1
|
Melchiorri D, Rocke T, Alm RA, Cameron AM, Gigante V. Addressing urgent priorities in antibiotic development: insights from WHO 2023 antibacterial clinical pipeline analyses. THE LANCET. MICROBE 2025; 6:100992. [PMID: 39454608 PMCID: PMC11876093 DOI: 10.1016/j.lanmic.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/28/2024]
Abstract
Antimicrobial resistance continues to evolve and remains a leading cause of death worldwide, with children younger than 5 years being among those at the highest risk. Addressing antimicrobial resistance requires a comprehensive response, including infection prevention efforts, surveillance, stewardship, therapy appropriateness and access, and research and development. However, antimicrobial research and development is limited and lags behind the output of other fields, such as that of cancer or HIV research. The 2023 WHO analysis of the global antibacterial clinical pipeline serves as a tool to monitor and guide research and development efforts. The analysis emphasises the remaining gaps in developing a robust and effective antibacterial drug pipeline, drawing insights from trend analyses and assessment of the innovation potential of candidate antimicrobials. In the present analysis, we evaluated the activity of antibiotics against the new WHO bacterial priority pathogens list 2024, which reflects changing trends in resistance patterns, distribution of bacterial infections, and the emergence of new resistance mechanisms.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; AMR Division, World Health Organization, Geneva, Switzerland.
| | - Tamarie Rocke
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Richard A Alm
- AMR Division, World Health Organization, Geneva, Switzerland; Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator, Boston, MA, USA
| | | | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
2
|
Bagde SR, Kim CY. Architecture of full-length type I modular polyketide synthases revealed by X-ray crystallography, cryo-electron microscopy, and AlphaFold2. Nat Prod Rep 2024; 41:1219-1234. [PMID: 38501175 PMCID: PMC11324418 DOI: 10.1039/d3np00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Covering: up to the end of 2023Type I modular polyketide synthases construct polyketide natural products in an assembly line-like fashion, where the growing polyketide chain attached to an acyl carrier protein is passed from catalytic domain to catalytic domain. These enzymes have immense potential in drug development since they can be engineered to produce non-natural polyketides by strategically adding, exchanging, and deleting individual catalytic domains. In practice, however, this approach frequently results in complete failures or dramatically reduced product yields. A comprehensive understanding of modular polyketide synthase architecture is expected to resolve these issues. We summarize the three-dimensional structures and the proposed mechanisms of three full-length modular polyketide synthases, Lsd14, DEBS module 1, and PikAIII. We also describe the advantages and limitations of using X-ray crystallography, cryo-electron microscopy, and AlphaFold2 to study intact type I polyketide synthases.
Collapse
Affiliation(s)
- Saket R Bagde
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Chu-Young Kim
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
5
|
Van N, Degefu YN, Leus PA, Larkins-Ford J, Klickstein J, Maurer FP, Stone D, Poonawala H, Thorpe CM, Smith TC, Aldridge BB. Novel Synergies and Isolate Specificities in the Drug Interaction Landscape of Mycobacterium abscessus. Antimicrob Agents Chemother 2023; 67:e0009023. [PMID: 37278639 PMCID: PMC10353461 DOI: 10.1128/aac.00090-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
Mycobacterium abscessus infections are difficult to treat and are often considered untreatable without tissue resection. Due to the intrinsic drug-resistant nature of the bacteria, combination therapy of three or more antibiotics is recommended. A major challenge in treating M. abscessus infections is the absence of a universal combination therapy with satisfying clinical success rates, leaving clinicians to treat infections using antibiotics lacking efficacy data. We systematically measured drug combinations in M. abscessus to establish a resource of drug interaction data and identify patterns of synergy to help design optimized combination therapies. We measured 191 pairwise drug combination effects among 22 antibacterials and identified 71 synergistic pairs, 54 antagonistic pairs, and 66 potentiator-antibiotic pairs. We found that commonly used drug combinations in the clinic, such as azithromycin and amikacin, are antagonistic in the lab reference strain ATCC 19977, whereas novel combinations, such as azithromycin and rifampicin, are synergistic. Another challenge in developing universally effective multidrug therapies for M. abscessus is the significant variation in drug response between isolates. We measured drug interactions in a focused set of 36 drug pairs across a small panel of clinical isolates with rough and smooth morphotypes. We observed strain-dependent drug interactions that cannot be predicted from single-drug susceptibility profiles or known drug mechanisms of action. Our study demonstrates the immense potential to identify synergistic drug combinations in the vast drug combination space and emphasizes the importance of strain-specific combination measurements for designing improved therapeutic interventions.
Collapse
Affiliation(s)
- Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Yonatan N. Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Pathricia A. Leus
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jacob Klickstein
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Florian P. Maurer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - David Stone
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Husain Poonawala
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cheleste M. Thorpe
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Trever C. Smith
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|
6
|
Jin L, Zhang X, Luo Z, Wu X, Zhao Z. Synthesis and antibacterial activity of novel 2‑fluoro ketolide antibiotics with 11,12‑quinoylalkyl side chains. Bioorg Med Chem Lett 2023; 80:129115. [PMID: 36574853 DOI: 10.1016/j.bmcl.2022.129115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
A series of novel 2‑fluoro ketolide antibiotics with 11,12‑quinoylalkyl side chains derived from telithromycin and cethromycin were designed and synthesized. The corresponding targets 2a-o were tested for their in vitro activities against a series of macrolide-sensitive and macrolide-resistant pathogens. Some of them showed a similar antibacterial spectrum and comparable or slightly better activity to telithromycin. Among them, compounds 2g and 2k, displayed excellent activities against macrolide-sensitive and macrolide-resistant pathogens.
Collapse
Affiliation(s)
- Longlong Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; National Institutes for Food and Drug Control, Beijing 102629, PR China
| | - Xiaoxi Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xianfu Wu
- National Institutes for Food and Drug Control, Beijing 102629, PR China
| | - Zhehui Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
7
|
Alihodžić S, Čipčić Paljetak H, Čikoš A, Elenkov IJ. New Bicyclic Azalide Macrolides Obtained by Tandem Palladium Catalyzed Allylic Alkylation/Conjugated Addition Reaction. Molecules 2022; 27:molecules27020432. [PMID: 35056746 PMCID: PMC8781410 DOI: 10.3390/molecules27020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
Unprecedented tandem allylic alkylation/intermolecular Michael addition was used in the preparation of novel bicyclic azalides. NMR spectroscopy was used not only to unambiguously determine and characterize the structures of these unexpected products of chemical reaction but also to investigate the effect the rigid bicyclic modification has on the conformation of the whole molecule. Thus, some of the macrolides prepared showed antibacterial activity in the range of well-known antibiotic drug azithromycin.
Collapse
Affiliation(s)
- Sulejman Alihodžić
- Department of Chemistry, Fidelta Ltd. (Selvita Group), Prilaz Baruna Filipovića 29, 10000 Zagreb, Croatia;
| | - Hana Čipčić Paljetak
- Center for Translational and Clinical Research, University of Zagreb School of Medicine, Šalata 2, 10000 Zagreb, Croatia;
| | - Ana Čikoš
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Ivaylo Jivkov Elenkov
- Department of Chemistry, Fidelta Ltd. (Selvita Group), Prilaz Baruna Filipovića 29, 10000 Zagreb, Croatia;
- Correspondence:
| |
Collapse
|
8
|
Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021; 45:6064299. [PMID: 33399826 PMCID: PMC8371276 DOI: 10.1093/femsre/fuaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered by the high research and development costs versus the relatively low revenues for the pharmaceutical industry. Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development of novel molecules to effectively treat this life-threatening pathogen.
Collapse
Affiliation(s)
- F Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
9
|
Qin Y, Ma S. Recent Advances in the Development of Macrolide Antibiotics as Antimicrobial Agents. Mini Rev Med Chem 2020; 20:601-625. [PMID: 31868146 DOI: 10.2174/1389557520666191223160942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/28/2018] [Accepted: 08/15/2019] [Indexed: 11/22/2022]
Abstract
The chemical modification of natural products has been a major method in the discovery and synthesis of new macrolide antibiotics (MA) to treat a variety of infectious diseases. However, a lot of MA obtained in the above methods are no longer effective, because the bacteria quickly develop their resistance to these new macrolides, which has become a great threat to successful treatment of infectious diseases, such as infections of the respiratory system and urinary system. In this paper, total synthetic methods for MA that include erythromycin A (ERY), azithromycin (AZM), the clinical candidate solithromycin (CEM-101), as well as 14-membered and 15-membered azaketolides have been systematically reviewed on the basis of the literature reported previously. The total synthetic methods we describe here helps to accelerate the discovery of newer MA to deal with the serious problem of bacterial resistance.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| |
Collapse
|
10
|
Heravi MM, Zadsirjan V, Daraie M, Ghanbarian M. Applications of Wittig Reaction in the Total Synthesis of Natural Macrolides. ChemistrySelect 2020. [DOI: 10.1002/slct.202002192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Manizheh Ghanbarian
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| |
Collapse
|
11
|
Abstract
Over a long period of time, humans have explored many natural resources looking for remedies of various ailments. Traditional medicines have played an intrinsic role in human life for thousands of years, with people depending on medicinal plants and their products as dietary supplements as well as using them therapeutically for treatment of chronic disorders, such as cancer, malaria, diabetes, arthritis, inflammation, and liver and cardiac disorders. However, plant resources are not sufficient for treatment of recently emerging diseases. In addition, the seasonal availability and other political factors put constrains on some rare plant species. The actual breakthrough in drug discovery came concurrently with the discovery of penicillin from Penicillium notatum in 1929. This discovery dramatically changed the research of natural products and positioned microbial natural products as one of the most important clues in drug discovery due to availability, variability, great biodiversity, unique structures, and the bioactivities produced. The number of commercially available therapeutically active compounds from microbial sources to date exceeds those discovered from other sources. In this review, we introduce a short history of microbial drug discovery as well as certain features and recent research approaches, specifying the microbial origin, their featured molecules, and the diversity of the producing species. Moreover, we discuss some bioactivities as well as new approaches and trends in research in this field.
Collapse
|
12
|
Guerin F, Rose S, Cattoir V, Douthwaite S. Helcococcus kunzii methyltransferase Erm(47) responsible for MLSB resistance is induced by diverse ribosome-targeting antibiotics. J Antimicrob Chemother 2020; 75:371-378. [PMID: 31670815 DOI: 10.1093/jac/dkz441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the mechanism of induction of erm(47) and its atypical expression in the Gram-positive opportunistic pathogen Helcococcus kunzii, where it confers resistance to a subset of clinically important macrolide, lincosamide and streptogramin B (MLSB) antibiotics. METHODS The resistant H. kunzii clinical isolate UCN99 was challenged with subinhibitory concentrations of a wide range of ribosome-targeting drugs. The methylation status of the H. kunzii ribosomal RNA at the MLSB binding site was then determined using an MS approach and was correlated with any increase in resistance to the drugs. RESULTS The H. kunzii erm(47) gene encodes a monomethyltransferase. Expression is induced by subinhibitory concentrations of the macrolide erythromycin, as is common for many erm genes, and surprisingly also by 16-membered macrolide, lincosamide, streptogramin, ketolide, chloramphenicol and linezolid antibiotics, all of which target the 50S ribosomal subunit. No induction was detected with spectinomycin, which targets the 30S subunit. CONCLUSIONS The structure of the erm(47) leader sequence functions as a hair trigger for the induction mechanism that expresses resistance. Consequently, translation of the erm(47) mRNA is tripped by MLSB compounds and also by drugs that target the 50S ribosomal subunit outside the MLSB site. Expression of erm(47) thus extends previous assumptions about how erm genes can be induced.
Collapse
Affiliation(s)
- François Guerin
- Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre - CS30001 - 14033 Caen Cedex 9, France
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Vincent Cattoir
- Service de Bactériologie-Hygiène hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU de Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France.,Unité Inserm U1230, Université de Rennes 1, 2 avenue du Pr. Léon Bernard, 35043 Rennes, France
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
13
|
Vázquez-Laslop N, Mankin AS. How Macrolide Antibiotics Work. Trends Biochem Sci 2018; 43:668-684. [PMID: 30054232 PMCID: PMC6108949 DOI: 10.1016/j.tibs.2018.06.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023]
Abstract
Macrolide antibiotics inhibit protein synthesis by targeting the bacterial ribosome. They bind at the nascent peptide exit tunnel and partially occlude it. Thus, macrolides have been viewed as 'tunnel plugs' that stop the synthesis of every protein. More recent evidence, however, demonstrates that macrolides selectively inhibit the translation of a subset of cellular proteins, and that their action crucially depends on the nascent protein sequence and on the antibiotic structure. Therefore, macrolides emerge as modulators of translation rather than as global inhibitors of protein synthesis. The context-specific action of macrolides is the basis for regulating the expression of resistance genes. Understanding the details of the mechanism of macrolide action may inform rational design of new drugs and unveil important principles of translation regulation.
Collapse
Affiliation(s)
- Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
14
|
Paul D, Saha S, Goswami RK. Total Synthesis of Pestalotioprolide E and Structural Revision of Pestalotioprolide F. Org Lett 2018; 20:4606-4609. [DOI: 10.1021/acs.orglett.8b01894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Debobrata Paul
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Sanu Saha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
15
|
In Vitro Activity of the Novel Lactone Ketolide Nafithromycin (WCK 4873) against Contemporary Clinical Bacteria from a Global Surveillance Program. Antimicrob Agents Chemother 2017; 61:AAC.01230-17. [PMID: 28971877 DOI: 10.1128/aac.01230-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022] Open
Abstract
Nafithromycin (WCK 4873), a novel antimicrobial agent of the lactone ketolide class, is currently in phase 2 development for treatment of community-acquired bacterial pneumonia (CABP). A total of 4,739 nonduplicate isolates were selected from a 2014 global surveillance program at medical institutions located in 43 countries within the United States, Europe, Latin America, and the Asia-Pacific region. Nafithromycin and comparator agents were used for susceptibility testing by reference broth microdilution methods. Nafithromycin was active against Staphylococcus aureus (MIC50/90, 0.06/>2 μg/ml), including erythromycin-resistant strains exhibiting an inducible clindamycin resistance phenotype (MIC50/90, 0.06/0.06 μg/ml) and telithromycin-susceptible strains (MIC50/90, 0.06/0.06 μg/ml), but it exhibited limited activity against most telithromycin-resistant and clindamycin-resistant isolates that were constitutively resistant to macrolides (MIC50/90, >2/>2 μg/ml). Nafithromycin was very active (MIC50/90, 0.015/0.06 μg/ml) against 1,911 Streptococcus pneumoniae strains, inhibiting all strains, with MIC values of ≤0.25 μg/ml. Telithromycin susceptibility was 99.9% for Streptococcus pneumoniae strains, and nafithromycin was up to 8-fold more potent than telithromycin. Overall, 37.9% of S. pneumoniae strains were resistant to erythromycin, and 19.7% were resistant to clindamycin. Nafithromycin was highly active against 606 Streptococcus pyogenes strains (MIC50/90, 0.015/0.015 μg/ml), inhibiting 100.0% of isolates at ≤0.5 μg/ml, and MIC50/90 values (0.015/0.015 to 0.03 μg/ml) were similar for the 4 geographic regions. Nafithromycin and telithromycin demonstrated comparable in vitro activities against 1,002 Haemophilus influenzae isolates and 504 Moraxella catarrhalis isolates. Overall, nafithromycin showed potent in vitro activity against a broad range of contemporary (2014) global pathogens. These results support the continued clinical development of nafithromycin for treatment of CABP.
Collapse
|
16
|
Baunthiyal M, Singh V, Dwivedi S. Insights of Antioxidants as Molecules for Drug Discovery. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.874.889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Kocsis B, Szabo D. New treatment options for lower respiratory tract infections. Expert Opin Pharmacother 2017; 18:1345-1355. [DOI: 10.1080/14656566.2017.1363179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University , Budapest, Hungary
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University , Budapest, Hungary
| |
Collapse
|
18
|
A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo) 2017; 71:153-184. [DOI: 10.1038/ja.2017.62] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
|
19
|
Surveillance of the activity of solithromycin (CEM-101) against bacteria from respiratory tract infections. Int J Antimicrob Agents 2017; 50:17-22. [DOI: 10.1016/j.ijantimicag.2017.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 11/20/2022]
|
20
|
Wang Y, Cong C, Chai WC, Dong R, Jia L, Song D, Zhou Z, Ma S. Synthesis and antibacterial activity of novel 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs. Bioorg Med Chem Lett 2017; 27:3872-3877. [PMID: 28655423 DOI: 10.1016/j.bmcl.2017.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 11/30/2022]
Abstract
Three novel structural series of 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs were designed, synthesized and evaluated for their in vitro antibacterial activity. All the target compounds exhibited excellent activity against erythromycin-susceptible Streptococcus pyogenes, and significantly improved activity against three phenotypes of erythromycin-resistant Streptococcus pneumoniae compared with clarithromycin and azithromycin. Among the three series of azithromycin analogs, the novel series of 11,4″-disubstituted azithromycin analogs 9a-k exhibited the most effective and balanced activity against susceptible and resistant bacteria. Among them, compound 9j showed the most potent activity against Staphylococcus aureus ATCC25923 (0.008µg/mL) and Streptococcus pyogenes R2 (1µg/mL). Besides, all the 11,4″-disubstituted azithromycin analogs 9a-k except 9f shared the identical activity with the MIC value <0.002µg/mL against Streptococcus pyogenes S2. Furthermore, compounds 9g, 9h, 9j and 9k displayed significantly improved activity compared with the references against all the three phenotypes of resistant S. pneumoniae. Particularly, compound 9k was the most effective (0.06, 0.03 and 0.125µg/mL) against all the erythromycin-resistant S. pneumoniae expressing the erm gene, the mef gene and the erm and mef genes, exhibiting 2133, 133 and 2048-fold more potent activity than azithromycin, respectively.
Collapse
Affiliation(s)
- Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Chao Cong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Wern Chern Chai
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| | - Ruiqian Dong
- Maternity and Child Care Centre of Jinan, Jinan 250001, China
| | - Li Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ziteng Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China.
| |
Collapse
|
21
|
Synthesis of clarithromycin ketolides chemically modified at the unreactive C10-methyl group. Bioorg Med Chem 2017; 25:2313-2326. [DOI: 10.1016/j.bmc.2017.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 11/21/2022]
|
22
|
Zhanel GG, Hartel E, Adam H, Zelenitsky S, Zhanel MA, Golden A, Schweizer F, Gorityala B, Lagacé-Wiens PRS, Walkty AJ, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA. Solithromycin: A Novel Fluoroketolide for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2017; 76:1737-1757. [PMID: 27909995 DOI: 10.1007/s40265-016-0667-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Solithromycin is a novel fluoroketolide developed in both oral and intravenous formulations to address increasing macrolide resistance in pathogens causing community-acquired bacterial pneumonia (CABP). When compared with its macrolide and ketolide predecessors, solithromycin has several structural modifications which increase its ribosomal binding and reduce its propensity to known macrolide resistance mechanisms. Solithromycin, like telithromycin, affects 50S ribosomal subunit formation and function, as well as causing frame-shift errors during translation. However, unlike telithromycin, which binds to two sites on the ribosome, solithromycin has three distinct ribosomal binding sites. Its desosamine sugar interacts at the A2058/A2059 cleft in domain V (as all macrolides do), an extended alkyl-aryl side chain interacts with base pair A752-U2609 in domain II (similar to telithromycin), and a fluorine at C-2 of solithromycin provides additional binding to the ribosome. Studies describing solithromycin activity against Streptococcus pneumoniae have reported that it does not induce erm-mediated resistance because it lacks a cladinose moiety, and that it is less susceptible than other macrolides to mef-mediated efflux due to its increased ribosomal binding and greater intrinsic activity. Solithromycin has demonstrated potent in vitro activity against the most common CABP pathogens, including macrolide-, penicillin-, and fluoroquinolone-resistant isolates of S. pneumoniae, as well as Haemophilus influenzae and atypical bacterial pathogens. Solithromycin displays multi-compartment pharmacokinetics, a large volume of distribution (>500 L), approximately 67% bioavailability when given orally, and serum protein binding of 81%. Its major metabolic pathway appears to follow cytochrome P450 (CYP) 3A4, with metabolites of solithromycin undergoing biliary excretion. Its serum half-life is approximately 6-9 h, which is sufficient for once-daily administration. Pharmacodynamic activity is best described as fAUC0-24/MIC (the ratio of the area under the free drug concentration-time curve from 0 to 24 h to the minimum inhibitory concentration of the isolate). Solithromycin has completed one phase II and two phase III clinical trials in patients with CABP. In the phase II trial, oral solithromycin was compared with oral levofloxacin and demonstrated similar clinical success rates in the intention-to-treat (ITT) population (84.6 vs 86.6%). Clinical success in the clinically evaluable patients group was 83.6% of patients receiving solithromycin compared with 93.1% for patients receiving levofloxacin. In SOLITAIRE-ORAL, a phase III trial which assessed patients receiving oral solithromycin or oral moxifloxacin for CABP, an equivalent (non-inferior) early clinical response in the ITT population was demonstrated for patients receiving either solithromycin (78.2%) or moxifloxacin (77.9%). In a separate phase III trial, SOLITAIRE-IV, patients receiving intravenous-to-oral solithromycin (79.3%) demonstrated non-inferiority as the primary outcome of early clinical response in the ITT population compared with patients receiving intravenous-to-oral moxifloxacin (79.7%). Overall, solithromycin has been well tolerated in clinical trials, with gastrointestinal adverse events being most common, occurring in approximately 10% of patients. Transaminase elevation occurred in 5-10% of patients and generally resolved following cessation of therapy. None of the rare serious adverse events that occurred with telithromycin (i.e., hepatotoxicity) have been noted with solithromycin, possibly due to the fact that solithromycin (unlike telithromycin) does not possess a pyridine moiety in its chemical structure, which has been implicated in inhibiting nicotinic acetylcholine receptors. Because solithromycin is a possible substrate and inhibitor of both CYP3A4 and P-glycoprotein (P-gp), it may display drug interactions similar to macrolides such as clarithromycin. Overall, the in vitro activity, clinical efficacy, tolerability, and safety profile of solithromycin demonstrated to date suggest that it continues to be a promising treatment for CABP.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Medicine, Health Sciences Centre, Winnipeg, MB, Canada. .,Department of Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada.
| | - Erika Hartel
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Heather Adam
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada
| | | | - Michael A Zhanel
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Alyssa Golden
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Frank Schweizer
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Bala Gorityala
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Philippe R S Lagacé-Wiens
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Saint Boniface Hospital, Winnipeg, MB, Canada
| | - Andrew J Walkty
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Medicine, Health Sciences Centre, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada
| | - Alfred S Gin
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada.,Department of Pharmacy, Health Sciences Centre, Winnipeg, MB, Canada
| | - Daryl J Hoban
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James A Karlowsky
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Saint Boniface Hospital, Winnipeg, MB, Canada
| |
Collapse
|
23
|
Zarins-Tutt JS, Abraham ER, Bailey CS, Goss RJM. Bluegenics: Bioactive Natural Products of Medicinal Relevance and Approaches to Their Diversification. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 55:159-186. [PMID: 28238038 DOI: 10.1007/978-3-319-51284-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nature provides a valuable resource of medicinally relevant compounds, with many antimicrobial and antitumor agents entering clinical trials being derived from natural products. The generation of analogues of these bioactive natural products is important in order to gain a greater understanding of structure activity relationships; probing the mechanism of action, as well as to optimise the natural product's bioactivity and bioavailability. This chapter critically examines different approaches to generating natural products and their analogues, exploring the way in which synthetic and biosynthetic approaches may be blended together to enable expeditious access to new designer natural products.
Collapse
Affiliation(s)
| | - Emily R Abraham
- School of Chemistry, University of St Andrews, St Andrews, Scotland, UK
| | | | - Rebecca J M Goss
- School of Chemistry, University of St Andrews, St Andrews, Scotland, UK.
| |
Collapse
|
24
|
Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Crit Rev Microbiol 2016; 43:1-30. [DOI: 10.3109/1040841x.2015.1136261] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Sandra Martínez-Puchol
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Noemí Palma
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Gertrudis Horna
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Maria J Pons
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| |
Collapse
|
25
|
Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT, Yabu K, Allu SR, Fukuzaki T, Carlsen PN, Kitamura Y, Zhou X, Condakes ML, Szczypiński FT, Green WD, Myers AG. A platform for the discovery of new macrolide antibiotics. Nature 2016; 533:338-45. [PMID: 27193679 PMCID: PMC6526944 DOI: 10.1038/nature17967] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Abstract
The chemical modification of structurally complex fermentation products, a process known as semisynthesis, has been an important tool in the discovery and manufacture of antibiotics for the treatment of various infectious diseases. However, many of the therapeutics obtained in this way are no longer effective, because bacterial resistance to these compounds has developed. Here we present a practical, fully synthetic route to macrolide antibiotics by the convergent assembly of simple chemical building blocks, enabling the synthesis of diverse structures not accessible by traditional semisynthetic approaches. More than 300 new macrolide antibiotic candidates, as well as the clinical candidate solithromycin, have been synthesized using our convergent approach. Evaluation of these compounds against a panel of pathogenic bacteria revealed that the majority of these structures had antibiotic activity, some efficacious against strains resistant to macrolides in current use. The chemistry we describe here provides a platform for the discovery of new macrolide antibiotics and may also serve as the basis for their manufacture.
Collapse
Affiliation(s)
- Ian B Seiple
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ziyang Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Pavol Jakubec
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Audrey Langlois-Mercier
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peter M Wright
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Daniel T Hog
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Kazuo Yabu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Senkara Rao Allu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Takehiro Fukuzaki
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peter N Carlsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yoshiaki Kitamura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xiang Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Matthew L Condakes
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Filip T Szczypiński
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - William D Green
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
26
|
Synthesis and antibacterial activity of novel 11-[3-[(arylcarbamoyl)oxy]propylamino]-11-deoxy-6-O-methyl-3-oxoerythromycin A 11-N,12-O-cyclic carbamate derivatives. J Antibiot (Tokyo) 2016; 69:811-817. [PMID: 27118243 DOI: 10.1038/ja.2016.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
A series of novel 11-[3-[(arylcarbamoyl)oxy]propylamino]-11-deoxy-6-O-methyl-3-oxoerythromycin A 11-N,12-O-cyclic carbamate derivatives (6a-h) were designed, synthesized and evaluated for their antibacterial activities in vitro. Most of these compounds had significant antibacterial activity against two groups of pathogens of Methicillin-sensitive Staphylococcus aureus (MIC50=0.031-2 μg ml-1) except 6g and Methicillin-sensitive S. epidermidis (MIC50=0.031-0.5 μg ml-1). MIC90 of 6d against Methicillin-resistant S. epidermidis was at least 16-fold better than that of erythromycin (EMA), azithromycin (AZM) and ABT-773. 6d and 6e had more potent antibacterial activity against S. pneumoniae than EMA, AZM and ABT-773. In particular, compounds 6d and 6e also showed relatively potent activity against Haemophilus influenzae and Streptococcus hemolyticus.
Collapse
|
27
|
An Y, Doney AC, Andrade RB, Wheeler SE. Stacking Interactions between 9-Methyladenine and Heterocycles Commonly Found in Pharmaceuticals. J Chem Inf Model 2016; 56:906-14. [DOI: 10.1021/acs.jcim.5b00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi An
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Analise C. Doney
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Rodrigo B. Andrade
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
28
|
Abstract
For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms. Whenever a new antibiotic reached the market it did not take long until scientists observed the first resistant germs. Since the marketing of the first antibiotic there is a neck-on-neck race between scientists who discover natural or develop semisynthetic and synthetic bioactive molecules and bacteria, which have developed resistance mechanisms. The emphasis of this chapter is to give an overview of the history of antibiotics research. The situation within the pre-antibiotic era as well as in the early antibiotic era will be described until the Golden Age of Antibiotics will conclude this time travel. The most important antibiotic classes, information about their discovery, activity spectrum, mode of action, resistance mechanisms, and current application will be presented.
Collapse
Affiliation(s)
- Kathrin I Mohr
- Department Microbial Drugs and German Center for Infection Research, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
29
|
Tadpetch K, Jeanmard L, Rukachaisirikul V. Total synthesis of the proposed structure of pestalotioprolide A. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Tevyashova AN, Olsufyeva EN, Preobrazhenskaya MN. Design of dual action antibiotics as an approach to search for new promising drugs. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4448] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Abstract
Ketolides are erythromycin A derivatives with a keto group replacing the cladinose sugar and an aryl-alkyl group attached to the lactone macrocycle. The aryl-alkyl extension broadens its antibacterial spectrum to include all pathogens responsible for community-acquired pneumonia (CAP): Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis as well as atypical pathogens (Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila). Ketolides have extensive tissue distribution, favorable pharmacokinetics (oral, once-a-day) and useful anti-inflammatory/immunomodulatory properties. Hence, they were considered attractive additions to established oral antibacterials (quinolones, β-lactams, second-generation macrolides) for mild-to-moderate CAP. The first ketolide to be approved, Sanofi-Aventis' telithromycin (RU 66647, HMR 3647, Ketek®), had tainted clinical development, controversial FDA approval and subsequent restrictions due to rare, irreversible hepatotoxicity that included deaths. Three additional ketolides progressed to non-inferiority clinical trials vis-à-vis clarithromycin for CAP. Abbott's cethromycin (ABT-773), acquired by Polymedix and subsequently by Advanced Life Sciences, completed Phase III trials, but its New Drug Application was denied by the FDA in 2009. Enanta's modithromycin (EDP-420), originally codeveloped with Shionogi (S-013420) and subsequently by Shionogi alone, is currently in Phase II in Japan. Optimer's solithromycin (OP-1068), acquired by Cempra (CEM-101), is currently in Phase III. Until this hepatotoxicity issue is resolved, ketolides are unlikely to replace established antibacterials for CAP, or lipoglycopeptides and oxazolidinones for gram-positive infections.
Collapse
|
32
|
Abstract
Telithromycin (Ketek), Aventis Pharma), a ketolide, belongs to a new class of antibiotics that was developed for the treatment of upper and lower respiratory tract infections. The prevalence of penicillin and macrolide resistance among respiratory pathogens is increasing in the USA. Telithromycin is highly active against beta-lactam, macrolide and fluoroquinolone reduced-susceptibility pathogens. Its efficacy has been shown to be equal or superior to comparator agents in numerous studies. It has a broad in vitro spectrum versus usual respiratory pathogens and oral once-daily dosing that increases patient compliance. Telithromycin penetrates rapidly into neutrophils in bronchopulmonary tissue, with peak levels obtained in 1 to 2 h. Results of clinical trials show clinical-esponse rates similar to comparator agents. The most frequent adverse events involve the gastrointestinal system, with mild to moderate diarrhea and nausea. A low rate of discontinuation was observed in the studies. Telithromycin is an effective first-line treatment for mild to moderate respiratory infections in adults.
Collapse
Affiliation(s)
- Karen M Spiers
- Division of Infectious Diseases, William Beaumont Hospital, Royal Oak, MI 48073, USA.
| | | |
Collapse
|
33
|
Synthesis of 4″-O-desosaminyl clarithromycin derivatives and their anti-bacterial activities. Bioorg Med Chem Lett 2013; 23:6274-9. [PMID: 24139585 DOI: 10.1016/j.bmcl.2013.09.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/09/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022]
Abstract
A series of new 4″-O-desosaminyl clarithromycin derivatives were designed and synthesized. The efficient synthesis routes of 6-deoxy-desosamine donors 8 and 11 were developed and the methodology of glycosylation of clarithromycin 4″-OH with desosamine was studied. The activities of the target compounds were tested against a series of macrolide-sensitive and macrolide-resistant pathogens. Some of them showed activities against macrolide sensitive pathogens, and compounds 19 and 22 displayed significant improvement of activities against sensitive pathogens and two strains of MRSE, which verified the importance of desosamine in the interaction of macrolide and its receptor, and offered valuable information of the SAR of macrolide 4″-OH derivatives.
Collapse
|
34
|
Design, synthesis and biological evaluation of azithromycin glycosyl derivatives as potential antibacterial agents. Bioorg Med Chem Lett 2013; 23:5057-60. [DOI: 10.1016/j.bmcl.2013.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 11/22/2022]
|
35
|
Randomized, double-blind, multicenter phase 2 study comparing the efficacy and safety of oral solithromycin (CEM-101) to those of oral levofloxacin in the treatment of patients with community-acquired bacterial pneumonia. Antimicrob Agents Chemother 2013; 57:2526-34. [PMID: 23507282 DOI: 10.1128/aac.00197-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Solithromycin, a new macrolide, and the first fluoroketolide in clinical development, with activity against macrolide-resistant bacteria, was tested in 132 patients with moderate to moderately severe community-acquired bacterial pneumonia (CABP) in a multicenter, double-blind, randomized phase 2 study. Patients were enrolled and randomized (1:1) to either 800 mg solithromycin orally (PO) on day 1, followed by 400 mg PO daily on days 2 to 5, or 750 mg levofloxacin PO daily on days 1 to 5. Efficacy outcome rates of clinical success at the test-of-cure visit 4 to 11 days after the last dose of study drug were comparable in the intent-to-treat (ITT) (84.6% for solithromycin versus 86.6% for levofloxacin) and microbiological-intent-to-treat (micro-ITT) (77.8% for solithromycin versus 71.4% for levofloxacin) populations. Early response success rates at day 3, defined as improvement in at least two cardinal symptoms of pneumonia, were also comparable (72.3% for solithromycin versus 71.6% for levofloxacin). More patients treated with levofloxacin than with solithromycin experienced treatment-emergent adverse events (TEAEs) during the study (45.6% versus 29.7%). The majority of TEAEs were mild or moderate gastrointestinal symptoms and included nausea (1.6% for solithromycin; 10.3% for levofloxacin), diarrhea (7.8% for solithromycin; 5.9% for levofloxacin), and vomiting (0% for solithromycin; 4.4% for levofloxacin). Six patients, all of whom received levofloxacin, discontinued the study drug due to an adverse event. Solithromycin demonstrated comparable efficacy and favorable safety relative to levofloxacin. These findings support a phase 3 study of solithromycin for the treatment of CABP. (This study has been registered at ClinicalTrials.gov under registration no. NCT01168713.).
Collapse
|
36
|
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25:545-82. [PMID: 22763637 PMCID: PMC3416486 DOI: 10.1128/cmr.05030-11] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Collapse
|
37
|
van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol 2011; 2:203. [PMID: 22046172 PMCID: PMC3202223 DOI: 10.3389/fmicb.2011.00203] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/08/2011] [Indexed: 01/18/2023] Open
Abstract
In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria.
Collapse
Affiliation(s)
- Angela H. A. M. van Hoek
- Laboratory for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute of Public Health and the EnvironmentUtrecht, Netherlands
| | - Dik Mevius
- Central Veterinary Institute of Wageningen URLelystad, Netherlands
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Beatriz Guerra
- National Salmonella Reference Laboratory, Federal Institute for Risk AssessmentBerlin, Germany
| | - Peter Mullany
- Department of Microbial Diseases, University College London Eastman Dental Institute, University College LondonLondon, UK
| | - Adam Paul Roberts
- Department of Microbial Diseases, University College London Eastman Dental Institute, University College LondonLondon, UK
| | - Henk J. M. Aarts
- Laboratory for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute of Public Health and the EnvironmentUtrecht, Netherlands
| |
Collapse
|
38
|
Song QL, Guo BQ, Zhang W, Lan P, Sun PH, Chen WM. Design, synthesis and antibacterial activity of novel ketolides bearing an aryltetrazolyl-substituted alkyl side chain. J Antibiot (Tokyo) 2011; 64:571-81. [DOI: 10.1038/ja.2011.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Putnam SD, Sader HS, Farrell DJ, Biedenbach DJ, Castanheira M. Antimicrobial characterisation of solithromycin (CEM-101), a novel fluoroketolide: activity against staphylococci and enterococci. Int J Antimicrob Agents 2011; 37:39-45. [PMID: 21075602 DOI: 10.1016/j.ijantimicag.2010.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 08/23/2010] [Accepted: 08/28/2010] [Indexed: 11/16/2022]
Abstract
Solithromycin (CEM-101) is a novel fluoroketolide with high potency against Gram-positive and Gram-negative bacteria commonly associated with community-acquired respiratory tract infections and skin and skin-structure infections. In this study, solithromycin and comparator antimicrobials were tested against a contemporary collection of Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus faecalis, Enterococcus faecium and other Enterococcus spp. collected in the SENTRY Antimicrobial Surveillance Program. Solithromycin was active against S. aureus [minimum inhibitory concentration for 50% of the organisms (MIC(50))=0.12 μg/mL] and was two-fold more active than telithromycin (MIC(50)=0.25 μg/mL). Solithromycin was more potent against methicillin (oxacillin)-susceptible S. aureus [MIC(50)=0.06 μg/mL and MIC for 90% of the organisms (MIC(90))=0.12 μg/mL) compared with methicillin (oxacillin)-resistant S. aureus (MIC(50)=0.12 μg/mL and MIC(90)>16 μg/mL). Solithromycin activity was reduced amongst heterogeneous vancomycin-intermediate S. aureus and vancomycin-resistant S. aureus (MIC(50)>16 μg/mL). Against strains with defined susceptibilities to erythromycin, clindamycin and telithromycin, solithromycin showed potent inhibition against all combinations (MIC(50)=0.06 μg/mL) except those with non-susceptibility to telithromycin (>2 μg/mL) (MIC(50)>16 μg/mL). The solithromycin MIC(50) for E. faecium (1 μg/mL) was four-fold higher than the MIC(50) for E. faecalis (0.25 μg/mL). In summary, solithromycin demonstrated high potency against many Staphylococcus and Enterococcus spp. isolated from contemporary infections worldwide.
Collapse
Affiliation(s)
- Shannon D Putnam
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | | | | | | | | |
Collapse
|
40
|
Synthesis and antibacterial activity of new 4″-O-carbamates of 11,12-cyclic carbonate erythromycin A 6,9-imino ether. J Antibiot (Tokyo) 2011; 64:243-7. [DOI: 10.1038/ja.2010.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Synthesis and antibacterial activity of novel ketolides with 11,12-sulfur contained aryl alkyl side chains. Eur J Med Chem 2011; 46:208-17. [DOI: 10.1016/j.ejmech.2010.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/25/2010] [Accepted: 11/02/2010] [Indexed: 11/20/2022]
|
42
|
Qi Y, Jiao B, Ma X, Cui W, Ma S. Synthesis and antibacterial activity of novel 4''-O-carbamoyl erythromycin-A derivatives. Arch Pharm (Weinheim) 2010; 343:458-64. [PMID: 20803622 DOI: 10.1002/ardp.200900288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Novel 4''-O-carbamoyl erythromycin-A derivatives were designed, synthesized, and evaluated for their in-vitro antibacterial activities. All of the 4''-O-carbamoyl derivatives showed excellent activity against erythromycin-susceptible Staphylococcus aureus ATCC25923, Streptococcus pyogenes, and Streptococcus pneumoniae ATCC49619. Most of the 4''-O-arylalkylcarbamoyl derivatives displayed potent activity against erythromycin-resistant S. pneumoniae encoded by the mef gene and greatly improved activity against erythromycin-resistant S. pneumoniae encoded by the erm gene or the erm and mef genes. In particular, the 4''-O-arylalkyl derivatives 4c-4e and 4g were found to possess the most potent activity against all the tested erythromycin-susceptible strains, which were comparable to those of erythromycin, clarithromycin, or azithromycin. 4''-O-Arylalkyl derivatives 4e and 4g were the most effective against erythromycin-resistant S. pneumoniae encoded by the mef gene (0.25 and 0.25 microg/mL). 4''-O-Arylalkyl derivatives 4a and 4b exhibited significantly improved activity against erythromycin-resistant S. pneumoniae encoded by the erm gene. In contrast, the 4''-O-alkylcarbamoyl derivatives hardly showed improved activity against all the tested erythromycin-resistant strains.
Collapse
Affiliation(s)
- Yunkun Qi
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, P R China
| | | | | | | | | |
Collapse
|
43
|
Xu P, Chen XZ, Liu L, Jin ZP, Lei PS. A new series of macrolide derivatives with 4″-O-saccharide substituents. Bioorg Med Chem Lett 2010; 20:5527-31. [DOI: 10.1016/j.bmcl.2010.07.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/23/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|
44
|
Nam G, Kim YS, Choi KI. Synthesis and antibacterial activity of new 9-O-arylpropenyloxime ketolides. Bioorg Med Chem Lett 2010; 20:2671-4. [DOI: 10.1016/j.bmcl.2010.01.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/23/2009] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
|
45
|
Synthesis and antibacterial activity of novel 3-O-carbamoyl derivatives of clarithromycin and 11,12-cyclic carbonate azithromycin. Eur J Med Chem 2010; 45:915-22. [DOI: 10.1016/j.ejmech.2009.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 11/22/2022]
|
46
|
Abstract
The in vitro activity of CEM-101, a new fluoroketolide, was determined against Gram-positive organisms with various macrolide susceptibility profiles. Experiments for determination of the MICs and minimum bactericidal concentrations (MBCs), timed killing, single-step and multistep mutation rates, the erythromycin induction of resistance, postantibiotic effect (PAE), and drug interactions were performed for CEM-101; and the results were compared to those obtained with telithromycin, macrolides, and lincosamides. The MBCs of CEM-101 remained lower overall than those of telithromycin, and CEM-101 displayed a 2-fold greater potency than the ketolide. Timed-killing curve testing showed that CEM-101 had greater bactericidal activity than telithromycin (a >or=3-log(10)-CFU/ml decrease in the initial inoculum at 24 h) against the staphylococcal isolates tested. The propensity of CEM-101 to cause resistance was low, as determined from the rates of resistance determined in single-step mutational studies (<10(-8) or 10(-9)). In multipassaging studies, mutants of two strains (both of which were USA300 isolates) resistant to CEM-101 emerged. That number was comparable to the number resistant to clindamycin but less than the number resistant to telithromycin. Erythromycin induced CEM-101 resistance in Staphylococcus aureus and Streptococcus pneumoniae, similar to telithromycin; however, in seven of eight beta-hemolytic streptococci, CEM-101 resistance induction was not observed. CEM-101 showed a significant concentration- and exposure-dependent PAE against the strains tested, with the values ranging from 2.3 to 6.1 h for Gram-positive organisms (these times were longer than those for telithromycin). No antagonism was found in synergy analyses, with enhanced inhibition being most noted for combinations with CEM-101 and ceftriaxone, gentamicin, and trimethoprim-sulfamethoxazole. Overall, this new antimicrobial agent (CEM-101) showed good antimicrobial characteristics compared with those of the agents in its class and exhibited measured parameter values similar or superior to those of utilized comparators, indicating that CEM-101 warrants further clinical evaluation.
Collapse
|
47
|
Ma C, Liu Z, Song H, Jiang R, He F, Ma S. Synthesis and antibacterial activity of novel 11,12-cyclic carbonate azithromycin 4″-O-carbamate derivatives. J Antibiot (Tokyo) 2009; 63:3-8. [DOI: 10.1038/ja.2009.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Xu P, Liu L, Chen XZ, Li Y, Liu J, Jin ZP, Wang GQ, Lei PS. Synthesis of novel macrolide derivatives with imidazo[4,5-b]pyridinyl sulfur contained alkyl side chains and their antibacterial activity. Bioorg Med Chem Lett 2009; 19:4079-83. [DOI: 10.1016/j.bmcl.2009.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/31/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
49
|
Synthesis and antibacterial activity of 4″,11-di-O-arylalkylcarbamoyl azithromycin derivatives. Bioorg Med Chem Lett 2009; 19:1698-701. [DOI: 10.1016/j.bmcl.2009.01.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/24/2009] [Accepted: 01/28/2009] [Indexed: 11/22/2022]
|
50
|
A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009; 53:1367-76. [PMID: 19171799 DOI: 10.1128/aac.01275-08] [Citation(s) in RCA: 480] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus infections tend to respond poorly to macrolide-based chemotherapy, even though the organisms appear to be susceptible to clarithromycin. Circumstantial evidence suggested that at least some M. abscessus isolates might be inducibly resistant to macrolides. Thus, the purpose of this study was to investigate the macrolide phenotype of M. abscessus clinical isolates. Inducible resistance to clarithromycin (MIC > 32 microg/ml) was found for 7 of 10 clinical isolates of M. abscessus previously considered susceptible; the remaining 3 isolates were deemed to be susceptible (MIC <or= 0.5 microg/ml). Inducible resistance was conferred by a novel erm gene, erm(41), which was present in all 10 isolates and in an isolate of Mycobacterium bolletii (M. abscessus type II). However, the erm(41) alleles were nonfunctional in the three susceptible M. abscessus isolates. No evidence of erm(41) was found in Mycobacterium chelonae, and an isolate of Mycobacterium massiliense appeared to be an erm(41) deletion mutant. Expression of erm(41) in M. abscessus conferred resistance to clarithromycin and erythromycin and the ketolide HMR3004. However, this species was found to be intrinsically resistant, independent of erm(41), to clindamycin, quinupristin (streptogramin B), and telithromycin. The ability to confer resistance to clindamycin and telithromycin, but not quinupristin, was demonstrated by expressing erm(41) in Maycobacterium smegmatis. Exposure of M. abscessus to the macrolide-lincosamide-streptogramin B-ketolide agents increased the levels of erm(41) mRNA 23- to 250-fold within 24 h. The inducible macrolide resistance phenotype of some M. abscessus isolates may explain the lack of efficacy of macrolide-based chemotherapy against this organism.
Collapse
|