1
|
Camargo-Ayala L, Bedoya M, Dasí A, Prüser M, Schütte S, Prent-Peñaloza L, Adasme-Carreño F, Kiper AK, Rinné S, Camargo-Ayala PA, Peña-Martínez PA, Bueno-Orovio A, Varela D, Wiedmann F, Márquez Montesinos JCE, Mazola Y, Venturini W, Zúñiga R, Zúñiga L, Schmidt C, Rodriguez B, Ravens U, Decher N, Gutiérrez M, González W. Rational design, synthesis, and evaluation of novel polypharmacological compounds targeting Na V1.5, K V1.5, and K 2P channels for atrial fibrillation. J Biol Chem 2025; 301:108387. [PMID: 40054693 DOI: 10.1016/j.jbc.2025.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 04/19/2025] Open
Abstract
Atrial fibrillation (AF) involves electrical remodeling of the atria, with ion channels such as NaV1.5, KV1.5, and TASK-1 playing crucial roles. This study investigates acetamide-based compounds designed as multi-target inhibitors of these ion channels to address AF. Compound 6f emerged as the most potent in the series, demonstrating a strong inhibition of TASK-1 (IC50 ∼ 0.3 μM), a moderate inhibition of NaV1.5 (IC50 ∼ 21.2 μM) and a subtle inhibition of KV1.5 (IC50 ∼ 81.5 μM), alongside unexpected activation of TASK-4 (∼ 40% at 100 μM). Functional assays on human atrial cardiomyocytes from sinus rhythm (SR) and patients with AF revealed that 6f reduced action potential amplitude in SR (indicating NaV1.5 block), while in AF it increased action potential duration (APD), reflecting high affinity for TASK-1. Additionally, 6f caused hyperpolarization of the resting membrane potential in AF cardiomyocytes, consistent with the observed TASK-4 activation. Mathematical modeling further validated its efficacy in reducing AF burden. Pharmacokinetic analyses suggest favorable absorption and low toxicity. These findings identify 6f as a promising multi-target therapeutic candidate for AF management.
Collapse
Affiliation(s)
- Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica, Universidad de Talca, Talca, Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Albert Dasí
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Merten Prüser
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Francisco Adasme-Carreño
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany; Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Paola Andrea Camargo-Ayala
- Doctorado en Ciencias Biomédicas, Laboratorio de Patología Molecular, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Paula A Peña-Martínez
- Doctorado en Ciencias Agrarias, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile; Laboratorio de Química Enológica, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Diego Varela
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - José C E Márquez Montesinos
- Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile; Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Yuliet Mazola
- Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile; Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Whitney Venturini
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Rafael Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Leandro Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Ursula Ravens
- German Atrial Fibrillation Competence NETwork (AFNET), Freiburg, Germany; Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, Freiburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany.
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile.
| | - Wendy González
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile.
| |
Collapse
|
2
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
3
|
Jæger KH, Edwards AG, Giles WR, Tveito A. A computational method for identifying an optimal combination of existing drugs to repair the action potentials of SQT1 ventricular myocytes. PLoS Comput Biol 2021; 17:e1009233. [PMID: 34383746 PMCID: PMC8360568 DOI: 10.1371/journal.pcbi.1009233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 01/26/2023] Open
Abstract
Mutations are known to cause perturbations in essential functional features of integral membrane proteins, including ion channels. Even restricted or point mutations can result in substantially changed properties of ion currents. The additive effect of these alterations for a specific ion channel can result in significantly changed properties of the action potential (AP). Both AP shortening and AP prolongation can result from known mutations, and the consequences can be life-threatening. Here, we present a computational method for identifying new drugs utilizing combinations of existing drugs. Based on the knowledge of theoretical effects of existing drugs on individual ion currents, our aim is to compute optimal combinations that can ‘repair’ the mutant AP waveforms so that the baseline AP-properties are restored. More specifically, we compute optimal, combined, drug concentrations such that the waveforms of the transmembrane potential and the cytosolic calcium concentration of the mutant cardiomyocytes (CMs) becomes as similar as possible to their wild type counterparts after the drug has been applied. In order to demonstrate the utility of this method, we address the question of computing an optimal drug for the short QT syndrome type 1 (SQT1). For the SQT1 mutation N588K, there are available data sets that describe the effect of various drugs on the mutated K+ channel. These published findings are the basis for our computational analysis which can identify optimal compounds in the sense that the AP of the mutant CMs resembles essential biomarkers of the wild type CMs. Using recently developed insights regarding electrophysiological properties among myocytes from different species, we compute optimal drug combinations for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs with the SQT1 mutation. Since the ‘composition’ of ion channels that form the AP is different for the three types of myocytes under consideration, so is the composition of the optimal drug. Poly-pharmacology (using multiple drugs to treat disease) has been proposed for improving cardiac anti-arrhythmic therapy for at least two decades. However, the specific arrhythmia contexts in which polytherapy is likely to be both safe and effective have remained elusive. Type 1 short QT syndrome (SQT1) is a rare form of cardiac arrhythmia that results from mutations to the human Ether-á-go-go Related Gene (hERG) potassium channel. Functionally, these mutations are remarkably consistent in that they permit the channel to open earlier during each heart beat. While hundreds of compounds are known to inhibit hERG channels, the specific effect of SQT1 mutations that allows for early channel opening also limits the ability of most of those compounds to correct SQT1 dysfunction. Here, we have applied a suite of ventricular cardiomyocyte computational models to ask whether polytherapy may offer a more effective therapeutic strategy in SQT1, and if so, what the likely characteristics of that strategy are. Our analyses suggest that simultaneous induction of late sodium current and partial hERG blockade offers a promising strategy. While no activators of late sodium current have been clinically approved, several experimental compounds are available and may provide a basis for interrogating this strategy. The method presented here can be used to compute optimal drug combinations provided that the effect of each drug on every relevant ion channel is known.
Collapse
MESH Headings
- Action Potentials/drug effects
- Amino Acid Substitution
- Animals
- Anti-Arrhythmia Agents/administration & dosage
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Computational Biology
- Drug Combinations
- Drug Design
- Drug Therapy, Combination/methods
- ERG1 Potassium Channel/drug effects
- ERG1 Potassium Channel/genetics
- ERG1 Potassium Channel/physiology
- Heart Conduction System/abnormalities
- Heart Conduction System/physiopathology
- Heart Defects, Congenital/drug therapy
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/physiology
- Models, Cardiovascular
- Mutation, Missense
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Rabbits
Collapse
Affiliation(s)
| | - Andrew G. Edwards
- Simula Research Laboratory, Oslo, Norway
- Department of Pharmacology, University of California, Davis, California United States of America
| | - Wayne R. Giles
- Simula Research Laboratory, Oslo, Norway
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
4
|
Discovery of dronedarone and its analogues as NLRP3 inflammasome inhibitors with potent anti-inflammation activity. Bioorg Med Chem Lett 2021; 46:128160. [PMID: 34062252 DOI: 10.1016/j.bmcl.2021.128160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Inhibiting NLRP3 inflammasome activation is a prospective therapeutic strategy for uncontrolled inflammatory diseases. It is the first time that dronedarone, a multiply ion channel blocker, was identified as a NLRP3-inflammasome inhibitor with an IC50 value of 6.84 μM against IL-1β release. A series of novel 5-amide benzofuran derivatives were designed and synthesized as NLRP3-inflammasome inhibitors. Compound 8c showed slightly increased activity (IC50 = 3.85 μM) against IL-1β release. Notably, treatment with 8c could significantly inhibit NLRP3-mediated IL-1β release and ameliorate peritoneal inflammation in a mouse model of sepsis. Collectively, 8c is a promising lead compound for further chemical development as a NLRP3 inhibitor with anti-inflammation effects.
Collapse
|
5
|
The Small Conductance Calcium-Activated Potassium Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation Through Atrial-Selective Inhibition of Sodium Channel Activity. J Cardiovasc Pharmacol 2021; 76:164-172. [PMID: 32453071 DOI: 10.1097/fjc.0000000000000855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mechanisms underlying atrial-selective prolongation of effective refractory period (ERP) and suppression of atrial fibrillation (AF) by NS8593 and UCL1684, small conductance calcium-activated potassium (SK) channel blockers, are poorly defined. The purpose of the study was to confirm the effectiveness of these agents to suppress AF and to probe the underlying mechanisms. Transmembrane action potentials and pseudoelectrocardiograms were recorded from canine isolated coronary-perfused canine atrial and ventricular wedge preparations. Patch clamp techniques were used to record sodium channel current (INa) in atrial and ventricular myocytes and human embryonic kidney cells. In both atria and ventricles, NS8593 (3-10 µM) and UCL1684 (0.5 µM) did not significantly alter action potential duration, suggesting little to no SK channel inhibition. Both agents caused atrial-selective: (1) prolongation of ERP secondary to development of postrepolarization refractoriness, (2) reduction of Vmax, and (3) increase of diastolic threshold of excitation (all are sodium-mediated parameters). NS8593 and UCL1684 significantly reduced INa density in human embryonic kidney cells as well as in atrial but not in ventricular myocytes at physiologically relevant holding potentials. NS8593 caused a shift of steady-state inactivation to negative potentials in atrial but not ventricular cells. NS8593 and UCL1684 prevented induction of acetylcholine-mediated AF in 6/6 and 8/8 preparations, respectively. This anti-AF effect was associated with strong rate-dependent depression of excitability. The SK channel blockers, NS8593 and UCL1684, are effective in preventing the development of AF due to potent atrial-selective inhibition of INa, causing atrial-selective prolongation of ERP secondary to induction of postrepolarization refractoriness.
Collapse
|
6
|
Alvarado D, Cardoso-Arenas S, Corrales-García LL, Clement H, Arenas I, Montero-Dominguez PA, Olamendi-Portugal T, Zamudio F, Csoti A, Borrego J, Panyi G, Papp F, Corzo G. A Novel Insecticidal Spider Peptide that Affects the Mammalian Voltage-Gated Ion Channel hKv1.5. Front Pharmacol 2021; 11:563858. [PMID: 33597864 PMCID: PMC7883638 DOI: 10.3389/fphar.2020.563858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Spider venoms include various peptide toxins that modify the ion currents, mainly of excitable insect cells. Consequently, scientific research on spider venoms has revealed a broad range of peptide toxins with different pharmacological properties, even for mammal species. In this work, thirty animal venoms were screened against hKv1.5, a potential target for atrial fibrillation therapy. The whole venom of the spider Oculicosa supermirabilis, which is also insecticidal to house crickets, caused voltage-gated potassium ion channel modulation in hKv1.5. Therefore, a peptide from the spider O. supermirabilis venom, named Osu1, was identified through HPLC reverse-phase fractionation. Osu1 displayed similar biological properties as the whole venom; so, the primary sequence of Osu1 was elucidated by both of N-terminal degradation and endoproteolytic cleavage. Based on its primary structure, a gene that codifies for Osu1 was constructed de novo from protein to DNA by reverse translation. A recombinant Osu1 was expressed using a pQE30 vector inside the E. coli SHuffle expression system. recombinant Osu1 had voltage-gated potassium ion channel modulation of human hKv1.5, and it was also as insecticidal as the native toxin. Due to its novel primary structure, and hypothesized disulfide pairing motif, Osu1 may represent a new family of spider toxins.
Collapse
Affiliation(s)
- Diana Alvarado
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Samuel Cardoso-Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Ligia-Luz Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
- Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Iván Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Pavel Andrei Montero-Dominguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jesús Borrego
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
7
|
Losartan inhibits hyposmotic-induced increase of IKs current and shortening of action potential duration in guinea pig atrial myocytes. Anatol J Cardiol 2020; 23:35-40. [PMID: 31911569 PMCID: PMC7141430 DOI: 10.14744/anatoljcardiol.2019.75332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: The present study aims to investigate the effect of losartan, an selective angiotensin II type 1 receptor (AT1R) blocker, on both the increase of IKs current and shortening of action potential duration (APD) induced by stretch of atrial myocytes, and to uncover the mechanism underlying the treatment of fibrillation (AF) by AT1R blockers. Methods: Hyposmotic solution (Hypo-S) was applied in the guinea pig atrial myocytes to simulate cell stretch, then patch-clamp technique was applied to record the IKs and APD in atrial myocytes. Results: Hypo-S increased the IKs by 105.6%, while Hypo-S+1-20 µM of losartan only increased the IKs by 70.3-75.5% (p<0.05 vs. Hypo-S). Meanwhile, Hypo-S shortened APD90 by 20.2%, while Hypo-S+1-20 µM of losartan shortened APD90 by 13.03-14.56% (p<0.05 vs. Hypo-S). Conclusion: The above data indicate that the effect of losartan on the electrophysiological changes induced by stretch of atrial myocytes is associated with blocking of AT1 receptor, and is beneficial for the treatment of AF that is often accompanied by the expansion of atrial myocytes and the increase of effective refractory period.
Collapse
|
8
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Szatmári V, Ji Y, Herwijnen BV, Feng M, Wang MZ, Bossu A, van der Heyden MAG. Efficacy of pentamidine analogue 6 in dogs with chronic atrial fibrillation. J Vet Intern Med 2018; 32:1549-1554. [PMID: 30079486 PMCID: PMC6189345 DOI: 10.1111/jvim.15242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/25/2018] [Accepted: 05/21/2018] [Indexed: 01/13/2023] Open
Abstract
Background The inward rectifier inhibitor pentamidine analogue 6 (PA‐6) is effective in cardioversion of goats with persistent rapid pacing induced atrial fibrillation (AF) and is not proarrhythmic in dogs with experimental chronic 3rd‐degree AV block. Efficacy and safety in the clinical setting are unknown. Hypothesis That PA‐6 would be effective in converting AF to sinus rhythm (SR) in dogs with naturally occurring AF, without the presence of overt adverse effects. Animals Ten client‐owned large and giant breed dogs. Methods Animals with persistent or permanent AF were recruited for our prospective study. PA‐6 was administered IV as a bolus of 2.5 mg/kg 10 min−1 followed by a maintenance infusion of 0.04 mg/kg min−1 for a maximum of 50 minutes in conscious dogs. Standard 6 lead limb ECG was recorded during the infusion. Visible and audible signs of adverse effects were scored during the entire procedure. Results PA‐6 did not induce changes in QRS duration (54.7 ± 4.6 versus 56.7 ± 6.1 ms, P = .42), QTc interval (241.1 ± 19.5 versus 258.7 ± 19.8 ms, P = .061) or RR interval (363.4 ± 84.6 versus 440.8 ± 96.3 ms, P = .072) at the end of the bolus. No cardioversion to SR was observed in any dog. Three dogs displayed no adverse effects. Five dogs had premature ventricular depolarizations during PA‐6 infusion on the ECG. Respiratory distress with laryngeal stridor, subtle muscle twitching, and mild generalized muscular weakness were noncardiac adverse effects observed in 5 dogs. Adverse effects resolved spontaneously. Conclusions and Clinical importance Chronic naturally occurring AF in large and giant breed dogs could not be cardioverted to SR by PA‐6.
Collapse
Affiliation(s)
- Viktor Szatmári
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Yuan Ji
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bianca van Herwijnen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas
| | - Michael Zhou Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas
| | - Alexandre Bossu
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Ji Y, Veldhuis MG, Zandvoort J, Romunde FL, Houtman MJC, Duran K, van Haaften G, Zangerl-Plessl EM, Takanari H, Stary-Weinzinger A, van der Heyden MAG. PA-6 inhibits inward rectifier currents carried by V93I and D172N gain-of-function K IR2.1 channels, but increases channel protein expression. J Biomed Sci 2017; 24:44. [PMID: 28711067 PMCID: PMC5513211 DOI: 10.1186/s12929-017-0352-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The inward rectifier potassium current IK1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased IK1, short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC50 = 14 nM with inside-out patch clamp methodology) and specific IK1 inhibitor that interacts with the cytoplasmic pore region of the KIR2.1 ion channel, encoded by KCNJ2. At 10 μM, PA-6 increases wild-type (WT) KIR2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N KIR2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. METHODS Molecular modelling was performed with the human KIR2.1 closed state homology model using FlexX. WT and mutant KIR2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. KIR2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. RESULTS PA-6 docking in the V93I/D172N double mutant homology model of KIR2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 μM of PA-6 inhibited outward IK1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 μM, 24 h) increased KIR2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular KIR2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 μM). CONCLUSIONS 1) KCNJ2 gain-of-function mutations V93I and D172N in the KIR2.1 ion channel do not impair PA-6 mediated inhibition of IK1, 2) PA-6 elevates KIR2.1 protein expression and induces intracellular KIR2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marlieke G. Veldhuis
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Jantien Zandvoort
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Fee L. Romunde
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marien J. C. Houtman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Karen Duran
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hiroki Takanari
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
11
|
Sánchez C, Bueno-Orovio A, Pueyo E, Rodríguez B. Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Front Bioeng Biotechnol 2017; 5:29. [PMID: 28534025 PMCID: PMC5420585 DOI: 10.3389/fbioe.2017.00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) usually manifests as reentrant circuits propagating through the whole atria creating chaotic activation patterns. Little is yet known about how differences in electrophysiological and ionic properties between patients modulate reentrant patterns in AF. The goal of this study is to quantify how variability in action potential duration (APD) at different stages of repolarization determines AF dynamics and their modulation by ionic block using a set of virtual whole-atria human models. Six human whole-atria models are constructed based on the same anatomical structure and fiber orientation, but with different electrophysiological phenotypes. Membrane kinetics for each whole-atria model are selected with distinct APD characteristics at 20, 50, and 90% repolarization, from an experimentally calibrated population of human atrial action potential models, including AF remodeling and acetylcholine parasympathetic effects. Our simulations show that in all whole-atria models, reentrant circuits tend to organize around the pulmonary veins and the right atrial appendage, thus leading to higher dominant frequency (DF) and more organized activation in the left atrium than in the right atrium. Differences in APD in all phases of repolarization (not only APD90) yielded quantitative differences in fibrillation patterns with long APD associated with slower and more regular dynamics. Long APD50 and APD20 were associated with increased interatrial conduction block and interatrial differences in DF and organization index, creating reentry instability and self-termination in some cases. Specific inhibitions of IK1, INaK, or INa reduce DF and organization of the arrhythmia by enlarging wave meandering, reducing the number of secondary wavelets, and promoting interatrial block in all six virtual patients, especially for the phenotypes with short APD at 20, 50, and/or 90% repolarization. This suggests that therapies aiming at prolonging the early phase of repolarization might constitute effective antiarrhythmic strategies for the pharmacological management of AF. In summary, simulations report significant differences in atrial fibrillatory dynamics resulting from differences in APD at all phases of repolarization.
Collapse
Affiliation(s)
- Carlos Sánchez
- Biosignal Interpretation and Computational Simulation (BSICoS), I3A and IIS, University of Zaragoza, Zaragoza, Spain.,Defense University Centre (CUD), General Military Academy of Zaragoza (AGM), Zaragoza, Spain
| | | | - Esther Pueyo
- Biosignal Interpretation and Computational Simulation (BSICoS), I3A and IIS, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Blanca Rodríguez
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Rasines-Perea Z, Teissedre PL. Grape Polyphenols' Effects in Human Cardiovascular Diseases and Diabetes. Molecules 2017; 22:E68. [PMID: 28045444 PMCID: PMC6155751 DOI: 10.3390/molecules22010068] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023] Open
Abstract
The consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals, has increased due to consumers' interest in the relevance of food composition for human health. Considerable recent interest has focused on bioactive phenolic compounds in grape, as they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, anti-ageing and antimicrobial properties. Observational studies indicate that the intake of polyphenol-rich foods improves vascular health, thereby significantly reducing the risk of hypertension, and cardiovascular disease (CVD). Other researchers have described the benefits of a grape polyphenol-rich diet for other types of maladies such as diabetes mellitus. This is a comprehensive review on the consumption of polyphenolic grape compounds, concerning their potential benefits for human health in the treatment of cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- Zuriñe Rasines-Perea
- Université de Bordeaux, ISVV, Institut des Sciences de la Vigne et du Vin, EA 4577 Œnologie, 210 Chemin de Leysotte, Villenave d'Ornon F-33140, France.
- INRA, Instiut National de la Recherche Agronomique, ISVV, Institut des Sciences de la Vigne et du Vin, USC 1366 Œnologie, 210 Chemin de Leysotte, Villenave d'Ornon F-33140, France.
| | - Pierre-Louis Teissedre
- Université de Bordeaux, ISVV, Institut des Sciences de la Vigne et du Vin, EA 4577 Œnologie, 210 Chemin de Leysotte, Villenave d'Ornon F-33140, France.
- INRA, Instiut National de la Recherche Agronomique, ISVV, Institut des Sciences de la Vigne et du Vin, USC 1366 Œnologie, 210 Chemin de Leysotte, Villenave d'Ornon F-33140, France.
| |
Collapse
|
13
|
Abstract
INTRODUCTION SK channels have functional importance in the cardiac atrium of many species, including humans. Pharmacological blockage of SK channels has been reported to be antiarrhythmic in animal models of atrial fibrillation; however, the exact antiarrhythmic mechanism of SK channel inhibition remains unclear. OBJECTIVES We speculated that together with a direct inhibition of repolarizing SK current, the previously observed depolarization of the atrial resting membrane potential (RMP) after SK channel inhibition reduces sodium channel availability, thereby prolonging the effective refractory period and slowing the conduction velocity (CV). We therefore aimed at elucidating these properties of SK channel inhibition and the underlying antiarrhythmic mechanisms using microelectrode action potential (AP) recordings and CV measurements in isolated rat atrium. Automated patch clamping and two-electrode voltage clamp were used to access INa and IK,ACh, respectively. RESULTS The SK channel inhibitor N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) exhibited antiarrhythmic effects. ICA prevented electrically induced runs of atrial fibrillation in the isolated right atrium and induced atrial postrepolarization refractoriness and depolarized RMP. Moreover, ICA (1-10 μM) was found to slow CV; however, because of a marked prolongation of effective refractory period, the calculated wavelength was increased. Furthermore, at increased pacing frequencies, SK channel inhibition by ICA (10-30 μM) demonstrated prominent depression of other sodium channel-dependent parameters. ICA did not inhibit IK,ACh, but at concentrations above 10 μM, ICA use dependently inhibited INa. CONCLUSIONS SK channel inhibition modulates multiple parameters of AP. It prolongs the AP duration and shifts the RMP towards more depolarized potentials through direct ISK block. This indirectly leads to sodium channel inhibition through accumulation of state dependently inactivated channels, which ultimately slows conduction and decreases excitability. However, a contribution from a direct sodium channel inhibition cannot be ruled. We here propose that the primary antiarrhythmic mechanism of SK channel inhibition is through direct potassium channel block and through indirect sodium channel inhibition.
Collapse
|
14
|
Dofetilide: Electrophysiologic Effect, Efficacy, and Safety in Patients with Cardiac Arrhythmias. Card Electrophysiol Clin 2016; 8:423-36. [PMID: 27261832 DOI: 10.1016/j.ccep.2016.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dofetilide is a class III antiarrhythmic agent with a selective blockade of rapid component of delayed rectifier potassium current (IKr). Dofetilide was found to be safe in patients after myocardial infarction and those with congestive heart failure and left ventricular systolic dysfunction (ejection fraction of less than 35%). An important adverse effect of dofetilide is its potential proarrhythmic risk of ventricular tachyarrhythmias, mostly torsades de pointes. Because dofetilide has about an 80% renal excretion, dose adjustment is required in patients with impaired renal function. Dofetilide should not be given or discontinued if the QTc is greater than 500 ms.
Collapse
|
15
|
Heijman J, Algalarrondo V, Voigt N, Melka J, Wehrens XHT, Dobrev D, Nattel S. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc Res 2015; 109:467-79. [PMID: 26705366 DOI: 10.1093/cvr/cvv275] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is an extremely common clinical problem associated with increased morbidity and mortality. Current antiarrhythmic options include pharmacological, ablation, and surgical therapies, and have significantly improved clinical outcomes. However, their efficacy remains suboptimal, and their use is limited by a variety of potentially serious adverse effects. There is a clear need for improved therapeutic options. Several decades of research have substantially expanded our understanding of the basic mechanisms of AF. Ectopic firing and re-entrant activity have been identified as the predominant mechanisms for arrhythmia initiation and maintenance. However, it has become clear that the clinical factors predisposing to AF and the cellular and molecular mechanisms involved are extremely complex. Moreover, all AF-promoting and maintaining mechanisms are dynamically regulated and subject to remodelling caused by both AF and cardiovascular disease. Accordingly, the initial presentation and clinical progression of AF patients are enormously heterogeneous. An understanding of arrhythmia mechanisms is widely assumed to be the basis of therapeutic innovation, but while this assumption seems self-evident, we are not aware of any papers that have critically examined the practical contributions of basic research into AF mechanisms to arrhythmia management. Here, we review recent insights into the basic mechanisms of AF, critically analyse the role of basic research insights in the development of presently used anti-AF therapeutic options and assess the potential value of contemporary experimental discoveries for future therapeutic innovation. Finally, we highlight some of the important challenges to the translation of basic science findings to clinical application.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Vincent Algalarrondo
- Department of Medicine, Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Canada H1T 1C8 Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Jonathan Melka
- Department of Medicine, Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Canada H1T 1C8 Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, 5000 Belanger St. E., Montreal, Canada H1T 1C8 Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany
| |
Collapse
|
16
|
Aguilar M, Xiong F, Qi XY, Comtois P, Nattel S. Potassium Channel Blockade Enhances Atrial Fibrillation–Selective Antiarrhythmic Effects of Optimized State-Dependent Sodium Channel Blockade. Circulation 2015; 132:2203-11. [PMID: 26499964 DOI: 10.1161/circulationaha.115.018016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022]
Abstract
Background—
The development of effective and safe antiarrhythmic drugs for atrial fibrillation (AF) rhythm control is an unmet clinical need. Multichannel blockers are believed to have advantages over single-channel blockers for AF, but their development has been completely empirical to date. We tested the hypothesis that adding K
+
-channel blockade improves the atrium-selective electrophysiological profile and anti-AF effects of optimized Na
+
-channel blockers.
Methods and Results—
Realistic cardiomyocyte-, tissue-, and state-dependent Na
+
-channel block mathematical models, optical mapping, and action potential recording were used to study the effect of Na
+
-current (
I
Na
) blockade with or without concomitant inhibition of the rapid or ultrarapid delayed-rectifier K
+
currents (
I
Kr
and
I
Kur
, respectively). In the mathematical model, maximal AF selectivity was obtained with an inactivated-state Na
+
-channel blocker. Combining optimized Na
+
-channel blocker with
I
Kr
block increased rate-dependent and atrium-selective peak
I
Na
reduction, increased AF selectivity, and more effectively terminated AF compared with optimized Na
+
-channel blocker alone. Combining optimized Na
+
-channel blocker with
I
Kur
block had similar effects but without
I
Kr
block–induced ventricular action potential prolongation. Consistent with the mathematical model, in coronary-perfused canine hearts, the addition of dofetilide (selective
I
Kr
blocker) to pilsicainide (selective
I
Na
blocker) produced enhanced atrium-selective effects on maximal phase 0 upstroke and conduction velocity. Furthermore, pilsicainide plus dofetilide had higher AF termination efficacy than pilsicainide alone. Pilsicainide alone had no statistically significant effect on AF inducibility, whereas pilsicainide plus dofetilide rendered AF noninducible.
Conclusions—
K
+
-channel block potentiates the AF-selective anti-AF effects obtainable with optimized Na
+
-channel blockade. Combining optimized Na
+
-channel block with blockade of atrial K
+
currents is a potentially valuable AF-selective antiarrhythmic drug strategy.
Collapse
Affiliation(s)
- Martin Aguilar
- From the Research Center, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada (M.A., F.X., X.Y.Q., P.C., S.N.); Department of Molecular and Integrative Physiology/Institute of Biomedical Engineering (M.A., P.C.) and Department of Medicine (S.N.), Université de Montréal, Montreal, QC, Canada; and Departments of Medicine (M.A., S.N.) and Pharmacology and Therapeutics (F.X., S.N.), McGill University, Montreal, QC, Canada; and West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (S.N.)
| | - Feng Xiong
- From the Research Center, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada (M.A., F.X., X.Y.Q., P.C., S.N.); Department of Molecular and Integrative Physiology/Institute of Biomedical Engineering (M.A., P.C.) and Department of Medicine (S.N.), Université de Montréal, Montreal, QC, Canada; and Departments of Medicine (M.A., S.N.) and Pharmacology and Therapeutics (F.X., S.N.), McGill University, Montreal, QC, Canada; and West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (S.N.)
| | - Xiao Yan Qi
- From the Research Center, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada (M.A., F.X., X.Y.Q., P.C., S.N.); Department of Molecular and Integrative Physiology/Institute of Biomedical Engineering (M.A., P.C.) and Department of Medicine (S.N.), Université de Montréal, Montreal, QC, Canada; and Departments of Medicine (M.A., S.N.) and Pharmacology and Therapeutics (F.X., S.N.), McGill University, Montreal, QC, Canada; and West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (S.N.)
| | - Philippe Comtois
- From the Research Center, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada (M.A., F.X., X.Y.Q., P.C., S.N.); Department of Molecular and Integrative Physiology/Institute of Biomedical Engineering (M.A., P.C.) and Department of Medicine (S.N.), Université de Montréal, Montreal, QC, Canada; and Departments of Medicine (M.A., S.N.) and Pharmacology and Therapeutics (F.X., S.N.), McGill University, Montreal, QC, Canada; and West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (S.N.)
| | - Stanley Nattel
- From the Research Center, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada (M.A., F.X., X.Y.Q., P.C., S.N.); Department of Molecular and Integrative Physiology/Institute of Biomedical Engineering (M.A., P.C.) and Department of Medicine (S.N.), Université de Montréal, Montreal, QC, Canada; and Departments of Medicine (M.A., S.N.) and Pharmacology and Therapeutics (F.X., S.N.), McGill University, Montreal, QC, Canada; and West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (S.N.).
| |
Collapse
|
17
|
Brocklehurst P, Adeniran I, Yang D, Sheng Y, Zhang H, Ye J. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method. BIOMED RESEARCH INTERNATIONAL 2015; 2015:854953. [PMID: 26583141 PMCID: PMC4637066 DOI: 10.1155/2015/854953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca(2+) concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart.
Collapse
Affiliation(s)
| | - Ismail Adeniran
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Dongmin Yang
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Yong Sheng
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Jianqiao Ye
- Engineering Department, Lancaster University, Lancaster LA1 4YR, UK
| |
Collapse
|
18
|
Saengklub N, Limprasutr V, Sawangkoon S, Buranakarl C, Hamlin RL, Kijtawornrat A. Acute effects of intravenous dronedarone on electrocardiograms, hemodynamics and cardiac functions in anesthetized dogs. J Vet Med Sci 2015; 78:177-86. [PMID: 26346474 PMCID: PMC4785105 DOI: 10.1292/jvms.15-0413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dronedarone is a class III antiarrhythmic that has been used for management of atrial fibrillation in humans, but limited information was found in dogs. The objective of this study was to determine the acute effects of escalating concentrations of dronedarone on electrocardiograms (ECG), hemodynamics and cardiac mechanics in healthy dogs. A total of 7 beagle dogs were anesthetized with isoflurane and instrumented to obtain lead II ECG, pressures at ascending aorta, right atrium, pulmonary artery and left ventricle, and left ventricular pressure-volume relationship. Five dogs were given vehicle and followed by escalating doses of dronedarone (0.5, 1.0 and 2.5 mg/kg, 15 min for each dose), and two dogs were used as a vehicle-treated control. All parameters were measured at 15 min after the end of each dose. The results showed that all parameters in vehicle-treated dogs were unaltered. Dronedarone at 2.5 mg/kg significantly lengthened PQ interval (P<0.01), reduced cardiac output (P<0.01) and increased systemic vascular resistance (P<0.01). Dronedarone produced negative inotropy assessed by significantly lowered end-systolic pressure-volume relationship, preload recruitable stroke work, contractility index and dP/dtmax. It also impaired diastolic function by significantly increased end-diastolic pressure-volume relationship, tau and dP/dtmin. These results suggested that acute effects of dronedarone produced negative dromotropy, inotropy and lusitropy in anesthetized dogs. Care should be taken when given dronedarone to dogs, especially when the patients have impaired cardiac function.
Collapse
Affiliation(s)
- Nakkawee Saengklub
- Graduate Student in the Program of Animal Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Resveratrol is a bioactive polyphenol, found in grapes, red wine, and peanuts, and has recently garnered much media and scientific attention for its diverse beneficial health effects as a nutritional supplement or nutraceutical. Of particular interest are the well-documented cardioprotective effects of resveratrol that are mediated by diverse mechanisms, including its antioxidant and vascular effects. However, it is now becoming clear that resveratrol may also exhibit direct effects on cardiac function and rhythm through modulation of signaling pathways that regulate cardiac remodeling and ion channel activity that controls cardiac excitability. Resveratrol may therefore possess antiarrhythmic properties that contribute to the cardiovascular benefits of resveratrol. Atrial fibrillation (AF) is the most common cardiac arrhythmia, although current therapies are suboptimal. Our laboratory has been studying resveratrol's effects on cardiac ion channels and remodeling pathways, and we initiated a drug development program aimed at generating novel resveratrol derivatives with improved efficacy against AF when compared to currently available therapeutics. This review therefore focuses on the effects of resveratrol and new derivatives on a variety of cardiac ion channels and molecular pathways that contribute to the development and maintenance of atrial fibrillation.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Peter E Light
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Fibroblast electrical remodeling in heart failure and potential effects on atrial fibrillation. Biophys J 2015; 107:2444-55. [PMID: 25418313 DOI: 10.1016/j.bpj.2014.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/23/2014] [Accepted: 10/08/2014] [Indexed: 11/20/2022] Open
Abstract
Fibroblasts are activated in heart failure (HF) and produce fibrosis, which plays a role in maintaining atrial fibrillation (AF). The effect of HF on fibroblast ion currents and its potential role in AF are unknown. Here, we used a patch-clamp technique to investigate the effects of HF on atrial fibroblast ion currents, and mathematical computation to assess the potential impact of this remodeling on atrial electrophysiology and arrhythmogenesis. Atrial fibroblasts were isolated from control and tachypacing-induced HF dogs. Tetraethylammonium-sensitive voltage-gated fibroblast current (IKv,fb) was significantly downregulated (by ?44%), whereas the Ba(2+)-sensitive inward rectifier current (IKir,fb) was upregulated by 79%, in HF animals versus controls. The fibroblast resting membrane potential was hyperpolarized (?53 ± 2 mV vs. ?42 ± 2 mV in controls) and the capacitance was increased (29.7 ± 2.2 pF vs. 17.8 ± 1.4 pF in controls) in HF. These experimental findings were implemented in a mathematical model that included cardiomyocyte-fibroblast electrical coupling. IKir,fb upregulation had a profibrillatory effect through shortening of the action potential duration and hyperpolarization of the cardiomyocyte resting membrane potential. IKv,fb downregulation had the opposite electrophysiological effects and was antifibrillatory. Simulated pharmacological blockade of IKv,fb successfully terminated reentry under otherwise profibrillatory conditions. We conclude that HF induces fibroblast ion-current remodeling with IKv,fb downregulation and IKir,fb upregulation, and that, assuming cardiomyocyte-fibroblast electrical coupling, this remodeling has a potentially important effect on atrial electrophysiology and arrhythmogenesis, with the overall response depending on the balance of pro- and antifibrillatory contributions. These findings suggest that fibroblast K(+)-current remodeling is a novel component of AF-related remodeling that might contribute to arrhythmia dynamics.
Collapse
|
21
|
Alday EAP, Colman MA, Langley P, Butters TD, Higham J, Workman AJ, Hancox JC, Zhang H. A new algorithm to diagnose atrial ectopic origin from multi lead ECG systems--insights from 3D virtual human atria and torso. PLoS Comput Biol 2015; 11:e1004026. [PMID: 25611350 PMCID: PMC4303377 DOI: 10.1371/journal.pcbi.1004026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms.
Collapse
Affiliation(s)
- Erick A. Perez Alday
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Michael A. Colman
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Philip Langley
- School of Engineering, University of Hull, Hull, United Kingdom
| | - Timothy D. Butters
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Jonathan Higham
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Antony J. Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Physiology and Pharmacology, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
22
|
Burashnikov A, Belardinelli L, Antzelevitch C. Inhibition of IKr potentiates development of atrial-selective INa block leading to effective suppression of atrial fibrillation. Heart Rhythm 2014; 12:836-44. [PMID: 25546810 DOI: 10.1016/j.hrthm.2014.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND The availability of safe and effective drugs for the management of atrial fibrillation (AF) remains an unmet medical need. OBJECTIVES The purpose of this study was to test the hypothesis that the inhibition of the rapidly activating delayed rectifier potassium current (IKr) greatly potentiates the development of atrial-selective sodium channel current (INa) block, leading to more effective suppression of AF. METHODS Electrophysiological and anti-AF effects of highly selective INa and IKr blockers (lidocaine and E-4031) individually and in combination were determined in canine coronary-perfused atrial and ventricular preparations. Acetylcholine (1 µM) was used to induce persistent AF. RESULTS Lidocaine (10 µM) caused a relatively small abbreviation of the action potential duration measured at 90% repolarization in both atria and ventricles, but caused atrial-selective prolongation of the effective refractory period owing to the induction of post-repolarization refractoriness. Lidocaine also caused modest atrial-selective depression of other INa-mediated parameters including excitability, maximum rate of rise of the action potential upstroke, and conduction time. E-4031 (1 µM) prolonged the action potential duration measured at 90% repolarization and effective refractory period in an atrial-predominant manner. A combination of lidocaine and E-4031 caused a greater atrial-selective depression of INa-mediated parameters. Persistent acetylcholine-mediated AF developed in 100% of atria under control conditions, in 80% (4 of 5) after pretreatment with lidocaine (10 µM), in 100% (4 of 4) after E-4031 (1 µM), and in only 14% (1 of 7) after the combination of lidocaine and E-4031. CONCLUSION Our results provide a proof of concept that IKr block greatly potentiates the effects of rapidly dissociating INa blockers to depress sodium channel-dependent parameters in the canine atria but not in the ventricles, thus contributing significantly to suppression of AF.
Collapse
|
23
|
Burashnikov A, Di Diego JM, Barajas-Martínez H, Hu D, Zygmunt AC, Cordeiro JM, Moise NS, Kornreich BG, Belardinelli L, Antzelevitch C. Ranolazine effectively suppresses atrial fibrillation in the setting of heart failure. Circ Heart Fail 2014; 7:627-33. [PMID: 24874201 DOI: 10.1161/circheartfailure.114.001129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is a critical need for safer and more effective pharmacological management of atrial fibrillation (AF) in the setting of heart failure (HF). METHODS AND RESULTS This study investigates the electrophysiological, antiarrhythmic, and proarrhythmic effects of a clinically relevant concentration of ranolazine (5 μmol/L) in coronary-perfused right atrial and left ventricular preparations isolated from the hearts of HF dogs. HF was induced by ventricular tachypacing (2-6 weeks at 200-240 beats per minute; n=17). Transmembrane action potentials were recorded using standard microelectrode techniques. In atria, ranolazine slightly prolonged action potential duration but significantly depressed sodium channel current-dependent parameters causing a reduction of maximum rate of rise of the action potential upstroke, a prolongation of the effective refractory period secondary to the development of postrepolarization refractoriness, and an increase in diastolic threshold of excitation and atrial conduction time. Ranolazine did not significantly alter these parameters or promote arrhythmias in the ventricles. Ranolazine produced greater inhibition of peak sodium channel current in atrial cells isolated from HF versus normal dogs. A single premature beat reproducibly induced self-terminating AF in 10 of 17 atria. Ranolazine (5 μmol/L) suppressed induction of AF in 7 of 10 (70%) atria. In the remaining 3 atria, ranolazine reduced frequency and duration of AF. CONCLUSIONS Our results demonstrate more potent suppression of AF by ranolazine in the setting of HF than previously demonstrated in nonfailing hearts and absence of ventricular proarrhythmia. The data suggest that ranolazine may be of benefit as an alternative to amiodarone and dofetilide in the management of AF in patients with HF.
Collapse
Affiliation(s)
- Alexander Burashnikov
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.).
| | - José M Di Diego
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.)
| | - Hector Barajas-Martínez
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.)
| | - Dan Hu
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.)
| | - Andrew C Zygmunt
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.)
| | - Jonathan M Cordeiro
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.)
| | - N Sydney Moise
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.)
| | - Bruce G Kornreich
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.)
| | - Luiz Belardinelli
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.)
| | - Charles Antzelevitch
- From the Masonic Medical Research Laboratory, Utica, NY (A.B., J.M.D.D., H.B.-M., D.H., A.C.Z., J.M.C., C.A.); Department of Clinical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (N.S.M., B.G.K.); and Gilead Sciences, Foster City, CA (L.B.).
| |
Collapse
|
24
|
Koivumäki JT, Seemann G, Maleckar MM, Tavi P. In silico screening of the key cellular remodeling targets in chronic atrial fibrillation. PLoS Comput Biol 2014; 10:e1003620. [PMID: 24853123 PMCID: PMC4031057 DOI: 10.1371/journal.pcbi.1003620] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 03/30/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic atrial fibrillation (AF) is a complex disease with underlying changes in electrophysiology, calcium signaling and the structure of atrial myocytes. How these individual remodeling targets and their emergent interactions contribute to cell physiology in chronic AF is not well understood. To approach this problem, we performed in silico experiments in a computational model of the human atrial myocyte. The remodeled function of cellular components was based on a broad literature review of in vitro findings in chronic AF, and these were integrated into the model to define a cohort of virtual cells. Simulation results indicate that while the altered function of calcium and potassium ion channels alone causes a pronounced decrease in action potential duration, remodeling of intracellular calcium handling also has a substantial impact on the chronic AF phenotype. We additionally found that the reduction in amplitude of the calcium transient in chronic AF as compared to normal sinus rhythm is primarily due to the remodeling of calcium channel function, calcium handling and cellular geometry. Finally, we found that decreased electrical resistance of the membrane together with remodeled calcium handling synergistically decreased cellular excitability and the subsequent inducibility of repolarization abnormalities in the human atrial myocyte in chronic AF. We conclude that the presented results highlight the complexity of both intrinsic cellular interactions and emergent properties of human atrial myocytes in chronic AF. Therefore, reversing remodeling for a single remodeled component does little to restore the normal sinus rhythm phenotype. These findings may have important implications for developing novel therapeutic approaches for chronic AF.
Collapse
Affiliation(s)
- Jussi T. Koivumäki
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Oslo, Norway
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gunnar Seemann
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mary M. Maleckar
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Oslo, Norway
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
25
|
Zeriouh M, Sabashnikov A, Choi YH, Fatullayev J, Reuter H, Popov AF, Langebartels G, Kimmig L, Rahmanian PB, Wittwer T, Neef K, Wippermann J, Wahlers T. A novel treatment strategy of new onset atrial fibrillation after cardiac surgery: an observational prospective study. J Cardiothorac Surg 2014; 9:83. [PMID: 24886207 PMCID: PMC4045875 DOI: 10.1186/1749-8090-9-83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/24/2014] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The aim of this prospective observational study was to evaluate the efficiency of a new escalating treatment strategy with vernakalant, flecainide and electrical cardioversion (EC) in patients with new onset atrial fibrillation (AF) after cardiac surgery. MATERIAL AND METHODS 24 patients with new onset AF after aortic valve surgery, coronary artery bypass surgery or combined procedures were evaluated in this study. Additional including criteria were age between 18 and 80, duration of AF less than four days, body weight less than 100 kg and no previous treatment with class I or III antiarrhythmic drugs. Exclusion criteria were poor left ventricular ejection fraction (LVEF < 40%) and history of myocardial infarction within 30 days. The patients were divided into converters and non-converters according to their response to combination treatment with vernakalant and flecainide, and the groups were compared. RESULTS The mean age of the population was 69.6 ± 6.3 years and 26.1% of patients were female. There were no statistically significant differences between the two groups in terms of height, weight, gender distribution, comorbidities, preoperative medication, left ventricular function and left atrium diameter. Interventricular septum (IVS) in the non-converted group was significantly thicker compared to the converted group: 14.0 ± 1.00 vs. 10.40 ± 2.59 mm (p = 0.036). While 14 patients (60.9%) were successfully converted into stable sinus rhythm by pharmacological treatment with vernakalant and flecainide, 9 patients (39.1%, non-converted group) remained in AF. However, seven of them could be converted after additional EC. CONCLUSION The combination of vernakalant and flecainide improves the conversion rate into a stable sinus rhythm in postcardiotomy patients with new onset AF compared to single drug therapy. Furthermore it might be an excellent precondition for successful EC in patients who are not converted after using both antiarrhtythmic drugs. Furthermore, left ventricular hypertrophy might be a potential negative predictor of successful pharmacological cardioversion.
Collapse
Affiliation(s)
- Mohamed Zeriouh
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Anton Sabashnikov
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Javid Fatullayev
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Hannes Reuter
- Department of Cardiology, Pneumology and Angiology, Heart Center of the University of Cologne, Cologne, Germany
| | - Aron-Frederik Popov
- Department of Thoracic and Cardiovascular Surgery, University Hospital of Goettingen, Goettingen, Germany
| | - Georg Langebartels
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Lucas Kimmig
- Department of Cardiology, Pneumology and Angiology, Heart Center of the University of Cologne, Cologne, Germany
| | - Parwis B Rahmanian
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Thorsten Wittwer
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Klaus Neef
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Jens Wippermann
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Bingen BO, Neshati Z, Askar SFA, Kazbanov IV, Ypey DL, Panfilov AV, Schalij MJ, de Vries AAF, Pijnappels DA. Atrium-specific Kir3.x determines inducibility, dynamics, and termination of fibrillation by regulating restitution-driven alternans. Circulation 2013; 128:2732-44. [PMID: 24065610 DOI: 10.1161/circulationaha.113.005019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atrial fibrillation is the most common cardiac arrhythmia. Ventricular proarrhythmia hinders pharmacological atrial fibrillation treatment. Modulation of atrium-specific Kir3.x channels, which generate a constitutively active current (I(K,ACh-c)) after atrial remodeling, might circumvent this problem. However, it is unknown whether and how I(K,ACh-c) contributes to atrial fibrillation induction, dynamics, and termination. Therefore, we investigated the effects of I(K,ACh-c) blockade and Kir3.x downregulation on atrial fibrillation. METHODS AND RESULTS Neonatal rat atrial cardiomyocyte cultures and intact atria were burst paced to induce reentry. To study the effects of Kir3.x on action potential characteristics and propagation patterns, cultures were treated with tertiapin or transduced with lentiviral vectors encoding Kcnj3- or Kcnj5-specific shRNAs. Kir3.1 and Kir3.4 were expressed in atrial but not in ventricular cardiomyocyte cultures. Tertiapin prolonged action potential duration (APD; 54.7±24.0 to 128.8±16.9 milliseconds; P<0.0001) in atrial cultures during reentry, indicating the presence of I(K,ACh-c). Furthermore, tertiapin decreased rotor frequency (14.4±7.4 to 6.6±2.0 Hz; P<0.05) and complexity (6.6±7.7 to 0.6±0.8 phase singularities; P<0.0001). Knockdown of Kcnj3 or Kcnj5 gave similar results. Blockade of I(K,ACh-c) prevented/terminated reentry by prolonging APD and changing APD and conduction velocity restitution slopes, thereby altering the probability of APD alternans and rotor destabilization. Whole-heart mapping experiments confirmed key findings (e.g., >50% reduction in atrial fibrillation inducibility after I(K,ACh-c) blockade). CONCLUSIONS Atrium-specific Kir3.x controls the induction, dynamics, and termination of fibrillation by modulating APD and APD/conduction velocity restitution slopes in atrial tissue with I(K,ACh-c). This study provides new molecular and mechanistic insights into atrial tachyarrhythmias and identifies Kir3.x as a promising atrium-specific target for antiarrhythmic strategies.
Collapse
Affiliation(s)
- Brian O Bingen
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (B.O.B., Z.N., S.F.A.A., D.L.Y., M.J.S., A.A.V.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Ghent, Belgium (I.V.K., A.V.P.)
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Heemstra HE, Nieuwlaat R, Meijboom M, Crijns HJ. The burden of atrial fibrillation in the Netherlands. Neth Heart J 2013; 19:373-8. [PMID: 21761194 DOI: 10.1007/s12471-011-0175-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained atrial arrhythmia and it is independently associated with an increased morbidity and mortality. As a result of the high prevalence of AF, the economic and clinical impact of the disease is substantial. This study describes the economic and clinical impact of AF in the Netherlands. METHODS Epidemiological data on AF in the Netherlands were projected on population estimates of the Netherlands in 2009 and combined with data on the cost of AF and its interventions. RESULTS Overall prevalence of AF in the Netherlands is 5.5% in the population over 55 years, corresponding to about 250,000 AF patients. The prevalence increases with age, and the mean age of AF patients is 69.3 years. Incidence of AF in the Netherlands varies with age, from 1188 new cases in the age group of 55 to 59 up to 7074 new cases in the age group 75 to 79. Total new cases amounts to 45,085 patients per year in the Netherlands. Total costs of AF in the Netherlands are <euro> 583 million, of which the majority (70%) were accounted for by hospitalisations and in-hospital procedures. Pharmacotherapeutic management of AF totalled <euro> 17 million in the Netherlands in 2009. DISCUSSION AF is a serious disease with a high clinical and economic burden, especially due to hospitalisations as a result of cardiovascular events. The number of patients with AF in the Netherlands is considerable and will increase with the ageing population in the future.
Collapse
Affiliation(s)
- H E Heemstra
- Pharmerit International, Marten Meesweg 107, 3068 AV, Rotterdam, the Netherlands,
| | | | | | | |
Collapse
|
28
|
|
29
|
Verrier RL, Kumar K, Nieminen T, Belardinelli L. Mechanisms of ranolazine's dual protection against atrial and ventricular fibrillation. Europace 2013; 15:317-24. [PMID: 23220484 PMCID: PMC3578672 DOI: 10.1093/europace/eus380] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/22/2012] [Indexed: 12/19/2022] Open
Abstract
Coronary artery disease and heart failure carry concurrent risk for atrial fibrillation and life-threatening ventricular arrhythmias. We review evidence indicating that at therapeutic concentrations, ranolazine has potential for dual suppression of these arrhythmias. Mechanisms and clinical implications are discussed.
Collapse
Affiliation(s)
- Richard L Verrier
- Division of Cardiovascular Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215-3908, USA.
| | | | | | | |
Collapse
|
30
|
Wu J, Ding WG, Zhao J, Zang WJ, Matsuura H, Horie M. Irbesartan-mediated AT1 receptor blockade attenuates hyposmotic-induced enhancement of I Ks current and prevents shortening of action potential duration in atrial myocytes. J Renin Angiotensin Aldosterone Syst 2013; 15:341-7. [PMID: 23386284 DOI: 10.1177/1470320312474855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Stretch of the atrial membrane upregulates the slow component of delayed rectifier K(+) current (I(Ks)). Blockade of angiotensin II subtype 1 receptors (AT(1)R) attenuates this increase in I(Ks). The present study aimed to examine the effects of irbesartan, a selective AT(1)R blocker (ABR), on both the enhancement of I(Ks) and the shortening of action potential duration (APD) induced by stretching atrial myocytes for exploring the mechanisms underlying the prevention of atrial fibrillation (AF) by ABR. METHODS Hyposmotic solution (Hypo-S) was used to stretch guinea pig atrial myocytes. I(Ks) and APD were recorded using the whole-cell patch-clamp technique. RESULTS Irbesartan (1-50 μM) attenuated the Hypo-S-induced increase in I(Ks) and shortening of APD90. Hypo-S increased the I(Ks) by 113.4%, whereas Hypo-S + 1 μM irbesartan and Hypo-S + 50 μM irbesartan increased the I(Ks) by only 74.5% and 70.3%, respectively. In addition, Hypo-S shortened the APD(90) by 19.0%, whereas Hypo-S + 1 μM irbesartan and Hypo-S + 50 μM irbesartan shortened the APD90 by 12.1% and 12.0%, respectively. CONCLUSION The actions of irbesartan on electrical changes induced by stretching atrial myocytes are associated with blocking AT(1)R. These actions may be beneficial for treating AF.
Collapse
Affiliation(s)
- Jie Wu
- Department of Pharmacology, Medical School of Xi'an Jiaotong University, PR China Department of Physiology, Shiga University of Medical Science, Japan Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Japan
| | - Jin Zhao
- Department of Pharmacology, Medical School of Xi'an Jiaotong University, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, Medical School of Xi'an Jiaotong University, PR China
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Japan
| |
Collapse
|
31
|
Wilhelms M, Hettmann H, Maleckar MM, Koivumäki JT, Dössel O, Seemann G. Benchmarking electrophysiological models of human atrial myocytes. Front Physiol 2013; 3:487. [PMID: 23316167 PMCID: PMC3539682 DOI: 10.3389/fphys.2012.00487] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits.
Collapse
Affiliation(s)
- Mathias Wilhelms
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1003-16. [DOI: 10.1007/s00210-012-0780-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 12/27/2022]
|
33
|
Tang Y, Yang H, Qiu J. Relationship between brain natriuretic peptide and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. J Int Med Res 2012; 39:1618-24. [PMID: 22117962 DOI: 10.1177/147323001103900504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
UNLABELLED A meta-analysis was undertaken to examine the relationship between plasma brain natriuretic peptide (BNP) levels and recurrence of atrial fibrillation (AF) after successful electrical cardioversion. The literature search was conducted using key inclusion criteria for papers published between January 1980 and March 2011 listed in the PubMed(®)/MEDLINE(®) DATABASE Data were analysed using RevMan version 5.1 software; a manual search was also performed. Ten studies were finally included. Results showed that baseline BNP levels were higher in patients with AF recurrence than in those without recurrence, the standardized mean difference in plasma BNP level being -1.35 (95% confidence interval -2.17, -0.53, Z-score for overall effect 3.22). These results suggest that higher plasma BNP levels are associated with a greater risk of AF recurrence. BNP levels may predict AF recurrence after successful electrical cardioversion.
Collapse
Affiliation(s)
- Y Tang
- Department of Cardiology, Gongli Hospital, Pudong New Area, Shanghai, China
| | | | | |
Collapse
|
34
|
Singh SN. Costs and clinical consequences of suboptimal atrial fibrillation management. CLINICOECONOMICS AND OUTCOMES RESEARCH 2012; 4:79-90. [PMID: 22500125 PMCID: PMC3324990 DOI: 10.2147/ceor.s30090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Atrial fibrillation (AF) places a considerable burden on the US health care system, society, and individual patients due to its associated morbidity, mortality, and reduced health-related quality of life. AF increases the risk of stroke, which often results in lengthy hospital stays, increased disability, and long-term care, all of which impact medical costs. An expected increase in the prevalence of AF and incidence of AF-related stroke underscores the need for optimal management of this disorder. Although AF treatment strategies have been proven effective in clinical trials, data show that patients still receive suboptimal treatment. Adherence to AF treatment guidelines will help to optimize treatment and reduce costs due to AF-associated events; new treatments for AF show promise for future reductions in disease and cost burden due to improved tolerability profiles. Additional research is necessary to compare treatment costs and outcomes of new versus existing agents; an immediate effort to optimize treatment based on existing evidence and guidelines is critical to reducing the burden of AF.
Collapse
Affiliation(s)
- Steven N Singh
- Department of Cardiology, Veterans Affairs Medical Center, Washington, DC, USA
| |
Collapse
|
35
|
Bash LD, Buono JL, Davies GM, Martin A, Fahrbach K, Phatak H, Avetisyan R, Mwamburi M. Systematic Review and Meta-analysis of the Efficacy of Cardioversion by Vernakalant and Comparators in Patients with Atrial Fibrillation. Cardiovasc Drugs Ther 2012; 26:167-79. [DOI: 10.1007/s10557-012-6374-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Aguilar-Shardonofsky M, Vigmond E, Nattel S, Comtois P. In silico optimization of atrial fibrillation-selective sodium channel blocker pharmacodynamics. Biophys J 2012; 102:951-60. [PMID: 22404917 PMCID: PMC3296055 DOI: 10.1016/j.bpj.2012.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/05/2012] [Accepted: 01/20/2012] [Indexed: 02/08/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of clinical arrhythmia. Currently available anti-AF drugs are limited by only moderate efficacy and an unfavorable safety profile. Thus, there is a recognized need for improved antiarrhythmic agents with actions that are selective for the fibrillating atrium. State-dependent Na(+)-channel blockade potentially allows for the development of drugs with maximal actions on fibrillating atrial tissue and minimal actions on ventricular tissue at resting heart rates. In this study, we applied a mathematical model of state-dependent Na(+)-channel blocking (class I antiarrhythmic drug) action, along with mathematical models of canine atrial and ventricular cardiomyocyte action potentials, AF, and ventricular proarrhythmia, to determine the relationship between their pharmacodynamic properties and atrial-selectivity, AF-selectivity (atrial Na(+)-channel block at AF rates versus ventricular block at resting rates), AF-termination effectiveness, and ventricular proarrhythmic properties. We found that drugs that target inactivated channels are AF-selective, whereas drugs that target activated channels are not. The most AF-selective drugs were associated with minimal ventricular proarrhythmic potential and terminated AF in 33% of simulations; slightly fewer AF-selective agents achieved termination rates of 100% with low ventricular proarrhythmic potential. Our results define properties associated with AF-selective actions of class-I antiarrhythmic drugs and support the idea that it may be possible to develop class I antiarrhythmic agents with optimized pharmacodynamic properties for AF treatment.
Collapse
Affiliation(s)
- Martin Aguilar-Shardonofsky
- Department of Medicine, University of Montreal, Montreal, Canada
- Montreal Heart Institute Research Centre, University of Montreal, Montreal, Canada
| | | | - Stanley Nattel
- Faculty of Medicine, McGill University, Montreal, Canada
- Department of Pharmacology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Philippe Comtois
- Department of Physiology, Institute of Biomedical Engineering, University of Montreal, Montreal, Canada
| |
Collapse
|
37
|
Sánchez C, Corrias A, Bueno-Orovio A, Davies M, Swinton J, Jacobson I, Laguna P, Pueyo E, Rodríguez B. The Na+/K+ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue. Am J Physiol Heart Circ Physiol 2012; 302:H1146-59. [PMID: 22198174 PMCID: PMC3311461 DOI: 10.1152/ajpheart.00668.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/04/2011] [Indexed: 11/22/2022]
Abstract
Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.
Collapse
Affiliation(s)
- Carlos Sánchez
- Communications Technology Group, I3A and IIS, University of Zaragoza, Zaragoza
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pasquié JL, Thireau J, Davy JM, Le Guennec JY, Richard S. Médicaments anti-arythmiques : Présent et futur. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2011. [DOI: 10.1016/s1878-6480(11)70394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Aslanidi OV, Colman MA, Stott J, Dobrzynski H, Boyett MR, Holden AV, Zhang H. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:156-68. [PMID: 21762716 PMCID: PMC3211061 DOI: 10.1016/j.pbiomolbio.2011.06.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis. Results of such simulations can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings. The virtual human atria can provide in-depth insights into 3D excitation propagation processes within atrial walls of a whole heart in vivo, which is beyond the current technical capabilities of experimental or clinical set-ups.
Collapse
Affiliation(s)
- Oleg V Aslanidi
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester M139PL, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Riccardo Olcese
- Department of Anaesthesiology-Division of Molecular Medicine, Cardiovascular Research Laboratories and Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90075, USA.
| |
Collapse
|
41
|
Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities. Future Med Chem 2011; 2:757-74. [PMID: 20543968 DOI: 10.4155/fmc.10.179] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inward rectifier potassium (Kir) channels have been postulated as therapeutic targets for several common disorders including hypertension, cardiac arrhythmias and pain. With few exceptions, however, the small-molecule pharmacology of this family is limited to nonselective cardiovascular and neurologic drugs with off-target activity toward inward rectifiers. Consequently, the actual therapeutic potential and 'drugability' of most Kir channels has not yet been determined experimentally. The purpose of this review is to provide a comprehensive summary of publicly disclosed Kir channel small-molecule modulators and highlight recent targeted drug-discovery efforts toward Kir1.1 and Kir2.1. The review concludes with a brief speculation on how the field of Kir channel pharmacology will develop over the coming years and a discussion of the increasingly important role academic laboratories will play in this progress.
Collapse
|
42
|
|
43
|
Tadevosyan A, MacLaughlin EJ, Karamyan VT. Angiotensin II type 1 receptor antagonists in the treatment of hypertension in elderly patients: focus on patient outcomes. Patient Relat Outcome Meas 2011; 2:27-39. [PMID: 22915967 PMCID: PMC3417921 DOI: 10.2147/prom.s8384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 12/18/2022] Open
Abstract
Hypertension in the elderly is one of the main risk factors of cardiovascular and cerebrovascular diseases. Knowledge regarding the mechanisms of hypertension and specific considerations in managing hypertensive elderly through pharmacological intervention(s) is fundamental to improving clinical outcomes. Recent clinical studies in the elderly have provided evidence that angiotensin II type 1 (AT(1)) receptor antagonists can improve clinical outcomes to a similar or, in certain populations, an even greater extent than other classical arterial blood pressure-lowering agents. This newer class of antihypertensive agents presents several benefits, including potential for improved adherence, excellent tolerability profile with minimal first-dose hypotension, and a low incidence of adverse effects. Thus, AT(1) receptor antagonists represent an appropriate option for many elderly patients with hypertension, type 2 diabetes, heart failure, and/or left ventricular dysfunction.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Departments of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada
| | | | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
44
|
Link MS, Exner DV, Anderson M, Ackerman M, Al-Ahmad A, Knight BP, Markowitz SM, Kaufman ES, Haines D, Asirvatham SJ, Callans DJ, Mounsey JP, Bogun F, Narayan SM, Krahn AD, Mittal S, Singh J, Fisher JD, Chugh SS. HRS policy statement: clinical cardiac electrophysiology fellowship curriculum: update 2011. Heart Rhythm 2011; 8:1340-56. [PMID: 21699868 DOI: 10.1016/j.hrthm.2011.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Indexed: 01/29/2023]
Affiliation(s)
- Mark S Link
- Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Williams RS, deLemos JA, Dimas V, Reisch J, Hill JA, Naseem RH. Effect of spironolactone on patients with atrial fibrillation and structural heart disease. Clin Cardiol 2011; 34:415-9. [PMID: 21674535 DOI: 10.1002/clc.20914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/26/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several studies have shown that the modulation of fibrotic scar in cardiac diseases has beneficial effects on cardiac arrhythmias. In addition, recent reports suggest a potential role of mineralocorticoid receptor upregulation in atrial fibrillation (AF). The role of spironolactone, a mineralocorticoid receptor blocker and a potent antifibrotic agent, in AF is as yet unexplored. The aim of this study was to determine if spironolactone, a mineralocorticoid receptor blocker with potent antifibrotic properties, has beneficial effects on AF. HYPOTHESIS Spironolactone therapy in patients with atrial fibrillation provides additional clinical benefits in addition to the current conventional pharmacological agents. METHODS A comprehensive retrospective analysis was performed on 83 patients with AF, including 23 who were treated with spironolactone for ≥3 months. The combined primary outcome of hospitalization for AF or direct current cardioversion (DCCV) was compared between patients treated with spironolactone in addition to the usual care for AF and those receiving conventional medical therapy alone. RESULTS Patients receiving spironolactone had significantly fewer primary outcome events (AF-related hospitalizations or DCCV) (22% vs 53%, P = 0.027). CONCLUSIONS Spironolactone therapy is associated with a reduction in the burden of AF, as reflected by a combination of hospitalizations for AF and DCCV. Larger randomized controlled studies should be performed to evaluate the efficacy and safety of spironolactone as an adjunctive therapy for patients with AF.
Collapse
Affiliation(s)
- Ryan S Williams
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ehrlich JR, Dobrev D. Atrial-selective sodium channel block by dronedarone: sufficient to terminate atrial fibrillation? Naunyn Schmiedebergs Arch Pharmacol 2011; 384:109-14. [DOI: 10.1007/s00210-011-0647-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 02/23/2011] [Indexed: 11/27/2022]
|
47
|
|
48
|
Nattel S. From guidelines to bench: implications of unresolved clinical issues for basic investigations of atrial fibrillation mechanisms. Can J Cardiol 2011; 27:19-26. [PMID: 21329858 DOI: 10.1016/j.cjca.2010.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/30/2010] [Indexed: 02/04/2023] Open
Abstract
The 2011 Canadian Cardiovascular Society Atrial Fibrillation (AF) Guidelines provide detailed recommendations for AF management, as well as extensive background information. The Guidelines documents highlight many important unresolved questions and areas of clinical need that could benefit from basic research investigations. This article discusses basic research priorities emanating from the Guidelines reflections. Topics addressed include forms of AF and their interrelations, limitations of the presently available experimental models of AF, genetic factors, determinants of drug efficacy for pharmacologic cardioversion, mechanisms of AF-related thromboembolism, ventricular rate control, drugs for rhythm control, upstream therapy, mechanisms by which catheter ablation controls AF, mechanisms of postoperative AF, and the possibility of novel patient-based surgical procedures. A guidelines-to-bench approach to research may allow for the development of important, clinically relevant new knowledge with impacts on patient management and future AF guidelines.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|
49
|
Thireau J, Pasquié JL, Martel E, Le Guennec JY, Richard S. New drugs vs. old concepts: a fresh look at antiarrhythmics. Pharmacol Ther 2011; 132:125-45. [PMID: 21420430 DOI: 10.1016/j.pharmthera.2011.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/01/2011] [Indexed: 01/10/2023]
Abstract
Common arrhythmias, particularly atrial fibrillation (AF) and ventricular tachycardia/fibrillation (VT/VF) are a major public health concern. Classic antiarrhythmic (AA) drugs for AF are of limited effectiveness, and pose the risk of life-threatening VT/VF. For VT/VF, implantable cardiac defibrillators appear to be the unique, yet unsatisfactory, solution. Very few AA drugs have been successful in the last few decades, due to safety concerns or limited benefits in comparison to existing therapy. The Vaughan-Williams classification (one drug for one molecular target) appears too restrictive in light of current knowledge of molecular and cellular mechanisms. New AA drugs such as atrial-specific and/or multichannel blockers, upstream therapy and anti-remodeling drugs, are emerging. We focus on the cellular mechanisms related to abnormal Na⁺ and Ca²⁺ handling in AF, heart failure, and inherited arrhythmias, and on novel strategies aimed at normalizing ionic homeostasis. Drugs that prevent excessive Na⁺ entry (ranolazine) and aberrant diastolic Ca²⁺ release via the ryanodine receptor RyR2 (rycals, dantrolene, and flecainide) exhibit very interesting antiarrhythmic properties. These drugs act by normalizing, rather than blocking, channel activity. Ranolazine preferentially blocks abnormal persistent (vs. normal peak) Na⁺ currents, with minimal effects on normal channel function (cell excitability, and conduction). A similar "normalization" concept also applies to RyR2 stabilizers, which only prevent aberrant opening and diastolic Ca²⁺ leakage in diseased tissues, with no effect on normal function during systole. The different mechanisms of action of AA drugs may increase the therapeutic options available for the safe treatment of arrhythmias in a wide variety of pathophysiological situations.
Collapse
Affiliation(s)
- Jérôme Thireau
- Inserm U1046 Physiologie & Médecine Expérimentale du Cœur et des Muscles, Université Montpellier-1, Université Montpellier-2, 34295 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
50
|
To Market, To Market—2010. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-386009-5.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|