1
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
2
|
Xu B, Nikolaienko O, Levchenko V, Choubey AS, Isaeva E, Staruschenko A, Palygin O. Modulation of P2X 4 receptor activity by ivermectin and 5-BDBD has no effect on the development of ARPKD in PCK rats. Physiol Rep 2022; 10:e15510. [PMID: 36353932 PMCID: PMC9647406 DOI: 10.14814/phy2.15510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an inherited pathology caused mainly by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene, which usually leads to end-stage renal disease. Previous studies suggested that the P2X purinoreceptor 4 (P2X4 R) may play an important role in the progression of ARPKD. To test this hypothesis, we assessed the chronic effects of ivermectin (P2X4 R allosteric modulator) and 5-BDBD (P2X4 R antagonist) on the development of ARPKD in PCK/CrljCrl-Pkhd1pck/CRL (PCK) rats. Our data indicated that activation of ATP-mediated P2X4 R signaling with ivermectin for 6 weeks in high dose (50 mg/L; water supplementation) decreased the total body weight of PCK rats while the heart and kidney weight remained unaffected. Smaller doses of ivermectin (0.5 or 5 mg/L, 6 weeks) or the inhibition of P2X4 R signaling with 5-BDBD (18 mg/kg/day, food supplement for 8 weeks) showed no effect on electrolyte balance or the basic physiological parameters. Furthermore, cystic index analysis for kidneys and liver revealed no effect of smaller doses of ivermectin (0.5 or 5 mg/L) and 5-BDBD on the cyst development of PCK rats. We observed a slight increase in the cystic liver index on high ivermectin dose, possibly due to the cytotoxicity of the drug. In conclusion, this study revealed that pharmacological modulation of P2X4 R by ivermectin or 5-BDBD does not affect the development of ARPKD in PCK rats, which may provide insights for future studies on investigating the therapeutic potential of adenosine triphosphate (ATP)-P2 signaling in PKD diseases.
Collapse
Affiliation(s)
- Biyang Xu
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | - Oksana Nikolaienko
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Bogomoletz Institute of PhysiologyDepartment of Cellular MembranologyKyivUkraine
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | | | - Elena Isaeva
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Hypertension and Kidney Research CenterUniversity of South FloridaTampaFloridaUSA
- The James A. Haley Veterans HospitalTampaFloridaUSA
| | - Oleg Palygin
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Division of Nephrology, Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
3
|
Chen L, Jung HJ, Datta A, Park E, Poll BG, Kikuchi H, Leo KT, Mehta Y, Lewis S, Khundmiri SJ, Khan S, Chou CL, Raghuram V, Yang CR, Knepper MA. Systems Biology of the Vasopressin V2 Receptor: New Tools for Discovery of Molecular Actions of a GPCR. Annu Rev Pharmacol Toxicol 2022; 62:595-616. [PMID: 34579536 PMCID: PMC10676752 DOI: 10.1146/annurev-pharmtox-052120-011012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systems biology can be defined as the study of a biological process in which all of the relevant components are investigated together in parallel to discover the mechanism. Although the approach is not new, it has come to the forefront as a result of genome sequencing projects completed in the first few years of the current century. It has elements of large-scale data acquisition (chiefly next-generation sequencing-based methods and protein mass spectrometry) and large-scale data analysis (big data integration and Bayesian modeling). Here we discuss these methodologies and show how they can be applied to understand the downstream effects of GPCR signaling, specifically looking at how the neurohypophyseal peptide hormone vasopressin, working through the V2 receptor and PKA activation, regulates the water channel aquaporin-2. The emerging picture provides a detailedframework for understanding the molecular mechanisms involved in water balance disorders, pointing the way to improved treatment of both polyuric disorders and water-retention disorders causing dilutional hyponatremia.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Arnab Datta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
- Yenepoya Research Center, Yenepoya, Mangalore 575018, Karnataka, India
| | - Euijung Park
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Yash Mehta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Spencer Lewis
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Syed J Khundmiri
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Shaza Khan
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| |
Collapse
|
4
|
Zahid R, Akram M, Rafique E. Prevalence, risk factors and disease knowledge of polycystic kidney disease in Pakistan. Int J Immunopathol Pharmacol 2020; 34:2058738420966083. [PMID: 33125856 PMCID: PMC7607775 DOI: 10.1177/2058738420966083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Polycystic kidneys disease refers to cyst(s) formation in kidneys with severe consequences of end stage renal disease thus have higher mortality. It is a common genetic disease occurring either as autosomal dominant polycystic kidney (ADPKD) or autosomal recessive polycystic kidney disease (ARPKD) with prevalence rates of 1/1000 and 1/40,000 respectively. Dominant forms presenting in later (>30) while recessive in earlier ages (infancy) and affecting both sexes and almost all race. The patient experiences many renal as well as extra-renal manifestations with marked hypertension and cyst formation in other organs predominantly in liver. Due to genetic basis, positive family history is considered as major risk factor. Ultrasonography remains the main stay of diagnosis along with family history, by indicating increased renal size and architectural modifications. Initially disease remains asymptomatic, later on symptomatic treatment is suggested with surgical interventions like cyst decortications or drainage. Dialysis proved to be beneficial in end stage renal disease. However renal transplantation is the treatment of choice.
Collapse
Affiliation(s)
- Rabia Zahid
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ejaz Rafique
- Department of Microbiology, University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Büscher R, Büscher AK, Weber S, Mohr J, Hegen B, Vester U, Hoyer PF. Clinical manifestations of autosomal recessive polycystic kidney disease (ARPKD): kidney-related and non-kidney-related phenotypes. Pediatr Nephrol 2014; 29:1915-25. [PMID: 24114580 DOI: 10.1007/s00467-013-2634-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 02/23/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), although less frequent than the dominant form, is a common, inherited ciliopathy of childhood that is caused by mutations in the PKHD1-gene on chromosome 6. The characteristic dilatation of the renal collecting ducts starts in utero and can present at any stage from infancy to adulthood. Renal insufficiency may already begin in utero and may lead to early abortion or oligohydramnios and lung hypoplasia in the newborn. However, there are also affected children who have no evidence of renal dysfunction in utero and who are born with normal renal function. Up to 30 % of patients die in the perinatal period, and those surviving the neonatal period reach end stage renal disease (ESRD) in infancy, early childhood or adolescence. In contrast, some affected patients have been diagnosed as adults with renal function ranging from normal to moderate renal insufficiency to ESRD. The clinical spectrum of ARPKD is broader than previously recognized. While bilateral renal enlargement with microcystic dilatation is the predominant clinical feature, arterial hypertension, intrahepatic biliary dysgenesis remain important manifestations that affect approximately 45 % of infants. All patients with ARPKD develop clinical findings of congenital hepatic fibrosis (CHF); however, non-obstructive dilation of the intrahepatic bile ducts in the liver (Caroli's disease) is seen at the histological level in only a subset of patients. Cholangitis and variceal bleeding, sequelae of portal hypertension, are life-threatening complications that may occur more often in advanced cases of liver disease. In this review we focus on common and uncommon kidney-related and non-kidney-related phenotypes. Clinical management of ARPKD patients should include consideration of potential problems related to these manifestations.
Collapse
Affiliation(s)
- Rainer Büscher
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany,
| | | | | | | | | | | | | |
Collapse
|
6
|
Verkman AS, Synder D, Tradtrantip L, Thiagarajah JR, Anderson MO. CFTR inhibitors. Curr Pharm Des 2013; 19:3529-41. [PMID: 23331030 DOI: 10.2174/13816128113199990321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/16/2013] [Indexed: 12/16/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport in certain secretory diarrheas, such as cholera, and for cyst expansion in autosomal dominant polycystic kidney disease. High-throughput screening has yielded CFTR inhibitors of the thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes. The glycine hydrazides target the extracellular CFTR pore, whereas the thiazolidinones and quinoxalinediones act at the cytoplasmic surface. These inhibitors have been widely used in cystic fibrosis research to study CFTR function at the cell and organ levels. The most potent CFTR inhibitor has IC50 of approximately 4 nM. Studies in animal models support the development of CFTR inhibitors for antisecretory therapy of enterotoxin-mediated diarrheas and polycystic kidney disease.
Collapse
Affiliation(s)
- Alan S Verkman
- University of California-San Francisco, CA 94143-0521, U.S.A.
| | | | | | | | | |
Collapse
|
7
|
Snyder DS, Tradtrantip L, Yao C, Kurth MJ, Verkman AS. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. J Med Chem 2011; 54:5468-77. [PMID: 21707078 DOI: 10.1021/jm200505e] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We previously reported the discovery of pyrimido-pyrrolo-quinoxalinedione (PPQ) inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and showed their efficacy in an organ culture model of polycystic kidney disease (PKD) (J. Med. Chem. 2009, 52, 6447-6455). Here, we report related benzopyrimido-pyrrolo-oxazinedione (BPO) CFTR inhibitors. To establish structure-activity relationships and select lead compound(s) with improved potency, metabolic stability, and aqueous solubility compared to the most potent prior compound 8 (PPQ-102, IC(50) ∼ 90 nM), we synthesized 16 PPQ analogues and 11 BPO analogues. The analogues were efficiently synthesized in 5-6 steps and 11-61% overall yield. Modification of 8 by bromine substitution at the 5-position of the furan ring, replacement of the secondary amine with an ether bridge, and carboxylation, gave 6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid 42 (BPO-27), which fully inhibited CFTR with IC(50) ∼ 8 nM and, compared to 8, had >10-fold greater metabolic stability and much greater polarity/aqueous solubility. In an embryonic kidney culture model of PKD, 42 prevented cyst growth with IC(50) ∼ 100 nM. Benzopyrimido-pyrrolo-oxazinediones such as 42 are potential development candidates for antisecretory therapy of PKD.
Collapse
Affiliation(s)
- David S Snyder
- Department of Medicine, University of California, San Francisco, California 94143-0521, United States
| | | | | | | | | |
Collapse
|
8
|
Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol J, Wang B, Bauer M, Bronson R, Franchini KG, Neel BG, Kontaridis MI. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 2011; 121:1026-43. [PMID: 21339643 DOI: 10.1172/jci44972] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 08/31/2010] [Indexed: 02/06/2023] Open
Abstract
LEOPARD syndrome (LS) is an autosomal dominant "RASopathy" that manifests with congenital heart disease. Nearly all cases of LS are caused by catalytically inactivating mutations in the protein tyrosine phosphatase (PTP), non-receptor type 11 (PTPN11) gene that encodes the SH2 domain-containing PTP-2 (SHP2). RASopathies typically affect components of the RAS/MAPK pathway, yet it remains unclear how PTPN11 mutations alter cellular signaling to produce LS phenotypes. We therefore generated knockin mice harboring the Ptpn11 mutation Y279C, one of the most common LS alleles. Ptpn11(Y279C/+) (LS/+) mice recapitulated the human disorder, with short stature, craniofacial dysmorphia, and morphologic, histologic, echocardiographic, and molecular evidence of hypertrophic cardiomyopathy (HCM). Heart and/or cardiomyocyte lysates from LS/+ mice showed enhanced binding of Shp2 to Irs1, decreased Shp2 catalytic activity, and abrogated agonist-evoked Erk/Mapk signaling. LS/+ mice also exhibited increased basal and agonist-induced Akt and mTor activity. The cardiac defects in LS/+ mice were completely reversed by treatment with rapamycin, an inhibitor of mTOR. Our results demonstrate that LS mutations have dominant-negative effects in vivo, identify enhanced mTOR activity as critical for causing LS-associated HCM, and suggest that TOR inhibitors be considered for treatment of HCM in LS patients.
Collapse
Affiliation(s)
- Talita M Marin
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Aldosterone regulates blood pressure through its effects on the cardiovascular system and kidney. Aldosterone can also contribute to the development of hypertension that leads to chronic pathologies such as nephropathy and renal fibrosis. Aldosterone directly modulates renal cell proliferation and differentiation as part of normal kidney development. The stimulation of rapidly activated protein kinase cascades is one facet of how aldosterone regulates renal cell growth. These cascades may also contribute to myofibroblastic transformation and cell proliferation observed in pathological conditions of the kidney. Polycystic kidney disease is a genetic disorder that is accelerated by hypertension. EGFR-dependent proliferation of the renal epithelium is a factor in cyst development and trans-activation of EGFR is a key feature in initiating aldosterone-induced signalling cascades. Delineating the components of aldosterone-induced signalling cascades may identify novel therapeutic targets for proliferative diseases of the kidney.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | |
Collapse
|
10
|
Halvorson CR, Bremmer MS, Jacobs SC. Polycystic kidney disease: inheritance, pathophysiology, prognosis, and treatment. Int J Nephrol Renovasc Dis 2010; 3:69-83. [PMID: 21694932 PMCID: PMC3108786 DOI: 10.2147/ijnrd.s6939] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Indexed: 01/09/2023] Open
Abstract
Both autosomal dominant and recessive polycystic kidney disease are conditions with severe associated morbidity and mortality. Recent advances in the understanding of the genetic and molecular pathogenesis of both ADPKD and ARPKD have resulted in new, targeted therapies designed to disrupt cell signaling pathways responsible for the abnormal cell proliferation, dedifferentiation, apoptosis, and fluid secretion characteristic of the disease. Herein we review the current understanding of the pathophysiology of these conditions, as well as the current treatments derived from our understanding of the mechanisms of these diseases.
Collapse
Affiliation(s)
- Christian R Halvorson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
11
|
Natoli TA, Smith LA, Rogers KA, Wang B, Komarnitsky S, Budman Y, Belenky A, Bukanov NO, Dackowski WR, Husson H, Russo RJ, Shayman JA, Ledbetter SR, Leonard JP, Ibraghimov-Beskrovnaya O. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 2010; 16:788-92. [PMID: 20562878 DOI: 10.1038/nm.2171] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/26/2010] [Indexed: 01/08/2023]
Abstract
Polycystic kidney disease (PKD) represents a family of genetic disorders characterized by renal cystic growth and progression to kidney failure. No treatment is currently available for people with PKD, although possible therapeutic interventions are emerging. Despite genetic and clinical heterogeneity, PKDs have in common defects of cystic epithelia, including increased proliferation, apoptosis and activation of growth regulatory pathways. Sphingolipids and glycosphingolipids are emerging as major regulators of these cellular processes. We sought to evaluate the therapeutic potential for glycosphingolipid modulation as a new approach to treat PKD. Here we demonstrate that kidney glucosylceramide (GlcCer) and ganglioside GM3 levels are higher in human and mouse PKD tissue as compared to normal tissue, regardless of the causative mutation. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor Genz-123346 effectively inhibits cystogenesis in mouse models orthologous to human autosomal dominant PKD (Pkd1 conditional knockout mice) and nephronophthisis (jck and pcy mice). Molecular analysis in vitro and in vivo indicates that Genz-123346 acts through inhibition of the two key pathways dysregulated in PKD: Akt protein kinase-mammalian target of rapamycin signaling and cell cycle machinery. Taken together, our data suggest that inhibition of GlcCer synthesis represents a new and effective treatment option for PKD.
Collapse
Affiliation(s)
- Thomas A Natoli
- Department of Cell Biology, Genzyme Corporation, Framingham, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McEneaney V, Dooley R, Harvey BJ, Thomas W. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation. J Steroid Biochem Mol Biol 2010; 118:18-28. [PMID: 19804826 DOI: 10.1016/j.jsbmb.2009.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/29/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1/2-dependent. Aldosterone induced the rapid activation of ERK1/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1/2 was inhibited in cells suppressed in the expression of PKD1.
Collapse
Affiliation(s)
- Victoria McEneaney
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | |
Collapse
|
13
|
Little MH, Rae FK. Review article: Potential cellular therapies for renal disease: can we translate results from animal studies to the human condition? Nephrology (Carlton) 2009. [PMID: 19712255 DOI: 10.1111/j.1440-1797.2009.01144.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of chronic kidney disease is increasing worldwide, prompting considerable research into potential regenerative therapies. These have included studies to determine whether an endogenous renal stem cell exists in the postnatal kidney and whether non-renal adult stem cells, such as mesenchymal stem cell, can ameliorate renal damage. Such stem cells will either need to be recruited to the damaged kidney to repair the damage in situ or be differentiated into the desired cell type and delivered into the damaged kidney to subsequently elicit repair without maldifferentiation. To date, these studies have largely been performed using experimental and genetic models of renal damage in rodents. The translation of such research into a therapy applicable to human disease faces many challenges. In this review, we examine which animal models have been used to evaluate potential cellular therapies and how valid these are to human chronic kidney disease.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| | | |
Collapse
|
14
|
Wu M, Arcaro A, Varga Z, Vogetseder A, Le Hir M, Wüthrich RP, Serra AL. Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease. Am J Physiol Renal Physiol 2009; 297:F1597-605. [DOI: 10.1152/ajprenal.00430.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The efficacy of mammalian target of rapamycin (mTOR) inhibitors is currently tested in patients affected by autosomal dominant polycystic kidney disease. Treatment with mTOR inhibitors has been associated with numerous side effects. However, the renal-specific effect of mTOR inhibitor treatment cessation in polycystic kidney disease is currently unknown. Therefore, we compared pulse and continuous everolimus treatment in Han:SPRD rats. Four-week-old male heterozygous polycystic and wild-type rats were administered everolimus or vehicle by gavage feeding for 5 wk, followed by 7 wk without treatment, or continuously for 12 wk. Cessation of everolimus did not result in the appearance of renal cysts up to 7 wk postwithdrawal despite the reemergence of S6 kinase activity coupled with an overall increase in cell proliferation. Pulse everolimus treatment resulted in striking noncystic renal parenchymal enlargement and glomerular hypertrophy that was not associated with compromised kidney function. Both treatment regimens ameliorated kidney function, preserved the glomerular-tubular connection, and reduced proteinuria. Pulse treatment at an early age delays cyst development but leads to striking glomerular and parenchymal hypertrophy. Our data might have an impact when long-term treatment using mTOR inhibitors in patients with autosomal dominant polycystic kidney disease is being considered.
Collapse
Affiliation(s)
- Ming Wu
- Zurich Center for Integrative Human Physiology (ZIHP),
| | | | | | | | - Michel Le Hir
- Anatomical Institute, University of Zurich-Irchel, and
| | - Rudolf P. Wüthrich
- Zurich Center for Integrative Human Physiology (ZIHP),
- Division of Nephrology, University Hospital, Zurich, Switzerland
| | - Andreas L. Serra
- Zurich Center for Integrative Human Physiology (ZIHP),
- Division of Nephrology, University Hospital, Zurich, Switzerland
| |
Collapse
|
15
|
Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. Kidney Int 2008; 75:235-41. [PMID: 18971924 DOI: 10.1038/ki.2008.558] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kidney volume growth is considered the best surrogate marker predicting the decline of renal function in autosomal dominant polycystic kidney disease. To assess the therapeutic benefit of new drugs more rapidly, changes in kidney volume need to be determined over a short time interval. Here we measured renal volume changes by manual segmentation volumetry applied to magnetic resonance imaging scans obtained with an optimized T1-weighted acquisition protocol without gadolinium-based contrast agents. One hundred young patients with autosomal dominant polycystic kidney disease and preserved renal function had a significant increase in total kidney volume by 2.71+/-4.82% in 6 months. Volume measurements were highly reproducible and accurate, as indicated by correlation coefficients of 1.000 for intra-observer and 0.996 for inter-observer agreement, with acceptable within-subject standard deviations. The change in renal volume correlated with baseline total kidney volume in all age subgroups. Total kidney volume positively correlated with male gender, hypertension, albuminuria and a history of macrohematuria but negatively with creatinine clearance. Albuminuria was associated with accelerated volume progression. Our study shows that increases in kidney volume can be reliably measured over a 6 month period in early autosomal dominant polycystic kidney disease using unenhanced magnetic resonance imaging sequences.
Collapse
|
16
|
Renal tract malformations: perspectives for nephrologists. ACTA ACUST UNITED AC 2008; 4:312-25. [DOI: 10.1038/ncpneph0807] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/05/2008] [Indexed: 01/13/2023]
|