus, and Medline databases. Original articles determining multiple linear regression (MLR)-based LSSs for MPA and its free form (fMPA) were included. Studies on enteric-coated mycophenolic sodium, previously established LSS, Bayesian estimator, and different than twice a day dosing were excluded. Data were analyzed separately for (1) adult renal transplant recipients, (2) adults with other than renal transplantation indication, and (3) for pediatric patients. Results A total of 27, 17, and 11 studies were found for groups 1, 2, and 3, respectively, and 126 MLR-based LSS formulae (n = 120 for MPA, n = 6 for fMPA) were included in the review. Three time-point equations were the most frequent. Four MPA LSSs: 2.8401 + 5.7435 × C0 + 0.2655 × C0.5 + 1.1546 × C1 + 2.8971 × C4 for adult renal transplant recipients, 1.783 + 1.248 × C1 + 0.888 × C2 + 8.027 × C4 for adults after islet transplantation, 0.10 + 11.15 × C0 + 0.42 × C1 + 2.80 × C2 for adults after heart transplantation, and 8.217 + 3.163 × C0 + 0.994 × C1 + 1.334 × C2 + 4.183 × C4 for pediatric renal transplant recipients, plus one fMPA LSS, 34.2 + 1.12 × C1 + 1.29 × C2 + 2.28 × C4 + 3.95 × C6 for adult liver transplant recipients, seemed to be the most promising and should be validated in independent patient groups before introduction into clinical practice. The LSSs for pediatric patients were few and not fully characterized. There were only a few fMPA LSSs although fMPA is a pharmacologically active form of the drug. Conclusions The review includes updated MPA LSSs, e.g., for different MPA formulations (suspension, dispersible tablets), generic form, and intravenous administration for adult and pediatric patients, and emphasizes the need of individual therapeutic approaches according to MMF indication. Five MLR-based MPA LSSs might be implemented into clinical practice after evaluation in independent groups of patients. Further studies are required, e.g., to establish fMPA LSS in pediatric patients.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| |
Collapse
|
4
|
The Evaluation of Multiple Linear Regression-Based Limited Sampling Strategies for Mycophenolic Acid in Children with Nephrotic Syndrome. Molecules 2021; 26:molecules26123723. [PMID: 34207320 PMCID: PMC8235059 DOI: 10.3390/molecules26123723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
We evaluated mycophenolic acid (MPA) limited sampling strategies (LSSs) established using multiple linear regression (MLR) in children with nephrotic syndrome treated with mycophenolate mofetil (MMF). MLR-LSS is an easy-to-determine approach of therapeutic drug monitoring (TDM). We assessed the practicability of different LSSs for the estimation of MPA exposure as well as the optimal time points for MPA TDM. The literature search returned 29 studies dated 1998–2020. We applied 53 LSSs (n = 48 for MPA, n = 5 for free MPA [fMPA]) to predict the area under the time-concentration curve (AUCpred) in 24 children with nephrotic syndrome, for whom we previously determined MPA and fMPA concentrations, and compare the results with the determined AUC (AUCtotal). Nine equations met the requirements for bias and precision ±15%. The MPA AUC in children with nephrotic syndrome was predicted the best by four time-point LSSs developed for renal transplant recipients. Out of five LSSs evaluated for fMPA, none fulfilled the ±15% criteria for bias and precision probably due to very high percentage of bound MPA (99.64%). MPA LSS for children with nephrotic syndrome should include blood samples collected 1 h, 2 h and near the second MPA maximum concentration. MPA concentrations determined with the high performance liquid chromatography after multiplying by 1.175 may be used in LSSs based on MPA concentrations determined with the immunoassay technique. MPA LSS may facilitate TDM in the case of MMF, however, more studies on fMPA LSS are required for children with nephrotic syndrome.
Collapse
|
5
|
Xiang H, Zhou H, Zhang J, Sun Y, Wang Y, Han Y, Cai J. Limited Sampling Strategy for Estimation of Mycophenolic Acid Exposure in Adult Chinese Heart Transplant Recipients. Front Pharmacol 2021; 12:652333. [PMID: 33912061 PMCID: PMC8072337 DOI: 10.3389/fphar.2021.652333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background: With the increasing use of mycophenolic acid (MPA) formulations in organ transplantation, the need for personalized immunosuppressive therapy has become well recognized based on therapeutic drug monitoring (TDM) for avoidance of drug-related toxicity while maintaining efficacy. Few studies have assessed area under the 12 h concentration-time curve of MPA (MPA-AUC0–12h) in heart transplant recipients who received mycophenolate mofetil (MMF) dispersible tablets (MMFdt). The aim of the study was to investigate the pharmacokinetics (PK) of MMFdt combined with tacrolimus and further to develop a practical method for estimation of MPA-AUC0–12h using a limited sampling strategy (LSS). Methods: A prospective study in a single center was performed in patients who continuously administrated with MMFdt or MMF capsule (MMFc) for at least 7 days after cardiac transplantation from 2018 to 2020. A total of 48 Chinese adult heart transplant recipients were enrolled. Blood samples were collected before and 0.5, 1, 1.5, 2, 4, 6, 8, 10 and 12 h after MMF administration. The validated high-performance liquid chromatography combined with tandem mass spectrometry method was used to measure MPA concentrations. Non-compartmental pharmacokinetic (PK) analysis was applied to calculate the data obtained from individual recipients by WinNonlin. LSS models were developed for MPA-AUC0–12h prediction with multivariate stepwise regression analysis. Results: A large inter-individual variability was observed in AUC0–12h, Tmax, Cmax, MRT0–12h, t1/2 and CL/F after multiple dosing of MMFdt. However, no significant differences were observed between main PK parameters of MMFdt and MMFc. The best estimation of MPA-AUC0–12h was achieved with four points: MPA-AUC0–12h = 8.424 + 0.781 × C0.5 + 1.263 × C2 + 1.660 × C4 + 3.022 × C6 (R2 = 0.844). The mean prediction error (MPE) and mean absolute prediction error (MAPE) of MPA-AUC0–12h were 2.09 ± 14.05% and 11.17 ± 8.52%, respectively. Both internal and external validations showed good applicability for four-point LSS equation. Conclusion: The results provide strong evidence for the use of LSS model other than a single time-point concentration of MPA when performing TDM. A four-point LSS equation using the concentrations at 0.5, 2, 4, 6 h is recommended to estimate MPA-AUC0–12h during early period after transplantation in Chinese adult heart transplant recipients receiving MMFdt or MMFc. However, proper internal and external validations with more patients should be conducted in the future.
Collapse
Affiliation(s)
- Hongping Xiang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Sun
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yirong Wang
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Jie Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Catić-Đorđević A, Pavlović I, Spasić A, Stefanović N, Pavlović D, Damnjanović I, Mitić B, Veličković-Radovanović R. Assessment of pharmacokinetic mycophenolic acid clearance models using Monte Carlo numerical analysis. Xenobiotica 2021; 51:387-393. [PMID: 33416418 DOI: 10.1080/00498254.2020.1871532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Previously, we performed population pharmacokinetic analysis and indicated age, mycophenolate mofetil (MMF)/mycophenolic acid (MPA) daily dose, and presence of nifedipine in patient therapy as significant predictors of MPA apparent clearance (CL/F) variability. This study aimed to determine the reliability of previously published population pharmacokinetic models derived from similar studies. Furthermore, this study investigated correspondence between chosen population models from the literature.By means of the Monte Carlo simulation method, pharmacokinetic models from different studies are simulated and analysed in the range of standard deviations of measured system parameters as well as the range of observed model parameters taken from the comparison studies.The 1000 numerical simulations were performed for every analysed model in order to calculate the most possible MPA CL/F values according to the expected values from the performed experiment. Fitting our results with other models showed how the presence of nifedipine makes difference in MPA CL/F values.By testing the data from selected studies into our model, a similar range of expected CL/F values was obtained, which may confirm the validity of our model. The results of our population pharmacokinetic study are partially applicable in models by other researchers.
Collapse
Affiliation(s)
| | - Ivan Pavlović
- Faculty of Mechanical Engineering, University of Nis, Nis, Serbia
| | - Ana Spasić
- Faculty of Medicine, University of Nis, Nis, Serbia
| | | | | | | | - Branka Mitić
- Faculty of Medicine, University of Nis, Nis, Serbia
- Clinic of Nephrology, Clinical Center Nis, Nis, Serbia
| | | |
Collapse
|
8
|
Sheng C, Zhao Q, Niu W, Qiu X, Zhang M, Jiao Z. Effect of Protein Binding on Exposure of Unbound and Total Mycophenolic Acid: A Population Pharmacokinetic Analysis in Chinese Adult Kidney Transplant Recipients. Front Pharmacol 2020; 11:340. [PMID: 32265712 PMCID: PMC7100081 DOI: 10.3389/fphar.2020.00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES The population pharmacokinetic (popPK) characteristics of total mycophenolic acid (tMPA) have been investigated in various ethnic populations. However, investigations of popPK of unbound MPA (uMPA) are few. Thus, a popPK analysis was performed to: (1) characterize the PK of uMPA and tMPA and its 7-O-mycophenolic acid glucuronide (MPAG) metabolite in kidney transplant patients cotreated with cyclosporine (CsA), and (2) identify the clinically significant covariates that explain variability in the dose-exposure relationship. METHODS A total of 740 uMPA, 741 tMPA, and 734 total MPAG (tMPAG) concentration-time data from 58 Chinese kidney transplant patients receiving MPA in combination with CsA were analyzed using NONMEM® software with the stochastic approximation expectation maximization (SAEM) followed by the important sampling (IMP) method. The influence of covariates was tested using a stepwise procedure. RESULTS The PK of uMPA and unbound MPAG (uMPAG) were characterized by a two- and one-compartment model with first-order elimination, respectively. A linear protein binding model was used to link uMPA and tMPA. Apparent clearance (CL/F) and central volume of distribution (VC/F) of uMPA (CLuMPA/F and VCuMPA/F, respectively) and protein binding rate constant (k B) were estimated to be 851 L/h [relative standard error (RSE), 7.1%], 718 L (18.5%) and 53.4/h (2.3%), respectively. For uMPAG, the population values (RSE) of CL/F (CLuMPAG) and VC/F (VCuMPAG/F) were 5.71 L/h (4.4%) and 29.9 L (7.7%), respectively. Between-subject variability (BSVs) on CLuMPA/F, VCuMPA/F, CLuMPAG/F, and VCuMPAG/F were 51.0, 80.0, 31.8 and 48.4%, respectively, whereas residual unexplained variability (RUVs) for uMPA, tMPA, and uMPAG were 47.0, 45.9, and 22.0%, respectively. Significant relationships were found between k B and serum albumin (ALB) and between CLuMPAG/F and glomerular filtration rate (GFR). Additionally, model-based simulation showed that changes in ALB concentrations substantially affected tMPA but not uMPA exposure. CONCLUSIONS The established model adequately described the popPK characteristics of the uMPA, tMPA, and MPAG. The estimated CLuMPA/F and unbound fraction of MPA (FUMPA) in Chinese kidney transplant recipients cotreated with CsA were comparable to those published previously in Caucasians. We recommend monitoring uMPA instead of tMPA to optimize mycophenolate mofetil (MMF) dosing for patients with lower ALB levels.
Collapse
Affiliation(s)
- Changcheng Sheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Qun Zhao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanjie Niu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- Department of Nephropathy, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Chen B, Shao K, An H, Shi H, Lu J, Zhai X, Liu X, Wang X, Xu D, Zhou P. Population Pharmacokinetics and Bayesian Estimation of Mycophenolic Acid Exposure in Chinese Renal Allograft Recipients After Administration of EC‐MPS. J Clin Pharmacol 2018; 59:578-589. [DOI: 10.1002/jcph.1352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Bing Chen
- Department of PharmacyRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Kun Shao
- Organ Transplantation CenterRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Hui‐Min An
- Organ Transplantation CenterRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Hao‐Qiang Shi
- Department of PharmacyRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Jia‐Qian Lu
- Department of PharmacyRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao‐Hui Zhai
- Department of PharmacyRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao‐Xue Liu
- Department of PharmacyRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiang‐Hui Wang
- Organ Transplantation CenterRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Da Xu
- Organ Transplantation CenterRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Pei‐Jun Zhou
- Organ Transplantation CenterRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
10
|
Chen B, Huang JJ, Chen HF, Xu BM. Clinical pharmacy service practice in a Chinese tertiary hospital. Drug Metab Pers Ther 2016; 30:215-30. [PMID: 26457791 DOI: 10.1515/dmpt-2015-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
Abstract
Clinical pharmacy service is focused on the rationality and safety of medication therapy. Clinical pharmacists play an important role in designing therapeutic regimen, preventing medication errors, reducing the incidence of adverse drug reaction, and saving medical costs. Although clinical pharmacy service in China is in its early stage, its development is rapid. In this manuscript, the working model of clinical pharmacists in a Chinese tertiary hospital is introduced, including ward rounds, consultation, stewardship of antimicrobial therapy, drug adverse reaction monitoring, therapeutic drug monitoring, clinical pharmacokinetics and pharmacogenetics, and training system. With the efforts of clinical pharmacists, there will be a significant increase in the optimization of medication therapy and a notable reduction in preventable adverse drug events as well as health-care cost in China.
Collapse
|
11
|
Veličković-Radovanović RM, Janković SM, Milovanović JR, Catić-Đorđević AK, Spasić AA, Stefanović NZ, Džodić PL, Šmelcerović AA, Cvetković TP. Variability of mycophenolic acid elimination in the renal transplant recipients – population pharmacokinetic approach. Ren Fail 2015; 37:652-658. [PMID: 25707517 DOI: 10.3109/0886022x.2015.1010442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to develop a population pharmacokinetic (PK) model for clearance of mycophenolic acid (MPA) in adult renal transplant recipients, to quantify the PK parameters and the influence of covariates on the MPA pharmacokinetic parameters. Parameters associated with plasma concentrations of MPA at steady-state were analyzed in 70 renal transplant recipients (mean age 42.97 years; mean total body weight 75.33 kg) using nonlinear mixed-effect modeling (NONMEM). Characteristics of patients screened for influence on the pharmacokinetic parameters were gender, age, body weight, time after transplantation, whether the patient was diagnosed as having diabetes mellitus, organ source (living or deceased donor), biochemical parameters and co-therapy (tacrolimus, cyclosporine, prednisolone, omeprazole, bisoprolol, carvedilol, nifedipine). A validation set of 25 renal transplant recipients was used to estimate the predictive performance of population pharmacokinetic model. Typical mean value of MPA oral clearance, estimated by base model (without covariates) was 0.741 L h(-1). During population modeling, the full model showed that clearance of the MPA was significantly influenced by age, total daily dose of MPA, creatinine clearance, albumin level, status and gender of a donor, and the nifedipine and tacrolimus co-therapy. In the final model, clearance of MPA was reported to be significantly influenced by age, total daily dose of MPA and thenifedipine co-therapy. The derived model describes adequately MPA clearance in terms of characteristics of our patients, offering basis for individual pharmacotherapy approach.
Collapse
|
12
|
Pithukpakorn M, Tiwawanwong T, Lalerd Y, Assawamakin A, Premasathian N, Tasanarong A, Thongnoppakhun W, Vongwiwatana A. Mycophenolic acid AUC in Thai kidney transplant recipients receiving low dose mycophenolate and its association with UGT2B7 polymorphisms. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:379-85. [PMID: 25540593 PMCID: PMC4270037 DOI: 10.2147/pgpm.s72760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Despite use of a lower mycophenolate dose in Thai kidney transplant patients, acceptable graft and patient outcomes can be achieved. We therefore examined the pharmacokinetics of mycophenolic acid (MPA) by area under the curve (AUC) and investigated genetic contribution in mycophenolate metabolism in this population. Methods Kidney transplant recipients with stable graft function who were receiving mycophenolate mofetil 1,000 mg/d in combination with either cyclosporine or tacrolimus, and prednisolone were studied. The MPA concentration was measured by fluorescence polarization immunoassay (FPIA), at predose and 1, 1.5, 2, 4, 6, 8, 10, and 12 hours after dosing. Genetic polymorphisms in UGT1A8, UGT1A9, and UGT2B7 were examined by denaturing high-performance liquid chromatography (DHPLC)-based single-base extension (SBE) analysis. Results A total 138 patients were included in study. The mean AUC was 39.49 mg-h/L (28.39–89.58 mg-h/L), which was in the therapeutic range. The correlation between the predose MPA concentration and AUC was poor. The mean AUC in the tacrolimus group was higher than that in the cyclosporine group. Polymorphisms in UGT2B7 showed significant association with AUC. Conclusion Most of our patients with reduced mycophenolate dose had the AUC within the therapeutic range. Genetic polymorphisms in UGT2B7 may play a role in MPA metabolism in Thai kidney transplant patients.
Collapse
Affiliation(s)
| | - Tiwat Tiwawanwong
- Division of Nephrology, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Yupaporn Lalerd
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anunchai Assawamakin
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand ; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Nalinee Premasathian
- Division of Nephrology, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Adis Tasanarong
- Department of Medicine, Faculty of Medicine, Thammasat University, Bangkok, Thailand
| | - Wanna Thongnoppakhun
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Attapong Vongwiwatana
- Division of Nephrology, Department of Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Li P, Shuker N, Hesselink DA, van Schaik RHN, Zhang X, van Gelder T. Do Asian renal transplant patients need another mycophenolate mofetil dose compared with Caucasian or African American patients? Transpl Int 2014; 27:994-1004. [PMID: 24963914 DOI: 10.1111/tri.12382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/22/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Pengmei Li
- Department of Hospital Pharmacy; Erasmus Medical Center Rotterdam; Rotterdam The Netherlands
- Department of Pharmacy; China-Japan Friendship Hospital; Beijing China
| | - Nauras Shuker
- Department of Hospital Pharmacy; Erasmus Medical Center Rotterdam; Rotterdam The Netherlands
- Department of Internal Medicine; Erasmus Medical Center Rotterdam; Rotterdam The Netherlands
| | - Dennis A. Hesselink
- Department of Internal Medicine; Erasmus Medical Center Rotterdam; Rotterdam The Netherlands
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry; Erasmus Medical Center Rotterdam; Rotterdam The Netherlands
| | - Xianglin Zhang
- Department of Pharmacy; China-Japan Friendship Hospital; Beijing China
| | - Teun van Gelder
- Department of Hospital Pharmacy; Erasmus Medical Center Rotterdam; Rotterdam The Netherlands
- Department of Internal Medicine; Erasmus Medical Center Rotterdam; Rotterdam The Netherlands
| |
Collapse
|
14
|
Development and validation of limited sampling strategies for tacrolimus and mycophenolate in steroid-free renal transplant regimens. Ther Drug Monit 2011; 33:50-5. [PMID: 21157401 DOI: 10.1097/ftd.0b013e3182028b23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE 1) To develop and validate limited sampling strategies (LSSs) for tacrolimus (TAC) and mycophenolic acid (MPA) in renal transplant recipients not receiving corticosteroids; and 2) to evaluate predictive performance of published LSSs (for steroid-based regimens) in a steroid-free population. METHODS On administration of steady-state morning TAC and mycophenolate mofetil doses, 12-hour serial blood samples from 28 stable renal transplant recipients were collected and measured by validated high-performance liquid chromatography methods and area under the curve (AUC) by trapezoidal rule. TAC LSSs were developed and validated by multiple regression analysis by a two-group method (index n = 18; validation n = 10) and MPA LSSs by the jackknife method (n = 28). Potential LSSs were those with r ≥ .8 (TAC) or r ≥ 0.7 (MPA) and < 3 time points within 2 hours (TAC) or 4 hours (MPA) postdose. Predictive performance was calculated and other published TAC and MPA LSSs tested using preset criteria for bias and precision of within ± 15%. RESULTS For TAC, three three-concentration, one two-concentration, and one one-concentration model met preset criteria. The best equations were: TAC AUC = 10.338 + 7.739C0 + 3.589C2 (r = 0.956, bias = -3.4%, precision = 4.7%) and TAC AUC = 29.479 + 5.016C2 (r = 0.862, bias = 3.2%, precision = 9.7%). For MPA, only one model was identified: MPA AUC = 9.328 + 1.311C1 + 1.455C2 + 2.901C4 (r = 0.838, bias = -3.8%, precision = 14.9%). One published TAC (and no MPA) LSS in renal transplant recipients on steroid-based regimens met criteria. CONCLUSIONS To the authors' knowledge, these LSSs are the first to be developed and validated in steroid-free renal transplant recipients and can be used to accurately predict TAC and MPA AUCs for steroid-free regimens. Because the commonly used MPA LSS is based on a steroid regimen and not predictive for steroid-free patients, the newly derived MPA LSS is being applied at the authors' institution. Other renal transplant centers may also wish to validate this equation in their own patients.
Collapse
|
15
|
Early phase limited sampling strategy characterizing tacrolimus and mycophenolic acid pharmacokinetics adapted to the maintenance phase of renal transplant patients. Ther Drug Monit 2010; 31:467-74. [PMID: 19571775 DOI: 10.1097/ftd.0b013e3181ae44b9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to examine whether a limited sampling strategy (LSS) to allow the simultaneous estimation of the area under the concentration-time curves (AUCs) of tacrolimus and mycophenolic acid (MPA) calculated in the early stage after renal transplantation could be applied to maintenance phase pharmacokinetics. Seventy Japanese patients were enrolled. One year after transplantation, samples were collected just before and 1, 2, 3, 4, 6, 9, and 12 hours after tacrolimus and mycophenolate mofetil administration at 9:00 am and at 9:00 pm. The prediction formulas on day 28 (tacrolimus AUC 0-12 = 7.04 x C 0h + 1.71 x C 2h + 3.23 x C 4h + 15.19 and 2.25 x C 2h + 1.92 x C 4h + 7.27 x C 9h + 6.61, and MPA AUC 0-12 = 0.26 x C 0h + 2.06 x C 2h + 3.82 x C 4h + 20.38 and 1.77 x C 2h + 2.34 x C 4h + 4.76 x C 9h + 15.94) were applied to pharmacokinetic data obtained at 1 year. Three error indices [percent mean prediction error (ME), % mean absolute error, and percent root mean squared prediction error (RMSE)] were used to evaluate the predictive bias, accuracy, and precision. The predicted AUC 0-12 of tacrolimus and MPA at 3 time points, C 2h-C 4h-C 9h, showed higher correlation with the measured AUC 0-12 of tacrolimus and MPA (r2 = 0.817 and 0.789, respectively) in comparison with those at C 0h-C 2h-C 4h. The values for the prediction formulas for tacrolimus AUC at 1 year using the C 2h-C 4h-C 9h combination yielded less than 5% for %ME and 15% for %RMSE. The %ME and %RMSE values of the prediction formulas for tacrolimus AUC using the C 0h-C 2h-C 4h combination were 6.3% and 15.9%, respectively. The %ME and %RMSE values of the prediction formulas for MPA AUC at 1 year using the C 0h-C 2h-C 4h combination were 5.9% and 25.8%, respectively, and those for the C 2h-C 4h-C 9h combination were 4.9% and 21.2%, respectively. AUC 6-12/AUC 0-12 of MPA 1 year after transplantation was significantly lower than 28 days after transplantation. An LSS using C 2h-C 4h-C 9h seems to be applicable for predicting the AUC of tacrolimus and MPA at either posttransplantation stage. The enterohepatic circulation of MPA was significantly reduced 1 year after transplantation. Therefore, 1 year after transplantation, the estimation of the AUC 0-12 of MPA for the C 0h-C 2h-C 4h equations was imprecise. It is important that the LSS includes C 9h because it contains information on the secondary plasma peak of MPA.
Collapse
|
16
|
Bruchet NK, Ensom MHH. Limited sampling strategies for mycophenolic acid in solid organ transplantation: a systematic review. Expert Opin Drug Metab Toxicol 2009; 5:1079-97. [PMID: 19689217 DOI: 10.1517/17425250903114182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, a widely used immunosuppressant. Numerous studies have developed limited sampling strategies (LSSs) to predict MPA AUC in solid organ transplant recipients. OBJECTIVES To systematically review and assess quality of literature pertaining to MPA LSSs, evaluate clinical implications and provide suggestions for future research. METHODS Literature searches of MEDLINE (1966 - May 2009) and EMBASE (1980 - May 2009) for English articles in solid organ transplantation, along with manual review of article references were conducted. Included articles were categorized according to criteria adapted from levels of evidence of the US Preventative Services Task Force. RESULTS Of a total of 29 studies identified, 20 were in kidney, 4 in heart, 4 in liver and 1 in lung transplantation and 7 were in pediatrics. A total of 14 studies were deemed to be Level I evidence studies, 3 were Level II-1, 1 was Level II-2 and 11 were Level III. CONCLUSIONS Although various LSSs that are well correlated to MPA AUC while being relatively unbiased and precise to predict MPA AUC have been developed, further research is needed to determine validity of these LSSs in a variety of patient populations and to determine if these LSSs improve patient outcomes.
Collapse
|
17
|
Al-Khatib M, Shapiro RJ, Partovi N, Ting LSL, Levine M, Ensom MHH. Limited sampling strategies for predicting area under the concentration-time curve of mycophenolic acid in islet transplant recipients. Ann Pharmacother 2009; 44:19-27. [PMID: 19996322 DOI: 10.1345/aph.1m511] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Mycophenolate mofetil is widely used in islet transplant recipients and its active metabolite, mycophenolic acid (MPA), exhibits wide pharmacokinetic variability. However, to our knowledge, no limited sampling strategy (LSS) exists for monitoring MPA in this subpopulation. OBJECTIVE To define optimal LSSs for MPA monitoring and to test their predictive performance in islet transplant recipients. METHODS After written informed consent was obtained and upon administration of a steady-state morning mycophenolate mofetil dose, blood samples were collected at 0, 0.3, 0.6, 1, 1.5, 2, 3, 4, 6, 8, 10, and 12 hours from 16 stable islet transplant recipients. MPA concentrations were measured by a validated high-performance liquid chromatography method with ultraviolet detection and pharmacokinetic parameters analyzed by noncompartmental modeling. All 16 patients' profiles were used to develop the LSSs via multiple regression analysis. Potential LSSs were restricted to ones having R(2) 0.90 or greater and 3 or fewer time points within the first 4 hours postdose. Resulting equations were validated for their predictive performance using the jackknife method, with acceptable criteria for bias and precision preset to within +/-15%. In addition, 14 published LSSs (in the renal transplant population) were tested in our islet transplant patients. RESULTS Five LSSs met preset criteria and had conventional sampling times: AUC = 1.783 + 1.248C1 + 0.888C2 + 8.027C4 (R2 = 0.98, bias = -3.09%, precision = 9.53%) AUC = 2.778 + 1.413C1 + 0.963C3 + 7.511C4 (R2 = 0.97, bias = -3.22%, precision = 11.02%) AUC = 1.448 + 1.239C1 + 0.271C1.5 + 9.108 C4 (R2 = 0.96, bias = -1.90%, precision = 11.46) AUC = 1.410 - 0.259C0 + 1.443C1 + 9.622C4 (R2 = 0.96, bias = -2.68%, precision = 11.53%) AUC = 1.547 + 1.417C1 + 9.448C4 (R2 = 0.96, bias = -2.46%, precision = 11.14%) where AUC = area under the concentration-time curve. None of the other published LSSs in the renal transplant population met the preset criteria for bias and precision. CONCLUSIONS To our knowledge, these are the first precise and accurate LSSs for predicting MPA AUC developed specifically for islet transplant recipients. The LSS that we recommend is the one utilizing 2 concentrations: AUC = 1.547 + 1.417C1 + 9.448C4. This equation is convenient and clinically feasible. Other islet transplant centers may wish to validate our equation in their population or use our template as a guide to develop accurate and precise LSSs specific to their patient population.
Collapse
Affiliation(s)
- Mai Al-Khatib
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Validation of Limited Sampling Strategy for Estimation of Mycophenolic Acid Exposure During the First Year After Heart Transplantation. Transplant Proc 2009; 41:4277-84. [DOI: 10.1016/j.transproceed.2009.08.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 06/28/2009] [Accepted: 08/17/2009] [Indexed: 12/15/2022]
|
19
|
Does the Evidence Support the Use of Mycophenolate Mofetil Therapeutic Drug Monitoring in Clinical Practice? A Systematic Review. Transplantation 2008; 85:1675-85. [DOI: 10.1097/tp.0b013e3181744199] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Limited sampling strategy for simultaneous estimation of the area under the concentration-time curve of tacrolimus and mycophenolic acid in adult renal transplant recipients. Ther Drug Monit 2008; 30:52-9. [PMID: 18223463 DOI: 10.1097/ftd.0b013e31815f5416] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to develop a limited sampling strategy to allow the simultaneous estimation of the area under the concentration-time curves (AUCs) of tacrolimus and mycophenolic acid (MPA), the active metabolite of the prodrug mycophenolate mofetil, using a small number of samples from patients undergoing renal transplantation. Fifty Japanese patients were enrolled. On day 28 after transplantation, samples were collected just before and 1, 2, 3, 4, 6, 9, and 12 hours after tacrolimus and mycophenolate mofetil administration at 9:00 am and 9:00 pm. The full pharmacokinetic profiles obtained from these timed concentration data were used to choose the best sampling times. Three error indices (percent mean error, percent mean absolute error, and percent relative mean square error) were used to evaluate the predictive bias, accuracy, and precision. The predicted AUC0-12 of MPA calculated at the three time points of C2h-C4h-C9h best approximated the actual AUC0-12 of MPA (r = 0.877), and the AUC0-12 of tacrolimus calculated at the same time points predicted a good correlation with the actual AUC (r = 0.928). When the three sampling times of trough level (C0h) and two other points within 4 hours after administration were used, the three points of C0h-C2h-C4h were the best points for estimation of the AUC0-12 tacrolimus and MPA (AUC0-12 = 7.04.C0 + 1.71.C2 + 3.23.C4 + 15.19, r = 0.799, P < 0.001 and AUC0-12 = 0.26.C0 + 2.06.C2 + 3.82.C4 + 20.38, r = 0.693, P < 0.001, respectively). The percent mean error, percent mean absolute error, and percent relative mean square error of the prediction formula using the three time points of C0h-C2h-C4h were -0.3%, 8.8%, and 13.5% for tacrolimus and 2.9%, 17.1%, and 21.5% for MPA, respectively. A limited sampling strategy using C2h-C4h-C9h provides the most reliable and accurate simultaneous estimation of the AUC0-12 of tacrolimus and MPA in patients undergoing renal transplantation. In addition, a limited sampling strategy using C0h-C2h-C4h is recommended for the simultaneous estimation of the AUC0-12 of tacrolimus and MPA when focused on samples collected within 4 hours after administration for clinical expediency.
Collapse
|
21
|
Correction: Notice of Redundant Publication. Ther Drug Monit 2008. [DOI: 10.1097/ftd.0b013e31816352c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|