1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Ujiie K, Nakakido M, Kinoshita S, Caaveiro JMM, Entzminger CK, Okumura SCJ, Maruyama T, Miyauchi K, Matano T, Tsumoto K. Specific recognition mechanism of an antibody to sulfated tyrosine and its potential use in biological research. J Biol Chem 2025; 301:108176. [PMID: 39798874 PMCID: PMC11849073 DOI: 10.1016/j.jbc.2025.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Post-translational modification of proteins is a crucial biological reaction that regulates protein functions by altering molecular properties. The specific detection of such modifications in proteins has made significant contributions to molecular biology research and holds potential for future drug development applications. In HIV research, for example, tyrosine sulfation at the N-terminus of C-C chemokine receptor type 5 (CCR5) is considered to significantly enhance HIV infection efficiency. However, antibodies specific to sulfated CCR5 still need to be developed. In this study, we successfully generated an antibody that specifically recognized the sulfated N-terminal peptide of CCR5 through rabbit immunization and panning via phage display using a CCR5 N-terminal peptide containing sulfate modification. We used various physicochemical methods in combination with molecular dynamics simulation to screen for residues that could be involved in recognition of the sulfated peptide by this antibody. We also confirmed that this antibody recognized the sulfated full-length CCR5 on the cell surface, which suggested it should be useful as a research tool that could lead to the development of novel therapeutics. Although the antibody binding did not inhibit HIV infection, it could be also described as sulfation site-specific binding, beyond sulfation-specific binding.
Collapse
Affiliation(s)
- Kan Ujiie
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Seisho Kinoshita
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jose M M Caaveiro
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | - Tetsuro Matano
- AIDS Research Center, NIID, Tokyo, Japan; Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Eid AM, Selim A, Khaled M, Elfiky AA. Hybrid Virtual Screening Approach to Predict Novel Natural Compounds against HIV-1 CCR5. J Phys Chem B 2024; 128:7086-7101. [PMID: 39016126 DOI: 10.1021/acs.jpcb.4c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection continues to pose a major global health challenge. HIV entry into host cells via membrane fusion mediated by the viral envelope glycoprotein gp120/gp41 is a key step in the HIV life cycle. CCR5, expressed on CD4+ T cells and macrophages, acts as a coreceptor facilitating HIV-1 entry. The CCR5 antagonist maraviroc is used to treat HIV infection. However, it can cause adverse effects and has limitations such as only inhibiting CCR5-tropic viruses. There remains a need to develop alternative CCR5 inhibitors with improved safety profiles. PROBLEM STATEMENT Natural products may offer advantages over synthetic inhibitors including higher bioavailability, binding affinity, effectiveness, lower toxicity, and molecular diversity. However, screening the vast chemical space of natural compounds to identify novel CCR5 inhibitors presents challenges. This study aimed to address this gap through a hybrid ligand-based pharmacophore modeling and molecular docking approach to virtually screen large natural product databases. METHODS A reliable pharmacophore model was developed based on 311 known CCR5 antagonists and validated against an external data set. Five natural product databases containing over 306,000 compounds were filtered based on drug-likeness rules. The validated pharmacophore model screened the databases to identify 611 hits. Key residues of the CCR5 receptor crystal structure were identified for docking. The top hits were docked, and interactions were analyzed. Molecular dynamics simulations were conducted to examine complex stability. Computational prediction evaluated pharmacokinetic properties. RESULTS Three compounds exhibited similar interactions and binding energies to maraviroc. MD simulations demonstrated complex stability comparable to maraviroc. One compound showed optimal predicted absorption, minimal metabolism, and a lower likelihood of interactions than maraviroc. CONCLUSION This computational screening workflow identified three natural compounds with promising CCR5 inhibition and favorable pharmacokinetic profiles. One compound emerged as a lead based on bioavailability potential and minimal interaction risk. These findings present opportunities for developing alternative CCR5 antagonists and warrant further experimental investigation. Overall, the hybrid virtual screening approach proved effective for mining large natural product spaces to discover novel molecular entities with drug-like properties.
Collapse
Affiliation(s)
- Abdulrahman M Eid
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abdallah Selim
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed Khaled
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abdo A Elfiky
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Prokopovich AK, Litvinova IS, Zubkova AE, Yudkin DV. CXCR4 Is a Potential Target for Anti-HIV Gene Therapy. Int J Mol Sci 2024; 25:1187. [PMID: 38256260 PMCID: PMC10816112 DOI: 10.3390/ijms25021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The human immunodeficiency virus (HIV) epidemic is a global issue. The estimated number of people with HIV is 39,000,000 to date. Antiviral therapy is the primary approach to treat the infection. However, it does not allow for a complete elimination of the pathogen. The advances in modern gene therapy methods open up new possibilities of effective therapy. One of these areas of possibility is the development of technologies to prevent virus penetration into the cell. Currently, a number of technologies aimed at either the prevention of virus binding to the CCR5 coreceptor or its knockout are undergoing various stages of clinical trials. Since HIV can also utilize the CXCR4 coreceptor, technologies to modify this receptor are also required. Standard knockout of CXCR4 is impossible due to its physiological significance. This review presents an analysis of interactions between individual amino acids in CXCR4 and physiological ligands and HIV gp120. It also discusses potential targets for gene therapy approaches aimed at modifying the coreceptor.
Collapse
Affiliation(s)
- Appolinaria K. Prokopovich
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| | - Irina S. Litvinova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| | - Alexandra E. Zubkova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Dmitry V. Yudkin
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| |
Collapse
|
5
|
Han S, Lu Y. Fluorine in anti-HIV drugs approved by FDA from 1981 to 2023. Eur J Med Chem 2023; 258:115586. [PMID: 37393791 DOI: 10.1016/j.ejmech.2023.115586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Human immunodeficiency virus (HIV) is the etiological agent of acquired immunodeficiency syndrome (AIDS). Nowadays, FDA has approved over thirty antiretroviral drugs grouped in six categories. Interestingly, one-third of these drugs contain different number of fluorine atoms. The introduction of fluorine to obtain drug-like compounds is a well-accepted strategy in medicinal chemistry. In this review, we summarized 11 fluorine-containing anti-HIV drugs, focusing on their efficacy, resistance, safety, and specific roles of fluorine in the development of each drug. These examples may be of help for the discovery of new drug candidates bearing fluorine in their structures.
Collapse
Affiliation(s)
- Sheng Han
- School of Medicine, Shanghai University, Shanghai, China.
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, China; Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
7
|
Risner KH, Tieu KV, Wang Y, Getz M, Bakovic A, Bhalla N, Nathan SD, Conway DE, Macklin P, Narayanan A, Alem F. Maraviroc inhibits SARS-CoV-2 multiplication and s-protein mediated cell fusion in cell culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.08.12.246389. [PMID: 32817953 PMCID: PMC7430595 DOI: 10.1101/2020.08.12.246389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In an effort to identify therapeutic intervention strategies for the treatment of COVID-19, we have investigated a selection of FDA-approved small molecules and biologics that are commonly used to treat other human diseases. A investigation into 18 small molecules and 3 biologics was conducted in cell culture and the impact of treatment on viral titer was quantified by plaque assay. The investigation identified 4 FDA-approved small molecules, Maraviroc, FTY720 (Fingolimod), Atorvastatin and Nitazoxanide that were able to inhibit SARS-CoV-2 infection. Confocal microscopy with over expressed S-protein demonstrated that Maraviroc reduced the extent of S-protein mediated cell fusion as observed by fewer multinucleate cells in the context of drug-treatment. Mathematical modeling of drug-dependent viral multiplication dynamics revealed that prolonged drug treatment will exert an exponential decrease in viral load in a multicellular/tissue environment. Taken together, the data demonstrate that Maraviroc, Fingolimod, Atorvastatin and Nitazoxanide inhibit SARS-CoV-2 in cell culture.
Collapse
Affiliation(s)
- Kenneth H. Risner
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Katie V. Tieu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Yafei Wang
- Intellegent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Michael Getz
- Intellegent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Allison Bakovic
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Nishank Bhalla
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Steven D. Nathan
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Fairfax, Virginia, United States of America
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul Macklin
- Intellegent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Aarthi Narayanan
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
- American Type Culture Collection, Manassas, Virginia, United States of America
| | - Farhang Alem
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
8
|
Bao ZP, Zhang Y, Wu XF. Palladium-catalyzed four-component difluoroalkylative carbonylation of aryl olefins and ethylene. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Bao ZP, Zhang Y, Wu XF. Palladium-catalyzed difluoroalkylative carbonylation of styrenes toward difluoropentanedioates. Chem Sci 2022; 13:9387-9391. [PMID: 36093028 PMCID: PMC9384137 DOI: 10.1039/d2sc02665a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of fluorine atoms into organic molecules is an attractive but challenging topic. In this work, an interesting palladium-catalyzed difluoroalkylative carbonylation of aryl olefins has been developed. A wide range of aryl olefins were transformed into the corresponding difluoropentanedioate compounds with good functional-group tolerance and excellent regioselectivity. Inexpensive ethyl bromodifluoroacetate acts both as a difluoroalkyl precursor and a nucleophile here. Additionally, a scale-up reaction was also performed successfully, and further transformations of the obtained product were shown as well.
Collapse
Affiliation(s)
- Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| |
Collapse
|
10
|
Jiazhuang W, Liguo T, Shaoqi X, Tiebo X, Yubo J. Rh-Catalyzed gem-Difluoroallylation of N-Tosylhydrazones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Burster T, Traut R, Yermekkyzy Z, Mayer K, Westhoff MA, Bischof J, Knippschild U. Critical View of Novel Treatment Strategies for Glioblastoma: Failure and Success of Resistance Mechanisms by Glioblastoma Cells. Front Cell Dev Biol 2021; 9:695325. [PMID: 34485282 PMCID: PMC8415230 DOI: 10.3389/fcell.2021.695325] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
According to the invasive nature of glioblastoma, which is the most common form of malignant brain tumor, the standard care by surgery, chemo- and radiotherapy is particularly challenging. The presence of glioblastoma stem cells (GSCs) and the surrounding tumor microenvironment protects glioblastoma from recognition by the immune system. Conventional therapy concepts have failed to completely remove glioblastoma cells, which is one major drawback in clinical management of the disease. The use of small molecule inhibitors, immunomodulators, immunotherapy, including peptide and mRNA vaccines, and virotherapy came into focus for the treatment of glioblastoma. Although novel strategies underline the benefit for anti-tumor effectiveness, serious challenges need to be overcome to successfully manage tumorigenesis, indicating the significance of developing new strategies. Therefore, we provide insights into the application of different medications in combination to boost the host immune system to interfere with immune evasion of glioblastoma cells which are promising prerequisites for therapeutic approaches to treat glioblastoma patients.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rebecca Traut
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Zhanerke Yermekkyzy
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Katja Mayer
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
12
|
Meleddu R, Corona A, Distinto S, Cottiglia F, Deplano S, Sequeira L, Secci D, Onali A, Sanna E, Esposito F, Cirone I, Ortuso F, Alcaro S, Tramontano E, Mátyus P, Maccioni E. Exploring New Scaffolds for the Dual Inhibition of HIV-1 RT Polymerase and Ribonuclease Associated Functions. Molecules 2021; 26:molecules26133821. [PMID: 34201561 PMCID: PMC8270338 DOI: 10.3390/molecules26133821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Current therapeutic protocols for the treatment of HIV infection consist of the combination of diverse anti-retroviral drugs in order to reduce the selection of resistant mutants and to allow for the use of lower doses of each single agent to reduce toxicity. However, avoiding drugs interactions and patient compliance are issues not fully accomplished so far. Pursuing on our investigation on potential anti HIV multi-target agents we have designed and synthesized a small library of biphenylhydrazo 4-arylthiazoles derivatives and evaluated to investigate the ability of the new derivatives to simultaneously inhibit both associated functions of HIV reverse transcriptase. All compounds were active towards the two functions, although at different concentrations. The substitution pattern on the biphenyl moiety appears relevant to determine the activity. In particular, compound 2-{3-[(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl} hydrazin-1-ylidene) methyl]-4-methoxyphenyl} benzamide bromide (EMAC2063) was the most potent towards RNaseH (IC50 = 4.5 mM)- and RDDP (IC50 = 8.0 mM) HIV RT-associated functions.
Collapse
Affiliation(s)
- Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Lisa Sequeira
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Daniela Secci
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Alessia Onali
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Erica Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Italo Cirone
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy; (F.O.); (S.A.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy; (F.O.); (S.A.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Péter Mátyus
- Institute of Digital Health Sciences, Faculty of Health and Public Services, Semmelweis University, Ferenc tér 15, 1094 Budapest, Hungary;
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
- Correspondence: ; Tel.: +39-070-6758744
| |
Collapse
|
13
|
Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The Role of Macrophages in Cancer Development and Therapy. Cancers (Basel) 2021; 13:1946. [PMID: 33919517 PMCID: PMC8073377 DOI: 10.3390/cancers13081946] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages are critical mediators of tissue homeostasis and influence various aspects of immunity. Tumor-associated macrophages are one of the main cellular components of the tumor microenvironment. Depending on their activation status, macrophages can exert a dual influence on tumorigenesis by either antagonizing the cytotoxic activity of immune cells or, less frequently, by enhancing antitumor responses. In most situations, TAMs suppress T cell recruitment and function or regulate other aspects of tumor immunity. The importance of TAMs targeting in cancer therapy is derived from the strong association between the high infiltration of TAMs in the tumor tissue with poor patient prognosis. Several macrophage-targeting approaches in anticancer therapy are developed, including TAM depletion, inhibition of new TAM differentiation, or re-education of TAM activation for cancer cell phagocytosis. In this review, we will describe the role of TAMs in tumor development, including such aspects as protumorigenic inflammation, immune suppression, neoangiogenesis, and enhancement of tissue invasion and distant metastasis. Furthermore, we will discuss therapeutic approaches that aim to deplete TAMs or, on the contrary, re-educate TAMs for cancer cell phagocytosis and antitumor immunity.
Collapse
Affiliation(s)
- Ewa Cendrowicz
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (E.C.); (E.B.)
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, Building F, 02-097 Warsaw, Poland;
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (E.C.); (E.B.)
| | - Tomasz P. Rygiel
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, Building F, 02-097 Warsaw, Poland;
| |
Collapse
|
14
|
Feng Z, Liang T, Wang S, Chen M, Hou T, Zhao J, Chen H, Zhou Y, Xie XQ. Binding Characterization of GPCRs-Modulator by Molecular Complex Characterizing System (MCCS). ACS Chem Neurosci 2020; 11:3333-3345. [PMID: 32941011 PMCID: PMC10063373 DOI: 10.1021/acschemneuro.0c00457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been devoted to allosteric modulators as the preferred therapeutic agents for their colossal advantages such as higher selectivity, fewer side effects, and lower toxicity since they bind at allosteric sites that are topographically distinct from the classic orthosteric sites. However, the allosteric binding pockets are not conserved and there are no cogent methods to comprehensively characterize the features of allosteric sites with the binding of modulators. To overcome this limitation, our lab has developed a novel algorithm that can quantitatively characterize the receptor-ligand binding feature named Molecular Complex Characterizing System (MCCS). To illustrate the methodology and application of MCCS, we take G protein coupled receptors (GPCRs) as an example. First, we summarized and analyzed the reported allosteric binding pockets of class A GPCRs using MCCS. Sequentially, a systematic study was conducted between cannabinoid receptor type 1 (CB1) and its allosteric modulators, where we used MCCS to analyze the residue energy contribution and the interaction pattern. Finally, we validated the predicted allosteric binding site in CB2 via MCCS in combination with molecular dynamics (MD) simulation. Our results demonstrate that the MCCS program is advantageous in recapitulating the allosteric regulation pattern of class A GPCRs of the reported pockets as well as in predicting potential allosteric binding pockets. This MCCS program can serve as a valuable tool for the discovery of small-molecule allosteric modulators for class A GPCRs.
Collapse
Affiliation(s)
- Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Tianjian Liang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Tianling Hou
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jack Zhao
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Hui Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuehan Zhou
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry 2020; 26:11349-11390. [PMID: 32359086 DOI: 10.1002/chem.202000617] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Daniel J Graham
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
16
|
Ellinger B, Pohlmann D, Woens J, Jäkel FM, Reinshagen J, Stocking C, Prassolov VS, Fehse B, Riecken K. A High-Throughput HIV-1 Drug Screening Platform, Based on Lentiviral Vectors and Compatible with Biosafety Level-1. Viruses 2020; 12:E580. [PMID: 32466195 PMCID: PMC7290285 DOI: 10.3390/v12050580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022] Open
Abstract
HIV-1 infection is a complex, multi-step process involving not only viral, but also multiple cellular factors. To date, drug discovery methods have primarily focused on the inhibition of single viral proteins. We present an efficient and unbiased approach, compatible with biosafety level 1 (BSL-1) conditions, to identify inhibitors of HIV-1 reverse transcription, intracellular trafficking, nuclear entry and genome integration. Starting with a fluorescent assay setup, we systematically improved the screening methodology in terms of stability, efficiency and pharmacological relevance. Stability and throughput were optimized by switching to a luciferase-based readout. BSL-1 compliance was achieved without sacrificing pharmacological relevance by using lentiviral particles pseudo-typed with the mouse ecotropic envelope protein to transduce human PM1 T cells gene-modified to express the corresponding murine receptor. The cellular assay was used to screen 26,048 compounds selected for maximum diversity from a 200,640-compound in-house library. This yielded z' values greater than 0.8 with a hit rate of 3.3% and a confirmation rate of 50%. We selected 93 hits and enriched the collection with 279 similar compounds from the in-house library to identify promising structural features. The most active compounds were validated using orthogonal assay formats. The similarity of the compound profiles across the different platforms demonstrated that the reported lentiviral assay system is a robust and versatile tool for the identification of novel HIV-1 inhibitors.
Collapse
Affiliation(s)
- Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 22525 Hamburg, Germany; (B.E.); (J.R.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Partner site Hamburg, 22525 Hamburg, Germany
| | - Daniel Pohlmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
| | - Jannis Woens
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
| | - Felix M. Jäkel
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
| | - Jeanette Reinshagen
- Department ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 22525 Hamburg, Germany; (B.E.); (J.R.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Partner site Hamburg, 22525 Hamburg, Germany
| | - Carol Stocking
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Vladimir S. Prassolov
- Engelhardt-Institute of Molecular Biology, Russian Academy of Sciences, 117984 Moscow, Russia;
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
- German Center for Infection Research (DZIF), Partner site Hamburg, 20246 Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.P.); (J.W.); (F.M.J.); (C.S.)
| |
Collapse
|
17
|
Mu Y, Kodidela S, Wang Y, Kumar S, Cory TJ. The dawn of precision medicine in HIV: state of the art of pharmacotherapy. Expert Opin Pharmacother 2018; 19:1581-1595. [PMID: 30234392 DOI: 10.1080/14656566.2018.1515916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Combination antiretroviral therapy (ART) reduces viral load to under the limit of detection, successfully decreasing HIV-related morbidity and mortality. Due to viral mutations, complex drug combinations and different patient response, there is an increasing demand for individualized treatment options for patients. AREAS COVERED This review first summarizes the pharmacokinetic and pharmacodynamic profile of clinical first-line drugs, which serves as guidance for antiretroviral precision medicine. Factors which have influential effects on drug efficacy and thus precision medicine are discussed: patients' pharmacogenetic information, virus mutations, comorbidities, and immune recovery. Furthermore, strategies to improve the application of precision medicine are discussed. EXPERT OPINION Precision medicine for ART requires comprehensive information on the drug, virus, and clinical data from the patients. The clinically available genetic tests are a good starting point. To better apply precision medicine, deeper knowledge of drug concentrations, HIV reservoirs, and efficacy associated genes, such as polymorphisms of drug transporters and metabolizing enzymes, are required. With advanced computer-based prediction systems which integrate more comprehensive information on pharmacokinetics, pharmacodynamics, pharmacogenomics, and the clinically relevant information of the patients, precision medicine will lead to better treatment choices and improved disease outcomes.
Collapse
Affiliation(s)
- Ying Mu
- a Department of Clinical Pharmacy and Translational Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| | - Sunitha Kodidela
- b Department of Pharmaceutical Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| | - Yujie Wang
- b Department of Pharmaceutical Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| | - Santosh Kumar
- b Department of Pharmaceutical Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| | - Theodore J Cory
- a Department of Clinical Pharmacy and Translational Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , USA
| |
Collapse
|
18
|
Cusato J, Allegra S, Nicolò AD, Calcagno A, D'Avolio A. Precision medicine for HIV: where are we? Pharmacogenomics 2018; 19:145-165. [DOI: 10.2217/pgs-2017-0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To date, antiretroviral therapy is highly effective in HIV-affected patients, but the individualization of such a life-long therapy may be advised. This review briefly summarizes the main factors involved in the potential personalization of antiretroviral treatment. Relevant articles in English were identified by PubMed and recent congresses’ abstracts. Foremost influences concerning pharmacodynamics, therapeutic drug monitoring, pharmacogenetics, comorbidities, immune recovery and viral characteristics affecting the healthcare of HIV-positive patients are listed here. Furthermore, pharmacoeconomic aspects are mentioned. Applying pharmacokinetic and pharmacogenetic knowledge may be informative and guide the better choice of treatment in order to achieve long-term efficacy and avoid adverse events. Randomized investigations of the clinical relevance of tailored antiretroviral regimens are needed in order to obtain a better management of HIV/AIDS-affected patients.
Collapse
Affiliation(s)
- Jessica Cusato
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Sarah Allegra
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Amedeo De Nicolò
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Andrea Calcagno
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Antonio D'Avolio
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| |
Collapse
|
19
|
A Pharmacokinetic and Pharmacodynamic Study of Maraviroc as Acute Graft-versus-Host Disease Prophylaxis in Pediatric Allogeneic Stem Cell Transplant Recipients with Nonmalignant Diagnoses. Biol Blood Marrow Transplant 2016; 22:1829-1835. [PMID: 27498124 DOI: 10.1016/j.bbmt.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023]
Abstract
Maraviroc is an allosteric small molecule antagonist of chemokine receptor type 5 (CCR5) and has been used in adult allogeneic hematopoietic stem cell transplant (HSCT) recipients to prevent acute graft-versus-host disease (GVHD) of the gastrointestinal (GI) tract and liver. The goal of this study was to establish feasibility and pharmacokinetic and pharmacodynamic profiles of maraviroc in pediatric HSCT recipients. Children ages 2 to 12 years were enrolled and maraviroc was added to standard GVHD prophylaxis, which included a calcineurin inhibitor and either steroids or mycophenolate mofetil. Maraviroc was started on day -3 and administered at a dose of approximately 300 mg/m(2) orally twice daily until day +30 after stem cell infusion. On days 0 and day +10, samples for pharmacokinetic analysis were collected before the dose and 1, 2, 4, 6, 8, and 12 hours after maraviroc administration. Additional trough concentrations were collected on days +7, 14, and 21. Patients were followed until day +100 for acute GVHD. Functional blockade of CCR5 was assessed in a pharmacodynamic assay by flow cytometry. Thirteen patients, median age of 4 years (range, 2 to 11 years), were prospectively enrolled. Underlying diagnoses included a primary immune deficiency (n = 6), hemoglobinopathy (n = 4), metabolic disorder (n = 1), and bone marrow failure syndrome (n = 2). Patients received either a myeloablative preparative regimen (n = 7) or a reduced-intensity conditioning regimen (n = 6). Cyclosporine and methylprednisolone (n = 7) was the predominant GVHD prophylactic regimen, followed by tacrolimus and mycophenolate mofetil (n = 4) and tacrolimus and steroids (n = 2). Two formulations of maraviroc (150-mg tablets and 20-mg/mL solution) were used on study. Mean (± SD) area under the concentration-time curve from 0 to 12 hours was 4805 ± 3265 hour * ng/mL on day 0 and 5917 ± 4048 hour * ng/mL on day +10. Four patients developed grade 1 or 2 acute skin GVHD before day +100 and were successfully treated. Two patients developed grade 3 acute GI GVHD on days +23 and +24 after HSCT and both had discontinued maraviroc before development of GI GVHD. No adverse effects attributable to maraviroc were observed and administration by enteral tubes was well tolerated by children and accepted by parents. All evaluable patients demonstrated functional CCR5 blockade on day 0. Administration of maraviroc is feasible in most pediatric HSCT recipients with good safety and tolerability profile.
Collapse
|
20
|
Halvorsen EC, Hamilton MJ, Young A, Wadsworth BJ, LePard NE, Lee HN, Firmino N, Collier JL, Bennewith KL. Maraviroc decreases CCL8-mediated migration of CCR5(+) regulatory T cells and reduces metastatic tumor growth in the lungs. Oncoimmunology 2016; 5:e1150398. [PMID: 27471618 DOI: 10.1080/2162402x.2016.1150398] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 02/08/2023] Open
Abstract
Regulatory T cells (Tregs) play a crucial physiological role in the regulation of immune homeostasis, although recent data suggest Tregs can contribute to primary tumor growth by suppressing antitumor immune responses. Tregs may also influence the development of tumor metastases, although there is a paucity of information regarding the phenotype and function of Tregs in metastatic target organs. Herein, we demonstrate that orthotopically implanted metastatic mammary tumors induce significant Treg accumulation in the lungs, which is a site of mammary tumor metastasis. Tregs in the primary tumor and metastatic lungs express high levels of C-C chemokine receptor type 5 (CCR5) relative to Tregs in the mammary fat pad and lungs of tumor-free mice, and Tregs in the metastatic lungs are enriched for CCR5 expression in comparison to other immune cell populations. We also identify that C-C chemokine ligand 8 (CCL8), an endogenous ligand of CCR5, is produced by F4/80(+) macrophages in the lungs of mice with metastatic primary tumors. Migration of Tregs toward CCL8 ex vivo is reduced in the presence of the CCR5 inhibitor Maraviroc. Importantly, treatment of mice with Maraviroc (MVC) reduces the level of CCR5(+) Tregs and metastatic tumor burden in the lungs. This work provides evidence of a CCL8/CCR5 signaling axis driving Treg recruitment to the lungs of mice bearing metastatic primary tumors, representing a potential therapeutic target to decrease Treg accumulation and metastatic tumor growth.
Collapse
Affiliation(s)
- E C Halvorsen
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - M J Hamilton
- Integrative Oncology Department, British Columbia Cancer Agency , Vancouver, BC, Canada
| | - A Young
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - B J Wadsworth
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - N E LePard
- Integrative Oncology Department, British Columbia Cancer Agency , Vancouver, BC, Canada
| | - H N Lee
- Integrative Oncology Department, British Columbia Cancer Agency , Vancouver, BC, Canada
| | - N Firmino
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - J L Collier
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K L Bennewith
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Tsai HC, Chou PY, Wann SR, Lee SSJ, Chen YS. Chemokine co-receptor usage in HIV-1-infected treatment-naïve voluntary counselling and testing clients in Southern Taiwan. BMJ Open 2015; 5:e007334. [PMID: 25926147 PMCID: PMC4420965 DOI: 10.1136/bmjopen-2014-007334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The goal of this present study was to determine the proportion of CCR5-tropic and CXCR4-tropic viruses and impact of tropism test on clinical presentation, CD4 cell counts, viral load and genotypic drug resistance from drug-naïve, voluntary counselling and testing (VCT) clients in southern Taiwan. DESIGN This was a cross-sectional study. Plasma samples were collected from HIV-1-infected patients from January 2013 to December 2013; subjects were recruited from free VCT centres in southern Taiwan. SETTING Taiwan. PARTICIPANTS Plasma samples from 108 HIV-1-infected, treatment-naïve, VCT clients were analysed. HIV-1 strains were sequenced, genotype resistance was determined by a commercial kit (Viro-seq) and co-receptor tropism (CRT) was predicted by an internet tool geno2pheno[coreceptor], with a 10% false-positive rate as the cut-off. Differences in progression markers, patient characteristics, VCT questionnaires and HIV subtype distribution were evaluated statistically. RESULTS All the 108 VCT clients were male with 90% between the ages of 20 and 40 years. Eighty-eight per cent of the patients were men who have sex with men (MSM). The median (IQR) CD4 cell count was 342 cells/µL (221-454) and the viral load was 4.6 log (4.0-5.0). HIV-transmitted drug resistance was found in 9.3% (10/108) of the patients. CRT predictions indicated that 74% of the patients had only R5-tropic strains. CRT was not associated with CD4 cell counts, patient characteristics, VCT questionnaire and transmitted drug resistance. There was a significant difference with regard to viral load at the time of presentation, showing that patients with R5 more often had a higher viral load as compared with those with X4/DM strains (4.6±0.6 log vs 4.33±0.7 log, p=0.036). CONCLUSIONS We found that 74% of the VCT clients were infected with R5-tropic virus strains. HIV-transmitted drug resistance was not associated with CRT predictions. Higher viral load at presentation was predictive of R5 co-receptor usage.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ROC
- National Yang-Ming University, Taipei, Taiwan ROC
| | - Pei-Yun Chou
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ROC
- National Yang-Ming University, Taipei, Taiwan ROC
| | - Shue-Ren Wann
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ROC
- National Yang-Ming University, Taipei, Taiwan ROC
| | - Susan Shin-Jung Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ROC
- National Yang-Ming University, Taipei, Taiwan ROC
| | - Yao-Shen Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ROC
- National Yang-Ming University, Taipei, Taiwan ROC
| |
Collapse
|
22
|
Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem Rev 2013; 114:2432-506. [DOI: 10.1021/cr4002879] [Citation(s) in RCA: 3202] [Impact Index Per Article: 266.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiang Wang
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - María Sánchez-Roselló
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - José Luis Aceña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
| | - Carlos del Pozo
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
| | - Alexander E. Sorochinsky
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
- Institute
of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine
| | - Santos Fustero
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Hong Liu
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
23
|
[Consensus Statement by GeSIDA/National AIDS Plan Secretariat on antiretroviral treatment in adults infected by the human immunodeficiency virus (Updated January 2013)]. Enferm Infecc Microbiol Clin 2013; 31:602.e1-602.e98. [PMID: 24161378 DOI: 10.1016/j.eimc.2013.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This consensus document is an update of combined antiretroviral therapy (cART) guidelines for HIV-1 infected adult patients. METHODS To formulate these recommendations a panel composed of members of the GeSIDA/National AIDS Plan Secretariat (Grupo de Estudio de Sida and the Secretaría del Plan Nacional sobre el Sida) reviewed the efficacy and safety advances in clinical trials, cohort and pharmacokinetic studies published in medical journals (PubMed and Embase) or presented in medical scientific meetings. The strength of the recommendations and the evidence which support them are based on a modification of the criteria of Infectious Diseases Society of America. RESULTS cART is recommended in patients with symptoms of HIV infection, in pregnant women, in serodiscordant couples with high risk of transmission, in hepatitisB co-infection requiring treatment, and in HIV nephropathy. cART is recommended in asymptomatic patients if CD4 is <500cells/μl. If CD4 are >500cells/μl cART should be considered in the case of chronic hepatitisC, cirrhosis, high cardiovascular risk, plasma viral load >100.000 copies/ml, proportion of CD4 cells <14%, neurocognitive deficits, and in people aged >55years. The objective of cART is to achieve an undetectable viral load. The first cART should include 2 reverse transcriptase inhibitors (RTI) nucleoside analogs and a third drug (a non-analog RTI, a ritonavir boosted protease inhibitor, or an integrase inhibitor). The panel has consensually selected some drug combinations, for the first cART and specific criteria for cART in acute HIV infection, in tuberculosis and other HIV related opportunistic infections, for the women and in pregnancy, in hepatitisB or C co-infection, in HIV-2 infection, and in post-exposure prophylaxis. CONCLUSIONS These new guidelines update previous recommendations related to first cART (when to begin and what drugs should be used), how to monitor, and what to do in case of viral failure or adverse drug reactions. cART specific criteria in comorbid patients and special situations are similarly updated.
Collapse
|
24
|
Lütjens R, Perry B, Schelshorn D, Rocher JP. New technologies enabling the industrialization of allosteric modulator discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e253-60. [PMID: 24050276 DOI: 10.1016/j.ddtec.2013.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Allosteric modulators (AMs) are a promising avenue towards safe and selective drugs. AMs can interact selectively with unique domains distinct from the endogenous ligand binding site of receptors, up- or downregulating the response to receptor activation. Emphasis is placed in this article on the latest development in high-sensitivity technologies designed to identify AMs of G-protein coupled receptors. In addition to new pharmacological approaches, encouraging results in the crystal resolution of these targets enable use of more rational approaches to identification and optimization of AMs.
Collapse
|
25
|
Placental transfer of maraviroc in an ex vivo human cotyledon perfusion model and influence of ABC transporter expression. Antimicrob Agents Chemother 2013; 57:1415-20. [PMID: 23295922 DOI: 10.1128/aac.01821-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nowadays, antiretroviral therapy is recommended during pregnancy to prevent mother-to-child transmission of HIV. However, for many antiretroviral drugs, including maraviroc, a CCR5 antagonist, very little data exist regarding placental transfer. Besides, various factors may modulate this transfer, including efflux transporters belonging to the ATP-binding cassette (ABC) transporter superfamily. We investigated maraviroc placental transfer and the influence of ABC transporter expression on this transfer using the human cotyledon perfusion model. Term placentas were perfused ex vivo for 90 min with maraviroc (600 ng/ml) either in the maternal-to-fetal (n = 10 placentas) or fetal-to-maternal (n = 6 placentas) direction. Plasma concentrations were determined by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fetal transfer rates (FTR) and clearance indexes (CLI) were calculated as ratios of fetal to maternal concentrations at steady state (mean values between 30 and 90 min) and ratios of FTR of maraviroc to that of antipyrine, respectively. ABC transporter gene expression levels were determined by quantitative reverse transcription (RT)-PCR and ABCB1 protein expression by Western blotting. For the maternal-to-fetal direction, the mean FTR and CLI were 8.0% ± 3.0 and 0.26 ± 0.07, respectively, whereas the mean CLI was 0.52 ± 0.23 for the fetal-to-maternal direction. We showed a significant inverse correlation between maraviroc CLI and ABCC2, ABCC10, and ABCC11 placental gene expression levels (P < 0.05). To conclude, we report a low maraviroc placental transfer probably involving ABC efflux transporters and thus in all likelihood associated with a limited fetal exposition. Nevertheless, these results would need to be supported by in vivo data obtained from paired maternal and cord blood samples.
Collapse
|
26
|
[Consensus document of Gesida and Spanish Secretariat for the National Plan on AIDS (SPNS) regarding combined antiretroviral treatment in adults infected by the human immunodeficiency virus (January 2012)]. Enferm Infecc Microbiol Clin 2012; 30:e1-89. [PMID: 22633764 DOI: 10.1016/j.eimc.2012.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022]
Abstract
This consensus document has been prepared by a panel consisting of members of the AIDS Study Group (Gesida) and the Spanish Secretariat for the National Plan on AIDS (SPNS) after reviewing the efficacy and safety results of clinical trials, cohort and pharmacokinetic studies published in medical journals, or presented in medical scientific meetings. Gesida has prepared an objective and structured method to prioritise combined antiretroviral treatment (cART) in naïve patients. Recommendations strength (A, B, C) and the evidence which supports them (I, II, III) are based on a modification of the Infectious Diseases Society of America criteria. The current antiretroviral treatment (ART) of choice for chronic HIV infection is the combination of three drugs. ART is recommended in patients with symptomatic HIV infection, in pregnancy, in serodiscordant couples with high transmission risk, hepatitis B fulfilling treatment criteria, and HIV nephropathy. Guidelines on ART treatment in patients with concurrent diagnosis of HIV infection and an opportunistic type C infection are included. In asymptomatic patients ART is recommended on the basis of CD4 lymphocyte counts, plasma viral load and patient co-morbidities, as follows: 1) therapy should be started in patients with CD4 counts <350 cells/μL; 2) when CD4 counts are between 350 and 500 cells/μL, therapy will be recommended and only delayed if patient is reluctant to take it, the CD4 are stabilised, and the plasma viral load is low; 3) therapy could be deferred when CD4 counts are above 500 cells/μL, but should be considered in cases of cirrhosis, chronic hepatitis C, high cardiovascular risk, plasma viral load >10(5) copies/mL, proportion of CD4 cells <14%, and in people aged >55 years. ART should include 2 reverse transcriptase inhibitors nucleoside analogues and a third drug (non-analogue reverse transcriptase inhibitor, ritonavir boosted protease inhibitor or integrase inhibitor). The panel has consensually selected and given priority to using the Gesida score for some drug combinations, some of them co-formulated. The objective of ART is to achieve an undetectable viral load. Adherence to therapy plays an essential role in maintaining antiviral response. Therapeutic options are limited after ART failures, but an undetectable viral load may be possible nowadays. Adverse events are a fading problem of ART. Guidelines in acute HIV infection, in women, in pregnancy, and to prevent mother-to-child transmission and pre- and post-exposition prophylaxis are commented upon. Management of hepatitis B or C co-infection, other co-morbidities, and the characteristics of ART in HIV-2 infection are included.
Collapse
|
27
|
Abstract
Darunavir is a second-generation protease inhibitor designed to have antiviral efficacy against HIV-1 isolates harboring multiple resistance mutations to protease inhibitors. Pivotal trials conducted in treatment-experienced HIV-infected individuals have demonstrated significantly greater virological suppression when darunavir was added to an optimized background treatment compared with a control protease inhibitor. This virological suppression was associated with an increase in CD4 counts and was sustained over time. Darunavir resistance-associated mutations have been defined as V11I, V32I, L33F, I47V, I50V, I54L/M, G73S, L76V, I84V, and L89V. In clinical trials, baseline darunavir susceptibility was a strong predictor of virological response. Prior use of fosamprenavir was associated with darunavir resistance mutations. Darunavir has a high genetic barrier and has a distinct resistance profile. Although some cross-resistance exists with other second-generation protease inhibitors such as tipranavir, different resistance mutation patterns have been observed upon failure to these regimens. It was found that mutations at 47V, 54M, 85V, and 73T were most prevalent in isolates resistant to both PIs. Mutations 48V, 50V, and 54L were associated with resistance to darunavir but not to tipranavir. 82S and 82T were associated with resistance to tipranavir but not to darunavir. Therefore, darunavir provides potent virological efficacy as well as high genetic barrier that can be useful to preserve treatment options in HIV-infected, treatment-experienced individuals.
Collapse
Affiliation(s)
- Cécile L Tremblay
- Department of Microbiology and Immunology, Centre Hospitalier de l'Université de Montréal, Montréal, Canada.
| |
Collapse
|
28
|
|
29
|
Swenson LC, Mo T, Dong WWY, Zhong X, Woods CK, Jensen MA, Thielen A, Chapman D, Lewis M, James I, Heera J, Valdez H, Harrigan PR. Deep sequencing to infer HIV-1 co-receptor usage: application to three clinical trials of maraviroc in treatment-experienced patients. J Infect Dis 2011; 203:237-45. [PMID: 21288824 DOI: 10.1093/infdis/jiq030] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Maraviroc versus Optimized Therapy in Viremic Antiretroviral Treatment-Experienced Patients (MOTIVATE) studies compared maraviroc versus placebo in treatment-experienced patients with CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1), screened using the original Trofile assay. A subset with non-R5 HIV infection entered the A4001029 trial. We retrospectively examined the performance of a genotypic tropism assay based on deep sequencing of the HIV env V3 loop in predicting virologic response to maraviroc in these trials. METHODS V3 amplicons were prepared from 1827 screening plasma samples and sequenced on a Roche/454 GS-FLX to a depth of >3000 sequences/sample. Samples were considered non-R5 if ≥2% of their viral population scored greater than or equal to -4.75 or ≤3.5 using the PSSM(x4/R5) or geno2pheno algorithms, respectively. RESULTS Deep sequencing identified more than twice as many maraviroc recipients as having non-R5 HIV, compared with the original Trofile. With use of genotyping, we determined that 49% of maraviroc recipients with R5 HIV at screening had a week 48 viral load <50 copies/mL versus 26% of recipients with non-R5. Corresponding percentages were 46% and 23% with screening by Trofile. In cases in which screening assays differed, median week 8 log₁₀ copies/mL viral load decrease favored 454. Other parameters predicted by genotyping included likelihood of changing to non-R5 tropism. CONCLUSIONS This large study establishes deep V3 sequencing as a promising tool for identifying treatment-experienced individuals who could benefit from CCR5-antagonist-containing regimens.
Collapse
|
30
|
Burford NT, Watson J, Bertekap R, Alt A. Strategies for the identification of allosteric modulators of G-protein-coupled receptors. Biochem Pharmacol 2011; 81:691-702. [DOI: 10.1016/j.bcp.2010.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/15/2022]
|
31
|
Takahashi M, Hirano A, Okubo N, Kinoshita E, Nomura T, Kaneda T. Development and application of a simple LC-MS method for the determination of plasma maraviroc concentrations. THE JOURNAL OF MEDICAL INVESTIGATION 2011; 57:245-50. [PMID: 20847524 DOI: 10.2152/jmi.57.245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Maraviroc is an orally available antagonist of the CCR5 chemokine receptor, which acts as a human immunodeficiency virus type 1 (HIV-1) coreceptor. Binding of maraviroc to this receptor blocks HIV-1 attachment to the coreceptor and prevents HIV-1 from entering host cells. Maraviroc does not require intracellular processing to exert this activity. Drug interaction studies have shown changes in maraviroc exposure when given with other anti-HIV medications, and thus quantification of maraviroc in human plasma is important to manage drug interactions and to evaluate the relationship between plasma concentrations and treatment response. We developed a conventional LC-MS method for determining plasma maraviroc concentrations, validated by estimating precision and accuracy for inter- and intraday analysis in the concentration range of 0.011-2.188 µg/ml. The calibration curve was linear within this range. The average accuracy ranged from 92.7% to 99.7%, while the relative standard deviations of both inter- and intraday assays were less than 7.1%. Recovery of maraviroc exceeded 86.7%. Our LC-MS method provides a conventional, accurate and precise way to determine the maraviroc concentration in human plasma. This method enables dose adjustment based on monitoring plasma maraviroc concentrations and permits management of drug interactions and toxicity.
Collapse
Affiliation(s)
- Masaaki Takahashi
- Department of Pharmacy, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Da LT, Wu YD. Theoretical studies on the interactions and interferences of HIV-1 glycoprotein gp120 and its coreceptor CCR5. J Chem Inf Model 2011; 51:359-69. [PMID: 21284403 DOI: 10.1021/ci1003448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between the HIV gp120 protein and coreceptor CCR5 or CXCR4 of the host cell is critical in mediating the HIV entry process. A model for the CCR5-gp120 complex has been developed. In the model, the N-terminus of CCR5 binds to three discontinuous domains of gp120, including the fourth conserved (C4) region, β19/β20 connecting loop, and V3 loop. The second extra-cellular loop (ECL2) of CCR5 also interacts with the crown part of the gp120 V3 loop. The bindings of the three CCR5 antagonists, maraviroc, aplaviroc, and vicriviroc, to the trans-membrane domain of CCR5 have been modeled. The bindings are found to affect the conformation of the ECL2 domain, which in turn drives the N-terminus of CCR5 to an altered state. Aplaviroc is more hydrophilic than maraviroc and vicriviroc, and its binding is more interfered by solvent, resulting in a quite different effect to the structure of CCR5 compared with those of the other two molecules. The above results are in accord with experimental observations and provide a structural basis for further design of CCR5 antagonists.
Collapse
Affiliation(s)
- Lin-tai Da
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | | |
Collapse
|
33
|
Abstract
IMPORTANCE OF THE FIELD Acquired immunodeficiency syndrome (AIDS) is one of the leading causes of death worldwide. Although the combination therapies of highly active antiretroviral therapy (HAART) have significantly contributed to virological suppression, improved immune function and quality of life, issues such as tolerability, drug-drug interactions and cross-resistance amongst members of a particular drug class still pose a significant barrier to long-term successful treatment. There is a constant need for newer anti HIV drugs with increased potency and improved pharmacokinetic properties either in the existing classes or drugs from new classes that target several new steps in HIV replication cycle. AREAS COVERED IN THIS REVIEW The authors have discussed newer antiretroviral drugs belonging to second-generation nucleoside analog reverse transcriptase inhibitors (amdoxovir, elvucitabine, apricitabine, racivir), non-nucleoside analog reverse transcriptase inhibitors (etravirine, rilpivirine), protease inhibitors (darunavir, tipranavir) as well as emerging new classes, i.e., fusion inhibitors (enfuvirtide, sifuvirtide), CCR5 inhibitors (maraviroc, vicriviroc, PRO 140, PRO 542), CD4-receptor inhibitors (ibalizumab), integrase inhibitors (raltegravir, elvitegravir, GSK-1349572), maturation inhibitors (bevirimat), cobicistat (pharmacoenhancer), lens epithelium-derived growth factor inhibitors and capsid assembly inhibitors. WHAT THE READER WILL GAIN The reader will gain an understanding of the mechanism of action, mechanism of resistance, stages of development and important clinical trials related to the newer antiretroviral drugs and future potential of these drugs. TAKE HOME MESSAGE The initial clinical trial data of these newer drugs are very encouraging for the long-term successful control of HIV in both treatment-naïve and treatment-experienced patients.
Collapse
Affiliation(s)
- Raktim Kumar Ghosh
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, India.
| | | | | |
Collapse
|
34
|
Abstract
The biggest challenge facing highly antiretroviral-experienced patients and their caregivers is the diminishing number of therapeutic options available that sustain activity despite increasing numbers of drug-resistance mutations. New options in antiretroviral treatment have been introduced: two new members of traditional antiretroviral classes (darunavir and etravirine) and two drugs with novel mechanisms of action (raltegravir and maraviroc). Each was approved for use in treatment-experienced patients. A fifth drug-containing efavirenz, tenofovir, and emtricitabine (Atripla; Bristol-Myers Squibb, New York, NY, and Gilead Sciences, Foster City, CA)-is a novel coformulation of existing drugs from two different classes, simplifying administration with the intent of increasing adherence. Because successful management of HIV infection requires the simultaneous use of three or more drugs, understanding the pharmacologic aspects of coadministration is critical. This review summarizes the pharmacokinetic properties affecting the administration of these recently approved drugs in light of highly active antiretroviral treatment guidelines.
Collapse
|
35
|
[AIDS Study Group/Spanish AIDS Plan consensus document on antiretroviral therapy in adults with human immunodeficiency virus infection (updated January 2010)]. Enferm Infecc Microbiol Clin 2010; 28:362.e1-91. [PMID: 20554079 DOI: 10.1016/j.eimc.2010.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/14/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This consensus document is an update of antiretroviral therapy recommendations for adult patients with human immunodeficiency virus infection. METHODS To formulate these recommendations a panel made up of members of the Grupo de Estudio de Sida (Gesida, AIDS Study Group) and the Plan Nacional sobre el Sida (PNS, Spanish AIDS Plan) reviewed the advances in the current understanding of the pathophysiology of human immunodeficiency virus (HIV) infection, the efficacy and safety of clinical trials, and cohort and pharmacokinetic studies published in biomedical journals or presented at scientific meetings. Three levels of evidence were defined according to the data source: randomized studies (level A), cohort or case-control studies (level B), and expert opinion (level C). The decision to recommend, consider or not to recommend ART was established in each situation. RESULTS Currently, the treatment of choice for chronic HIV infection is the combination of three drugs of two different classes, including 2 nucleosides or nucleotide analogs (NRTI) plus 1 non-nucleoside (NNRTI) or 1 boosted protease inhibitor (PI/r), but other combinations are possible. Initiation of ART is recommended in patients with symptomatic HIV infection. In asymptomatic patients, initiation of ART is recommended on the basis of CD4 lymphocyte counts, plasma viral load and patient co-morbidities, as follows: 1) therapy should be started in patients with CD4 counts below 350 cells/microl; 2) When CD4 counts are between 350 and 500 cells/microl, therapy should be started in case of cirrhosis, chronic hepatitis C, high cardiovascular risk, HIV nephropathy, HIV viral load above 100,000 copies/ml, proportion of CD4 cells under 14%, and in people aged over 55; 3) Therapy should be deferred when CD4 are above 500 cells/microl, but could be considered if any of previous considerations concurs. Treatment should be initiated in case of hepatitis B requiring treatment and should be considered for reduce sexual transmission. The objective of ART is to achieve an undetectable viral load. Adherence to therapy plays an essential role in maintaining antiviral response. Therapeutic options are limited after ART failures but undetectable viral loads maybe possible with the new drugs even in highly drug experienced patients. Genotype studies are useful in these situations. Drug toxicity of ART therapy is losing importance as benefits exceed adverse effects. Criteria for antiretroviral treatment in acute infection, pregnancy and post-exposure prophylaxis are mentioned as well as the management of HIV co-infection with hepatitis B or C. CONCLUSIONS CD4 cells counts, viral load and patient co-morbidities are the most important reference factors to consider when initiating ART in asymptomatic patients. The large number of available drugs, the increased sensitivity of tests to monitor viral load, and the ability to determine viral resistance is leading to a more individualized therapy approach in order to achieve undetectable viral load under any circumstances.
Collapse
|
36
|
von Kleist M, Menz S, Huisinga W. Drug-class specific impact of antivirals on the reproductive capacity of HIV. PLoS Comput Biol 2010; 6:e1000720. [PMID: 20361047 PMCID: PMC2845651 DOI: 10.1371/journal.pcbi.1000720] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 02/23/2010] [Indexed: 11/18/2022] Open
Abstract
Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new quantity-the reproductive capacity-that represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-)target half life, dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of resistance as well as the in vitro-in vivo correlation of efficacy measures in HIV treatment. We found that protease- and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of resistance most efficiently.
Collapse
Affiliation(s)
- Max von Kleist
- Hamilton Institute, Computational Physiology Group, National University of Ireland Maynooth, Kildare, Ireland.
| | | | | |
Collapse
|
37
|
Weiss J, Haefeli WE. Impact of ATP-binding cassette transporters on human immunodeficiency virus therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:219-79. [PMID: 20797684 DOI: 10.1016/s1937-6448(10)80005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though potent antiretrovirals are available against human immunodeficiency virus (HIV)-1 infection, therapy fails in a significant fraction of patients. Among the most relevant reasons for treatment failure are drug toxicity and side effects, but also the development of viral resistance towards the drugs applied. Efflux by ATP-binding cassette (ABC-) transporters represents one major mechanism influencing the pharmacokinetics of antiretroviral drugs and particularly their distribution, thus modifiying the concentration within the infected cells, that is, at the site of action. Moreover, drug-drug interactions may occur at the level of these transporters and modulate their activity or expression thus influencing the efficacy and toxicity of the substrate drugs. This review summarizes current knowledge on the interaction of antiretrovirals used for HIV-1 therapy with ABC-transporters and highlights the impact of ABC-transporters for cellular resistance and therapeutic success. Moreover, the suitability of different cell models for studying the interaction of antiretrovirals with ABC-transporters is discussed.
Collapse
Affiliation(s)
- Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
38
|
Psomas KC, Corbeau P, Reynes J. [CCR5 antagonists and HIV-1 infection: Bases and consequences of this therapeutic approach]. ACTA ACUST UNITED AC 2010; 12:27-41. [PMID: 32288525 PMCID: PMC7146793 DOI: 10.1016/j.antib.2010.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
La molécule CCR5 est un récepteur de chimiokines qui joue un rôle important en pathologie infectieuse : corécepteur des souches du VIH-1 à tropisme R5, il est également impliqué dans la défense immunitaire contre certains agents transmissibles. Les antagonistes de CCR5 constituent une nouvelle approche thérapeutique antirétrovirale. Trois inhibiteurs du CCR5 ont atteint les phases IIb et III de développement clinique : aplaviroc (GlaxoSmithKine), vicriviroc (Schering-Plough) et maraviroc (Pfizer). Le développement de l’aplaviroc a été interrompu pour toxicité hépatique. Les essais ACTG 5211 et Motivate ont démontré une amélioration de la réponse antirétrovirale par l’addition respectivement de vicriviroc (actuellement en phase III) et de maraviroc (ayant déjà obtenu l’Autorisation de Mise sur le Marché) à un traitement optimisé chez des patients en échec thérapeutique. Le rôle de cette nouvelle cible thérapeutique dans les stratégies de traitement initial, de substitution ou de sauvetage reste à préciser, de même que leur intérêt chez des patients ayant une réponse immunovirologique dissociée, en immunodépresssion sévère ou infectés par des souches à tropisme non-R5. Plusieurs points sont également à éclaircir comme la tolérance à long terme, le risque d’induire une commutation R5-X4, en particulier dans les tissus, le risque d’interférer avec les réponses immunitaires, ainsi que l’impact d’une discordance de tropisme entre le plasma et les autres compartiments de l’organisme.
Collapse
Affiliation(s)
- K C Psomas
- Institut de génétique humaine, CNRS, 142, rue de la Cardonille, 34396 Montpellier cedex 5, France.,Service des maladies infectieuses et tropicales, CHU Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| | - P Corbeau
- Institut de génétique humaine, CNRS, 142, rue de la Cardonille, 34396 Montpellier cedex 5, France.,Fonctionnelle d'immunologie, hôpital Carémeau, place du Pr-Robert-Debré, 30029 Nîmes cedex, France.,Faculté de médecine, université Montpellier 1, 2, rue École-de-Médecine, 34060 Montpellier cedex 2, France
| | - J Reynes
- Faculté de médecine, université Montpellier 1, 2, rue École-de-Médecine, 34060 Montpellier cedex 2, France.,Service des maladies infectieuses et tropicales, CHU Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France.,UMR 145, 911, avenue Agropolis, 34394 Montpellier cedex 5, France
| |
Collapse
|
39
|
Pharmacologic characteristics of investigational and recently approved agents for the treatment of HIV. Curr Opin HIV AIDS 2009; 3:330-41. [PMID: 19372987 DOI: 10.1097/coh.0b013e3282fbaa6b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Two agents from antiretroviral classes with novel mechanisms of action against HIV received regulatory approval in 2007. Maraviroc is the first in the class of chemokine coreceptor 5 antagonists and raltegravir is the first in the class of integrase inhibitors. There are other compounds in these two new classes in later stages of clinical development, as well as several protease inhibitors and nonnucleoside reverse transcriptase inhibitors that have been recently approved or are under investigation for use in treatment-experienced patients. The purpose of this article is to review the pharmacologic characteristics of these newly approved and investigational antiretroviral drugs, with particular emphasis on data presented or published within the past year. RECENT FINDINGS Several pivotal studies describing the efficacy, safety, and pharmacologic properties of maraviroc, vicriviroc, etravirine, rilpivirine, raltegravir, elvitegravir, darunavir/ritonavir, and tipranavir/ritonavir have begun to emerge. SUMMARY To date, these agents have demonstrated promising virologic activity with primarily excellent tolerability, but there is still much to learn about their pharmacology. Future studies should evaluate their potential for drug-drug interactions and elucidate their concentration-effect relationships. An appreciation for the pharmacology of these drugs is critical to their optimal use.
Collapse
|
40
|
Hütter G, Allers K, Schneider T. The additional use of viral entry inhibitors during autologous hematopoietic stem cell transplantation in patients with non-Hodgkin lymphoma and HIV-1 infection. Biol Blood Marrow Transplant 2009; 17:586-7. [PMID: 19892025 DOI: 10.1016/j.bbmt.2009.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/27/2009] [Indexed: 11/29/2022]
|
41
|
Hughes CA, Robinson L, Tseng A, MacArthur RD. New antiretroviral drugs: a review of the efficacy, safety, pharmacokinetics, and resistance profile of tipranavir, darunavir, etravirine, rilpivirine, maraviroc, and raltegravir. Expert Opin Pharmacother 2009; 10:2445-66. [DOI: 10.1517/14656560903176446] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Dhami H, Fritz CE, Gankin B, Pak SH, Yi W, Seya MJ, Raffa RB, Nagar S. The chemokine system and CCR5 antagonists: potential in HIV treatment and other novel therapies. J Clin Pharm Ther 2009; 34:147-60. [PMID: 19250135 DOI: 10.1111/j.1365-2710.2008.00978.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Since the recognition of human acquired immune deficiency syndrome, numerous classes of pharmacologic therapeutics have been developed to manage the disease. Current therapy includes co-administration of combinations of drugs classified by their mechanism of action as 'transcriptase inhibitors', 'protease inhibitors', 'integrase inhibitors' and the more recent 'fusion inhibitors'. This review focuses on the chemokine system and the recognition of chemokine receptors as targets for anti-human immunodeficiency virus (HIV) therapy. The FDA-approved chemokine (C-C motif) receptor 5 (CCR5) antagonist maraviroc (Selzentry) is discussed in detail, along with another compound vicriviroc, currently in clinical trials. The mechanism of action, pharmacokinetics, toxicity and current status of research on CCR5 antagonists is described. Further, potential therapeutic uses of these agents other than anti-HIV therapy are discussed.
Collapse
Affiliation(s)
- H Dhami
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Qian K, Morris-Natschke SL, Lee KH. HIV entry inhibitors and their potential in HIV therapy. Med Res Rev 2009; 29:369-93. [PMID: 18720513 DOI: 10.1002/med.20138] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review discusses recent progress in the development of anti-HIV agents targeting the viral entry process. The three main classes (attachment inhibitors, co-receptor binding inhibitors, and fusion inhibitors) are further broken down by specific mechanism of action and structure. Many of these inhibitors are in advanced clinical trials, including the HIV maturation inhibitor bevirimat, from the authors' laboratories. In addition, the CCR5 inhibitor maraviroc has recently been FDA-approved. Possible roles for these agents in anti-HIV therapy, including treatment of virus resistant to current drugs, are also discussed.
Collapse
Affiliation(s)
- Keduo Qian
- Natural Products Research Laboratories, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
44
|
Leal M, Camacho A, Genebat M, Rivero A. [At what time and with which combinations should maraviroc be indicated in the new antiretroviral treatment scenario?]. Enferm Infecc Microbiol Clin 2009; 26 Suppl 11:34-9. [PMID: 19133220 DOI: 10.1016/s0213-005x(08)76562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maraviroc is a selective and slowly reversible antagonist of the CCR5 co-receptor which has shown to have powerful antiviral activity, in vitro, against a wide range of HIV clinical isolates, including strains multi-resistant to 4 classes of pre-existing antiretroviral drugs. Maraviroc is active against HIV populations that only use the CCR5 coreceptor to enter the cell and has not demonstrated significant activity in the treatment of viral populations that use the CXCR4 co-receptor. The mechanism of action of maraviroc, non-competitive with other antiretroviral drugs, and the absence of crossed resistance with the rest of their families, has led to Maraviroc being a drug available for use in rescue antiretroviral treatment. However, the excellent tolerance of maraviroc compared to the placebo in phase III clinical trials, its safety and its favourable pharmacological interactions profile with other drugs commonly used in HIV infected patients with comorbidity brings to light other scenarios in which Maraviroc could be useful.
Collapse
Affiliation(s)
- Manuel Leal
- Laboratorio de Inmunovirología. Servicio de Enfermedades Infecciosas, Hospital Universitario Virgen del Rocío, Sevilla, España
| | | | | | | |
Collapse
|
45
|
Abstract
Chemokines are small chemoattractant cytokines involved in homeostatic and inflammatory immune cell migration. These small proteins have multiple functional properties that extend beyond their most recognized role in controlling cellular migration. The complex immunobiology of chemokines, coupled with the use of subsets of chemokine receptors as HIV-1 and SIV entry co-receptors, suggests that these immunomodulators could play important roles in the pathogenesis associated with infection by HIV-1 or SIV. This review provides an overview of the effects of pathogenic infection on chemokine expression in the SIV/macaque model system, and outlines potential mechanisms by which changes in these expression profiles could contribute to development of disease. Key challenges faced in studying chemokine function in vivo and new opportunities for further study and development of therapeutic interventions are discussed. Continued growth in our understanding of the effects of pathogenic SIV infection on chemokine expression and function and the continuing development of chemokine receptor targeted therapeutics will provide the tools and the systems necessary for future studies of the roles of chemokines in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Todd A Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA.
| | | | | |
Collapse
|
46
|
Ji C, Kopetzki E, Jekle A, Stubenrauch KG, Liu X, Zhang J, Rao E, Schlothauer T, Fischer S, Cammack N, Heilek G, Ries S, Sankuratri S. CD4-anchoring HIV-1 Fusion Inhibitor with Enhanced Potency and in Vivo Stability. J Biol Chem 2009; 284:5175-85. [DOI: 10.1074/jbc.m808745200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Long MC, King JR, Acosta EP. Pharmacologic aspects of new antiretroviral drugs. Curr HIV/AIDS Rep 2009; 6:43-50. [DOI: 10.1007/s11904-009-0007-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Marr P, Walmsley S. Reassessment of enfuvirtide's role in the management of HIV-1 infection. Expert Opin Pharmacother 2008; 9:2349-62. [PMID: 18710359 DOI: 10.1517/14656566.9.13.2349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The development of new protease inhibitors, new non-nucleoside reverse transcriptase inhibitors and novel therapeutic drug classes has dramatically changed the approach to managing HIV-1 patients with multidrug resistant virus. This has led many clinicians to reevaluate the clinical utility of enfuvirtide. OBJECTIVES To summarize recent literature on enfuvirtide and to reassess enfuvirtide's role in the management of HIV-1 infection. METHODS MEDLINE (1990 to February Week 2 2008) and EMBASE (1990 to 2008 week 8) databases were searched using the following terms: 'enfuvirtide', 'Fuzeon', 'T20', 'HIV fusion inhibitors', and 'HIV entry inhibitor'; limits: English language. Reference lists of articles deemed relevant were hand searched for additional publications. Significant abstracts from recent international HIV conferences were also identified. CONCLUSION Enfuvirtide can optimize the response to new combinations of HIV-1 drug regimens in multiresistant patients. Its inclusion as an active agent is effective but use is impacted by its high cost, inconvenient route of administration and cosmetic side-effect profile.
Collapse
Affiliation(s)
- Patricia Marr
- University Health Network, Immunodeficiency Clinic, 13 North, Room 1314, 200 Elizabeth Street, Toronto, ON M5G2C4, Canada.
| | | |
Collapse
|
49
|
&NA;. Maraviroc: a guide to its use in HIV-1 infection. DRUGS & THERAPY PERSPECTIVES 2008. [DOI: 10.2165/00042310-200824030-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|