1
|
Gorji AE, Ostaszewski P, Urbańska K, Sadkowski T. Does β-Hydroxy-β-Methylbutyrate Have Any Potential to Support the Treatment of Duchenne Muscular Dystrophy in Humans and Animals? Biomedicines 2023; 11:2329. [PMID: 37626825 PMCID: PMC10452677 DOI: 10.3390/biomedicines11082329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. The dystrophin gene is the largest gene and has a key role in skeletal muscle construction and function. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans, mice, dogs, and cats. Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular condition causing progressive muscle weakness and premature death. β-hydroxy β-methylbutyrate (HMB) prevents deleterious muscle responses under pathological conditions, including tumor and chronic steroid therapy-related muscle losses. The use of HMB as a dietary supplement allows for increasing lean weight gain; has a positive immunostimulatory effect; is associated with decreased mortality; and attenuates sarcopenia in elderly animals and individuals. This study aimed to identify some genes, metabolic pathways, and biological processes which are common for DMD and HMB based on existing literature and then discuss the consequences of that interaction.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Kaja Urbańska
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| |
Collapse
|
2
|
Ma X, Cao Z, Zhu Z, Chen X, Wen D, Cao Z. VO 2max (VO 2peak) in elite athletes under high-intensity interval training: A meta-analysis. Heliyon 2023; 9:e16663. [PMID: 37346345 PMCID: PMC10279791 DOI: 10.1016/j.heliyon.2023.e16663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Consensus is lacking regarding whether high-intensity interval training (HIIT) effectively improves VO2max (VO2peak) in elite athletes (Athlete must be involved in regular competition at the national level). This meta-analysis compared the effects of HIIT and conventional training methods (continuous training, repeated-sprint training, high volume low-intensity training, high-intensity continuous running, sprint-interval training, moderate-intensity continuous training)on VO2max in elite athletes. Nine studies were included, comprising 176 elite athletes (80 female). Compared to that with conventional training, VO2max was significantly increased after HIIT (overall: 0.58 [0.30, 0.87], I2 = 0.49, P = 0.03; males: 0.41 [0.06, 0.76], I2 = 0%, P = 0.89). VO2max had positive training effects when the HIIT recovery period had an interval time ≥2 min (0.44 [0.03, 0.84], I2 = 0%, P = 0.99) and recovery phase intensity ≤40% (0.38 [0.05, 0.71], I2 = 0%, P = 0.96). Thus, HIIT shows superiority over conventional training methods in improving VO2max, promoting aerobic capacity, in elite athletes.
Collapse
Affiliation(s)
- Xianghua Ma
- Shanghai University of Sport, China
- Xi'an Physical Education University, China
| | | | | | | | | | - Ziwei Cao
- Xi'an Physical Education University, China
| |
Collapse
|
3
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021; 14:nu14010053. [PMID: 35010929 PMCID: PMC8746600 DOI: 10.3390/nu14010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.
Collapse
|
5
|
The Effects of Dietary Protein Supplementation on Exercise-Induced Inflammation and Oxidative Stress: A Systematic Review of Human Trials. Antioxidants (Basel) 2021; 11:antiox11010013. [PMID: 35052517 PMCID: PMC8773319 DOI: 10.3390/antiox11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
This systematic review examined the effects of whole protein and commonly consumed amino acid supplements on markers of exercise-induced inflammation and oxidative stress and was reported according to the PRISMA guidelines. MEDLINE and SPORTDiscus were searched from inception until June 2021. The inclusion criteria were randomized clinical trials in humans, healthy adult participants (≥18 years), dietary protein/amino acid interventions, and measurements of oxidative stress/the redox status or inflammation post-exercise. The Cochrane Collaboration risk of bias 2 tool was used to critically appraise the studies. Data extracted from thirty-four studies were included in the systematic review (totaling 757 participants with only 10 females; age range 19–40 years). The included trials examined five types of whole protein and seven different amino acids supplements; most studies (n = 20) failed to identify statistically significant effects on markers of inflammation or oxidative stress after exercise; some (n = 14) showed either anti-inflammatory or antioxidant effects on some, but not all, markers. In conclusion, we found weak and inconsistent evidence that dietary protein/amino acid interventions can modify exercise-induced changes in oxidative stress and inflammation. However, given that these were not the primary outcomes in many of the included studies and many had design limitations, further research is warranted (Open Science Framework registration number: 10.17605/OSF.IO/AGUR2).
Collapse
|
6
|
Bromelain, a Group of Pineapple Proteolytic Complex Enzymes ( Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods 2021; 10:foods10102249. [PMID: 34681298 PMCID: PMC8534447 DOI: 10.3390/foods10102249] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/22/2022] Open
Abstract
Bromelain is a complex combination of multiple endopeptidases of thiol and other compounds derived from the pineapple fruit, stem and/or root. Fruit bromelain and stem bromelain are produced completely distinctly and comprise unique compounds of enzymes, and the descriptor “Bromelain” originally referred in actuality to stem bromelain. Due to the efficacy of oral administration in the body, as a safe phytotherapeutic medication, bromelain was commonly suited for patients due to lack of compromise in its peptidase efficacy and the absence of undesired side effects. Various in vivo and in vitro studies have shown that they are anti-edematous, anti-inflammatory, anti-cancerous, anti-thrombotic, fibrinolytic, and facilitate the death of apoptotic cells. The pharmacological properties of bromelain are, in part, related to its arachidonate cascade modulation, inhibition of platelet aggregation, such as interference with malignant cell growth; anti-inflammatory action; fibrinolytic activity; skin debridement properties, and reduction of the severe effects of SARS-Cov-2. In this paper, we concentrated primarily on the potential of bromelain’s important characteristics and meditative and therapeutic effects, along with the possible mechanism of action.
Collapse
|
7
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|
8
|
Martin-Arrowsmith PW, Lov J, Dai J, Morais JA, Churchward-Venne TA. Ketone Monoester Supplementation Does Not Expedite the Recovery of Indices of Muscle Damage After Eccentric Exercise. Front Nutr 2020; 7:607299. [PMID: 33364251 PMCID: PMC7752861 DOI: 10.3389/fnut.2020.607299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose: The purpose of this study was to evaluate the effects of a ketone monoester supplement on indices of muscle damage during recovery after eccentric exercise. Methods: In a randomized, double-blind, independent group design, 20 moderately active healthy young adults consumed 360 mg per kg−1 bodyweight of a ketone monoester (KET) or energy-matched carbohydrate (CON) supplement twice daily following eccentric exercise (drop jumps). Maximal isometric voluntary contraction (MIVC) torque, counter-movement jump (CMJ) height, and muscle soreness were measured before (PRE), and immediately (POST), 24 h and 48 h post-exercise. Blood samples were collected for analysis of β-hydroxybutyrate (β-OHB), creatine kinase (CK), and select pro- and anti-inflammatory cytokines. Results: Peak blood β-OHB concentration after supplement intake was greater (P < 0.001) in KET (4.4 ± 0.8 mM) vs. CON (0.4 ± 0.3 mM). Exercise increased CK concentration at 24 h and 48 h vs. PRE (time: P < 0.001) with no difference between KET and CON. Exercise reduced MIVC (KET: −19.9 ± 14.6; CON: −22.6 ± 11.1%) and CMJ (KET: −11.0 ± 7.5; CON: −13.0 ± 8.7%) at POST relative PRE; however, there was no difference between KET and CON on the recovery of MIVC at 24 h (KET: −15.4 ± 20.4; CON: −18.7 ± 20.1%) or 48 h (KET: −7.2 ± 21.2; CON: −11.8 ± 20.2%), or CMJ at 24 h (KET: −9.2 ± 11.5; CON: −13.4 ± 10.8) or 48 h (KET: −12.5 ± 12.4; CON: −9.1 ± 11.7). Muscle soreness was increased during post-exercise recovery (time: P < 0.001) with no differences between KET and CON. Monocyte chemoattractant protein-1 was greater (group: P = 0.007) in CON (236 ± 11 pg/mL) vs. KET (187 ± 11 pg/mL). Conclusion: In conclusion, twice daily ingestion of a ketone monoester supplement that acutely elevates blood β-OHB concentration does not enhance the recovery of muscle performance or reduce muscle soreness following eccentric exercise in moderately active, healthy young adults.
Collapse
Affiliation(s)
| | - Jamie Lov
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Jiaying Dai
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - José A Morais
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
9
|
Maroufi K, Razavi R, Gaeini AA, Nourshahi M. The effects of acute consumption of carbohydrate-protein supplement in varied ratios on CrossFit athletes' performance in two CrossFit exercises: a randomized cross-over trial. J Sports Med Phys Fitness 2020; 61:1362-1368. [PMID: 33314886 DOI: 10.23736/s0022-4707.20.11774-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND CrossFit is becoming popular over the past few years, and various supplementation ways have been utilized by exercise physiologists to enhance CrossFit athletes' performance. This study aimed to evaluate the effects of consuming preworkout carbohydrate-protein supplements on CrossFit athletes' performance. METHODS Well-trained CrossFit athletes (8 men; 25.62±3.02 years) were randomized to a single-blind, placebo controlled, crossover design (7-day washout) to performed six bouts of two CrossFit workouts: Fight Gone Bad (FGB) and Cindy (CI). One hour and immediately before the onset of each bout, the subjects consumed carbohydrate-protein supplement in two ratios (2:2 or 3:1) or placebo (P): FGB+2:2, FGB+3:1, FGB+P, CI+2:2, CI+3:1, and CI+P. To value the differentiation in performances, the performed each subject repetitions in FGB and CI were recorded in the bouts. RESULTS Repeated measure analysis of variance was used to analyze the data, and the level of significance set for the study was P≤0.05. No significant difference was observed in the total number of repetitions performed in FGB (P=0.275) or CI (P=0.789) workouts in supplements and placebo groups. CONCLUSIONS These results indicate that acute consumption of preworkout carbohydrate-protein supplement may not enhance the CrossFit athletes' performance in FGB and CI workouts.
Collapse
Affiliation(s)
- Khashayar Maroufi
- Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran -
| | - Rashin Razavi
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Abbas A Gaeini
- Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Maryam Nourshahi
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
10
|
Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3849692. [PMID: 31814873 PMCID: PMC6878783 DOI: 10.1155/2019/3849692] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
Oxidative stress is characterized by an imbalance between prooxidant and antioxidant species, leading to macromolecular damage and disruption of redox signaling and cellular control. It is a hallmark of various diseases including metabolic syndrome, chronic fatigue syndrome, neurodegenerative, cardiovascular, inflammatory, and age-related diseases. Several mitochondrial defects have been considered to contribute to the development of oxidative stress and known as the major mediators of the aging process and subsequent age-associated diseases. Thus, mitochondrial-targeted antioxidants should prevent or slow down these processes and prolong longevity. This is the reason why antioxidant treatments are extensively studied and newer and newer compounds with such an effect appear. Astaxanthin, a xanthophyll carotenoid, is the most abundant carotenoid in marine organisms and is one of the most powerful natural compounds with remarkable antioxidant activity. Here, we summarize its antioxidant targets, effects, and benefits in diseases and with aging.
Collapse
|
11
|
High-Dose Astaxanthin Supplementation Suppresses Antioxidant Enzyme Activity during Moderate-Intensity Swimming Training in Mice. Nutrients 2019; 11:nu11061244. [PMID: 31159211 PMCID: PMC6627865 DOI: 10.3390/nu11061244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Exercise-induced reactive oxygen and nitrogen species are increasingly considered as beneficial health promotion. Astaxanthin (ASX) has been recognized as a potent antioxidant suitable for human ingestion. We investigated whether ASX administration suppressed antioxidant enzyme activity in moderate-intensity exercise. Seven-week-old male C57BL/6 mice (n = 8/group) were treated with ASX (5, 15, and 30 mg/kg BW) combined with 45 min/day moderate-intensity swimming training for four weeks. Results showed that the mice administrated with 15 and 30 mg/kg of ASX decreased glutathione peroxidase, catalase, malondialdehyde, and creatine kinase levels in plasma or muscle, compared with the swimming control group. Beyond that, these two (15 and 30 mg/kg BW) dosages of ASX downregulated gastrocnemius muscle erythroid 2p45 (NF-E2)-related factor 2 (Nrf2). Meanwhile, mRNA of Nrf2 and Nrf2-dependent enzymes in mice heart were also downregulated in the ASX-treated groups. However, the mice treated with 15 or 30 mg/kg ASX had increased constitutive nitric oxidase synthase and superoxide dismutase activity, compared with the swimming and sedentary control groups. Our findings indicate that high-dose administration of astaxanthin can blunt antioxidant enzyme activity and downregulate transcription of Nrf2 and Nrf2-dependent enzymes along with attenuating plasma and muscle MDA.
Collapse
|
12
|
Hody S, Croisier JL, Bury T, Rogister B, Leprince P. Eccentric Muscle Contractions: Risks and Benefits. Front Physiol 2019; 10:536. [PMID: 31130877 PMCID: PMC6510035 DOI: 10.3389/fphys.2019.00536] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 01/12/2023] Open
Abstract
Eccentric contractions, characterized by the lengthening of the muscle-tendon complex, present several unique features compared with other types of contractions, which may lead to unique adaptations. Due to its specific physiological and mechanical properties, there is an increasing interest in employing eccentric muscle work for rehabilitation and clinical purposes. However, unaccustomed eccentric exercise is known to cause muscle damage and delayed pain, commonly defined as “Delayed-Onset Muscular Soreness” (DOMS). To date, the most useful preventive strategy to avoid these adverse effects consists of repeating sessions involving submaximal eccentric contractions whose intensity is progressively increased over the training. Despite an increased number of investigations focusing on the eccentric contraction, a significant gap still remains in our understanding of the cellular and molecular mechanisms underlying the initial damage response and subsequent adaptations to eccentric exercise. Yet, unraveling the molecular basis of exercise-related muscle damage and soreness might help uncover the mechanistic basis of pathological conditions as myalgia or neuromuscular diseases. In addition, a better insight into the mechanisms governing eccentric training adaptations should provide invaluable information for designing therapeutic interventions and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Stéphanie Hody
- Department of Motricity Sciences, University of Liège, Liege, Belgium
| | | | - Thierry Bury
- Department of Motricity Sciences, University of Liège, Liege, Belgium
| | - Bernard Rogister
- GIGA-Neurosciences, University of Liège, Liege, Belgium.,Department of Neurology, The University Hospital Center, University of Liège, Liege, Belgium.,GIGA - Laboratory of Nervous System Disorders and Therapy, University of Liège, Liege, Belgium
| | - Pierre Leprince
- GIGA-Neurosciences, University of Liège, Liege, Belgium.,GIGA - Laboratory of Nervous System Disorders and Therapy, University of Liège, Liege, Belgium
| |
Collapse
|
13
|
Harty PS, Cottet ML, Malloy JK, Kerksick CM. Nutritional and Supplementation Strategies to Prevent and Attenuate Exercise-Induced Muscle Damage: a Brief Review. SPORTS MEDICINE - OPEN 2019; 5:1. [PMID: 30617517 PMCID: PMC6323061 DOI: 10.1186/s40798-018-0176-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022]
Abstract
Exercise-induced muscle damage (EIMD) is typically caused by unaccustomed exercise and results in pain, soreness, inflammation, and reduced muscle function. These negative outcomes may cause discomfort and impair subsequent athletic performance or training quality, particularly in individuals who have limited time to recover between training sessions or competitions. In recent years, a multitude of techniques including massage, cryotherapy, and stretching have been employed to combat the signs and symptoms of EIMD, with mixed results. Likewise, many varied nutritional and supplementation interventions intended to treat EIMD-related outcomes have gained prominence in the literature. To date, several review articles have been published that explore the many recovery strategies purported to minimize indirect markers of muscle damage. However, these articles are very limited from a nutritional standpoint. Thus, the purpose of this review is to briefly and comprehensively summarize many of these strategies that have been shown to positively influence the recovery process after damaging exercise. These strategies have been organized into the following sections based on nutrient source: fruits and fruit-derived supplements, vegetables and plant-derived supplements, herbs and herbal supplements, amino acid and protein supplements, vitamin supplements, and other supplements.
Collapse
Affiliation(s)
- Patrick S. Harty
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Megan L. Cottet
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - James K. Malloy
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| |
Collapse
|
14
|
Strength Training Session Induces Important Changes on Physiological, Immunological, and Inflammatory Biomarkers. J Immunol Res 2018; 2018:9675216. [PMID: 30046617 PMCID: PMC6038656 DOI: 10.1155/2018/9675216] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/30/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Strength exercise is a strategy applied in sports and physical training processes. It may induce skeletal muscle hypertrophy. The hypertrophy is dependent on the eccentric muscle actions and on the inflammatory response. Here, we evaluate the physiological, immunological, and inflammatory responses induced by a session of strength training with a focus on predominance of the eccentric muscle actions. Twenty volunteers were separated into two groups: the untrained group (UTG) and the trained group (TG). Both groups hold 4 sets of leg press, knee extensor, and leg curl at 65% of personal one-repetition maximum (1RM), 90 s of recovery, and 2″conc/3″eccen of duration of execution in each repetition. Blood samples were collected immediately before and after, 2 hours after, and 24 h after the end of the exercise session. The single session of strength training elevated the heart rate (HR), rating of perceived exertion (RPE), visual analog scale (VAS), and lactate blood level in UTG and TG. Creatine kinase (CK) levels were higher at 2 and 24 h after the end of the exercise in UTG and, in TG, only at 24 h. The number of white blood cells (WBC) and neutrophils increased in UTG and TG, post and 2 h after exercise. Lymphocytes increased postexercise but reduced 2 h after exercise in both groups, while the number of monocytes increased only immediately after the exercise session in UTG and TG. The strength training session elevated the levels of apelin and fatty acid-binding proteins-3 (FABP3) in both groups and brain-derived neurotrophic factor (BDNF) in TG. The single exercise session was capable of inducing elevated HR, RPE, lactate level, and CK levels. This protocol changed the count/total number of circulating immune cells in both groups (UTG and TG) and also increased the level of plasmatic apelin, BDNF, and FLTS1 only in TG and FABP3 myokines in both groups.
Collapse
|
15
|
Abstract
OBJECTIVE To assess the impact of heat applied for 8 hours immediately after or 24 hours after exercise on delayed-onset muscle soreness (DOMS) in large skeletal muscle groups measured by subjective and objective means. DESIGN Cross-sectional repeated measure design study. SETTING Research laboratory. SUBJECTS Three groups of 20 subjects, age range 20 to 40 years. INTERVENTION Squats were conducted in three 5-minute bouts to initiate DOMS; 3 minutes of rest separated the bouts. One group had heat applied immediately after exercise, and a second group had heat applied 24 hours after exercise. A third group was the control group where no heat was applied. MAIN OUTCOME MEASURES Visual analog pain scales, muscle strength of quads, range of motion of quads, stiffness of quads (Continuous Passive Motion machine), algometer to measure quadriceps soreness, and blood myoglobin. RESULTS The most significant outcome was a reduction in soreness in the group that had low-temperature heat wraps applied immediately after exercise (P < 0.01). There was benefit to applying heat 24 hours after exercise, but to a smaller extent. This was corroborated by myoglobin, algometer, and stiffness data. CONCLUSIONS Low-level continuous heat wraps left for 8 hours just after heavy exercise reduced DOMS in the population tested as assessed by subjective and objective measures. CLINICAL RELEVANCE Although cold is commonly used after heavy exercise to reduce soreness, heat applied just after exercise seems very effective in reducing soreness. Unlike cold, it increases flexibility of tissue and tissue blood flow. For joint, it is still probably better to use cold to reduce swelling.
Collapse
|
16
|
Das A, Datta S, Rhea B, Sinha M, Veeraragavan M, Gordillo G, Roy S. The Human Skeletal Muscle Transcriptome in Response to Oral Shilajit Supplementation. J Med Food 2017; 19:701-9. [PMID: 27414521 DOI: 10.1089/jmf.2016.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED The objective of the present study ( clinicaltrials.gov NCT02026414) was to observe the effects of oral supplementation of a purified and standardized Shilajit extract on skeletal muscle adaptation in adult overweight/class I obese human subjects from the U.S. POPULATION Shilajit is a mineral pitch that oozes out of Himalayan rocks. The study design consisted of a baseline visit, followed by 8 weeks of 250 mg of oral Shilajit supplementation b.i.d., and additional 4 weeks of supplementation with exercise. At each visit, blood samples and muscle biopsies were collected for further analysis. Supplementation was well tolerated without any changes in blood glucose levels and lipid profile after 8 weeks of oral supplementation and the additional 4 weeks of oral supplementation with exercise. In addition, no changes were noted in creatine kinase and serum myoglobin levels after 8 weeks of oral supplementation and the additional 4 weeks of supplementation with exercise. Microarray analysis identified a cluster of 17 extracellular matrix (ECM)-related probe sets that were significantly upregulated in muscles following 8 weeks of oral supplementation compared with the expression at the baseline visit. This cluster included tenascin XB, decorin, myoferlin, collagen, elastin, fibrillin 1, and fibronectin 1. The differential expression of these genes was confirmed using quantitative real-time polymerase chain reaction (RT-PCR). The study provided maiden evidence that oral Shilajit supplementation in adult overweight/class I obese human subjects promoted skeletal muscle adaptation through upregulation of ECM-related genes that control muscle mechanotransduction properties, elasticity, repair, and regeneration.
Collapse
Affiliation(s)
- Amitava Das
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | - Soma Datta
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | - Brian Rhea
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | - Mithun Sinha
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | | | - Gayle Gordillo
- 3 Department of Plastic Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | - Sashwati Roy
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
17
|
Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep 2016; 5:283-288. [PMID: 27602208 PMCID: PMC4998156 DOI: 10.3892/br.2016.720] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain.
Collapse
Affiliation(s)
- Vidhya Rathnavelu
- Department of Oral Pathology and Microbiology, Faculty of Dental Science, Sri Ramachandra University, Chennai, Tamilnadu 600116, India
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Subramaniam Sohila
- Department of Physics, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu 637215, India
| | - Samikannu Kanagesan
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Rajendran Ramesh
- Department of Physics, Periyar University, Salem, Tamilnadu 636011, India
| |
Collapse
|
18
|
Narasimhan M, Rajasekaran NS. Exercise, Nrf2 and Antioxidant Signaling in Cardiac Aging. Front Physiol 2016; 7:241. [PMID: 27378947 PMCID: PMC4911351 DOI: 10.3389/fphys.2016.00241] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/03/2016] [Indexed: 12/16/2022] Open
Abstract
Aging is represented by a progressive decline in cellular functions. The age-related deformities in cardiac behaviors are the loss of cardiac myocytes through apoptosis or programmed cell death. Oxidative stress (OS) and its deleterious consequence contribute to age-related mechanical remodeling, reduced regenerative capacity, and apoptosis in cardiac tissue. The pathogenesis of OS in the elderly can predispose the heart to other cardiac complications such as atherosclerosis, hypertension, ischemic heart disease, cardiac myopathy, and so on. At the molecular level, oxidant-induced activation of Nrf2 (Nuclear erythroid-2-p45-related factor-2), a transcription factor, regulates several genes containing AREs (Antioxidant Response Element) and bring the respective translates to counteract the reactive radicals and establish homeostasis. Myriad of Nrf2 gene knockout studies in various organs such as lung, liver, kidney, brain, etc. have shown that dysregulation of Nrf2 severely affects the oxidant/ROS sensitivity and predispose the system to several pathological changes with aberrant cellular lesions. On the other hand, its gain of function chemical interventions exhibited oxidant stress resistance and cytoprotection. However, thus far, only a few investigations have shown the potential role of Nrf2 and its non-pharmacological induction in cardiac aging. Therefore, here we review the involvement of Nrf2 signaling along with its responses and ramifications on the cascade of OS under acute exercise stress (AES), moderate exercise training (MET), and endurance exercise stress (EES) conditions in the aging heart.
Collapse
Affiliation(s)
- Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Center for Free Radical Biology, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at BirminghamBirmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of MedicineSalt Lake City, UT, USA; Department of Exercise Physiology, College of Health, University of Utah School of MedicineSalt Lake City, UT, USA
| |
Collapse
|
19
|
Clifford T, Bell O, West DJ, Howatson G, Stevenson EJ. Antioxidant-rich beetroot juice does not adversely affect acute neuromuscular adaptation following eccentric exercise. J Sports Sci 2016; 35:812-819. [DOI: 10.1080/02640414.2016.1192670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
|
21
|
Preventive effects of 10-day supplementation with saffron and indomethacin on the delayed-onset muscle soreness. Clin J Sport Med 2015; 25:105-12. [PMID: 24915175 DOI: 10.1097/jsm.0000000000000113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Delayed-onset muscle soreness (DOMS) often occurs after unaccustomed eccentric exercise and reduces exercise performance. We aimed to study the preventive effects of saffron and indomethacin on the biochemical and functional indicators of DOMS after 1-session eccentric exercise. DESIGN A 10-day, randomized, double-blind, placebo-controlled, pretest-posttest design. SETTING Controlled research laboratory. PARTICIPANTS Thirty-nine nonactive male university students randomly divided into saffron (n = 12), indomethacin (n = 12), and control (n = 15) groups. INTERVENTIONS Saffron group received 1 capsule containing dried saffron powder (n = 12, 300 mg/d), indomethacin group received 75 mg indomethacin (n = 12, 25 mg thrice a day), and control group (n = 15) received placebo capsules, 1 week before and 3 days after eccentric exercise. Ten days before and 24, 48, and 72 hours after muscle soreness protocol, the maximum isometric and isotonic forces, plasma creatine kinase (CK), plasma lactate dehydrogenase (LDH), perceived pain, knee range of movement, and thigh circumference were measured. Muscle soreness protocol was performed with a weight load equal to 80% of the maximum isotonic force in 4 sessions with 20 repetitions and 3-minute rest in between. MAIN OUTCOME MEASURES This study shows that 10-day supplementation with 300 mg saffron significantly decreased the CK and LDH concentrations (P < 0.0001). In the saffron group, there was no decline in maximum isometric and isotonic forces after eccentric exercise, but a significant decline in the isometric force was observed in the control group (P < 0.0001). No pain was reported in the saffron group, whereas the indomethacin group experienced pain before 72 hours (P < 0.001). CONCLUSIONS Results obtained from the current novel research indicate a strong preventive effect of 10-day supplementation with saffron on the DOMS. CLINICAL RELEVANCE The saffron can be used to prevent DOMS and alleviate the DOMS symptoms.
Collapse
|
22
|
Paulsen G, Hamarsland H, Cumming KT, Johansen RE, Hulmi JJ, Børsheim E, Wiig H, Garthe I, Raastad T. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol 2014; 592:5391-408. [PMID: 25384788 DOI: 10.1113/jphysiol.2014.279950] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training.
Collapse
Affiliation(s)
- G Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway Norwegian Olympic Federation, Oslo, Norway
| | - H Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - K T Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - R E Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - J J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - E Børsheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway Arkansas Children's Hospital Research Institute, Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H Wiig
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - I Garthe
- Norwegian Olympic Federation, Oslo, Norway
| | - T Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
23
|
Paulsen G, Cumming KT, Hamarsland H, Børsheim E, Berntsen S, Raastad T. Can supplementation with vitamin C and E alter physiological adaptations to strength training? BMC Sports Sci Med Rehabil 2014; 6:28. [PMID: 25075311 PMCID: PMC4114441 DOI: 10.1186/2052-1847-6-28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/19/2014] [Indexed: 01/11/2023]
Abstract
Background Antioxidant supplementation has recently been demonstrated to be a double-edged sword, because small to moderate doses of exogenous antioxidants are essential or beneficial, while high doses may have adverse effects. The adverse effects can be manifested in attenuated effects of exercise and training, as the antioxidants may shut down some redox-sensitive signaling in the exercised muscle fibers. However, conditions such as age may potentially modulate the need for antioxidant intake. Therefore, this paper describes experiments for testing the hypothesis that high dosages of vitamin C (1000 mg/day) and E (235 mg/day) have negative effects on adaptation to resistance exercise and training in young volunteers, but positive effects in older men. Methods/design We recruited a total of 73 volunteers. The participants were randomly assigned to receiving either vitamin C and E supplementation or a placebo. The study design was double-blinded, and the participants followed an intensive training program for 10–12 weeks. Tests and measurements aimed at assessing changes in physical performance (maximal strength) and physiological characteristics (muscle mass), as well as biochemical and cellular systems and structures (e.g., cell signaling and morphology). Discussion Dietary supplements, such as vitamin C and E, are used by many people, especially athletes. The users often believe that high dosages of supplements improve health (resistance to illness and disease) and physical performance. These assumptions are, however, generally not supported in the scientific literature. On the contrary, some studies have indicated that high dosages of antioxidant supplements have negative effects on exercise-induced adaptation processes. Since this issue concerns many people and few randomized controlled trials have been conducted in humans, further studies are highly warranted. Trial registration ACTRN12614000065695
Collapse
Affiliation(s)
- Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway ; Norwegian Olympic Sport Center, Oslo, Norway
| | - Kristoffer T Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Håvard Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Elisabet Børsheim
- University of Arkansas for Medical Sciences, Arkansas Children's Nutrition Center, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| | - Sveinung Berntsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
24
|
Moraes e Luz EW, Vieira LR, Semedo JG, Bona SR, Forgiarini LF, Pereira P, Cavalcante AAM, Marroni NAP, Picada JN. Neurobehavioral effects of l-carnitine and its ability to modulate genotoxicity and oxidative stress biomarkers in mice. Pharmacol Biochem Behav 2013; 110:40-5. [DOI: 10.1016/j.pbb.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 05/15/2013] [Accepted: 06/01/2013] [Indexed: 12/30/2022]
|
25
|
Pereira GB, Tibana RA, Navalta J, Sousa NMF, Córdova C, Souza VC, Nóbrega OT, Prestes J, Perez SEA. Acute effects of resistance training on cytokines and osteoprotegerin in women with metabolic syndrome. Clin Physiol Funct Imaging 2012; 33:122-30. [DOI: 10.1111/cpf.12004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/12/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Guilherme B. Pereira
- Programa de Pós-Graduação em Ciências Fisiológicas da Universidade Federal de São Carlos; São Carlos; São Paulo
| | - Ramires A. Tibana
- Programa de Pós-Graduação em Educação Física da Universidade Católica de Brasília; Brasília; Brasil
| | - James Navalta
- Department of Kinesiology and Nutrition Sciences of the University of Nevada; Las Vegas; Nevada; USA
| | - Nuno M. F. Sousa
- Programa de Pós-Graduação em Ciências Fisiológicas da Universidade Federal de São Carlos; São Carlos; São Paulo
| | - Claudio Córdova
- Programa de Pós-Graduação em Educação Física da Universidade Católica de Brasília; Brasília; Brasil
| | - Vinícius C. Souza
- Programa de Pós-graduação em Ciências da Saúde da Universidade de Brasília; Brasília; Brasil
| | - Otávio T. Nóbrega
- Programa de Pós-graduação em Ciências da Saúde da Universidade de Brasília; Brasília; Brasil
| | - Jonato Prestes
- Programa de Pós-Graduação em Educação Física da Universidade Católica de Brasília; Brasília; Brasil
| | - Sergio E. A. Perez
- Programa de Pós-Graduação em Ciências Fisiológicas da Universidade Federal de São Carlos; São Carlos; São Paulo
| |
Collapse
|
26
|
Prado FP, Paludetto DRB, Bachur CAK, Freitas RALD, Zaia JE, Barros Neto TL, Garcia SB, Alves ACA, Carvalho PTCD, Bachur JA. Estresse oxidativo no plasma sanguíneo de indivíduos submetidos ao esforço físico agudo seguido de crioimersão corporal. FISIOTERAPIA E PESQUISA 2012. [DOI: 10.1590/s1809-29502012000300005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
O objetivo deste estudo foi analisar a influência da crioimersão corporal (CIC) imediata ao esforço físico agudo no estresse oxidativo (EOx) no plasma sanguíneo. Participaram do presente estudo 12 homens, com idade média de 22±1 anos, submetidos ao teste de esforço físico intenso em esteira, seguido de CIC em um tanque com água a 10ºC durante 10 minutos contínuos. Do repouso ao final da CIC, os indivíduos foram monitorados através de alguns parâmetros como: o índice de percepção subjetiva do esforço (IPE) expresso conforme escala de Borg, frequência cardíaca (FC), pressão arterial (PA) e temperatura corporal (TC) através da temperatura timpânica. A análise morfológica do EOx plasmático foi realizada de acordo com o método denominado Morfologia Óptica do Estresse Oxidativo no Plasma (MEOP), utilizando-se gotas de sangue capilar. Observou-se uma significativa elevação (p<0,01) no grau do estresse oxidativo plasmático após a realização do esforço físico, em relação ao respectivo grau em repouso. Porém, esta elevação no grau do EOx foi significativamente reduzida (p<0,001) em função da CIC. Embora sejam necessários mais estudos científicos com o MEOP, concluiu-se que, para o presente estudo, este teste mostrou-se viável. Os dados encontrados no presente estudo sugerem que a CIC em água a 10ºC por 10 minutos imediatos ao esforço físico agudo com intensidade alta, apresenta-se como uma importante conduta fisioterapêutica para a normalização do EOx pós-esforço.
Collapse
|
27
|
Low-frequency fatigue as an indicator of eccentric exercise-induced muscle injury: the role of vitamin E. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:628352. [PMID: 22848781 PMCID: PMC3400461 DOI: 10.1155/2012/628352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/14/2012] [Indexed: 01/28/2023]
Abstract
This study investigates whether vitamin E can attenuate eccentric exercise-induced soleus muscle injury as indicated by the amelioration of in situ isometric force decline following a low-frequency fatigue protocol (stimulation at 4 Hz for 5 min) and the ability of the muscle to recover 3 min after the termination of the fatigue protocol. Adult male Wistar rats were divided into vitamin E-supplemented or placebo-supplemented groups studied at rest, immediately post-exercise or 48 h post-exercise. Daily dl-α-tocopheryl acetate intraperitoneal injections of 100 mg/kg body mass for 5 consecutive days prior to exercise doubled its plasma levels. Fatigue index and recovery index expressed as a percentage of the initial tension. FI at 0 h post- and 48 h post-exercise respectively was 88% ± 4.2% and 89% ± 6.8% in the vitamin E groups versus 76% ± 3% and 80% ± 11% in the placebo groups. RI was 99% ± 3.4% and 100% ± 6% in the vitamin E groups versus 82% ± 3.1% and 84% ± 5.9% in the placebo groups. Complementally to the traditionally recorded maximal force, low-frequency fatigue measures may be beneficial for assessing injury-induced decrease in muscle functionality.
Collapse
|
28
|
Panveloski-Costa AC, Pinto Júnior DAC, Brandão BB, Moreira RJ, Machado UF, Seraphim PM. [Resistive training reduces inflammation in skeletal muscle and improves the peripheral insulin sensitivity in obese rats induced by hyperlipidic diet]. ACTA ACUST UNITED AC 2012; 55:155-63. [PMID: 21584433 DOI: 10.1590/s0004-27302011000200008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/07/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To determine if resistive exercise protocol can modulate Tnf-α, SOCS3 and glucose transporter GLUT4 genes expression in skeletal muscle, and peripheral insulin sensitivity in obese rats induced by hyperlipidic diet. MATERIALS AND METHODS Wistar obese rats induced by hyperlipidic diet were subjected a resistive exercise protocol as jump squat. Insulin sensitivity and mRNA content of Tnf-α, SOCS3 and GLUT4 were assayed and compared among the groups: obese sedentary (OS) and exercised (OE), control sedentary (CS) and exercised (CE). RESULTS The mRNA content of Tnf-α and SOCS3 has increased in skeletal muscle from OS and has decreased in OE group. The protein and GLUT4 mRNA contents were correlated but they did not change among the groups. Peripheral insulin sensitivity has increased in the OE compared to OS group. CONCLUSION The resistive exercise reverses the peripheral insulin resistance and the inflammatory state in skeletal muscle from diet-induced obese rats.
Collapse
Affiliation(s)
- Ana Carolina Panveloski-Costa
- Departamento de Fisioterapia, Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente, SP, Brasil
| | | | | | | | | | | |
Collapse
|
29
|
Kyparos A, Sotiriadou S, Mougios V, Cheva A, Barbanis S, Karkavelas G, Arsos G, Albani M, Matziari C. Effect of 5-day vitamin E supplementation on muscle injury after downhill running in rats. Eur J Appl Physiol 2011; 111:2557-69. [DOI: 10.1007/s00421-011-1888-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 02/18/2011] [Indexed: 11/28/2022]
|
30
|
Abstract
Resistance training (RT) is associated with reduced risk of low grade inflammation related diseases, such as cardiovascular disease and type 2 diabetes. The majority of the data studying cytokines and exercise comes from endurance exercise. In contrast, evidence establishing a relationship between RT and inflammation is more limited. This review focuses on the cytokine responses both following an acute bout, and after chronic RT. In addition, the effect of RT on low grade systemic inflammation such as individuals at risk for type 2 diabetes is reviewed. Cytokines are secreted proteins that influence the survival, proliferation, and differentiation of immune cells and other organ systems. Cytokines function as intracellular signals and almost all cells in the body either secrete them or have cytokine receptors. Thus, understanding cytokine role in a specific physiological situation such as a bout of RT can be exceedingly complex. The overall effect of long term RT appears to ameliorate inflammation, but the specific effects on the inflammatory cytokine, tumor necrosis factor alpha are not clear, requiring further research. Furthermore, it is critical to differentiate between chronically and acute Interleukin-6 levels and its sources. The intensity of the RT and the characteristics of the training protocol may exert singular cytokine responses and as a result different adaptations to exercise. More research is needed in the area of RT in healthy populations, specifically sorting out gender and age RT acute responses. More importantly, studies are needed in obese individuals who are at high risk of developing low grade systemic inflammatory related diseases. Assuring adherence to the RT program is essential to get the benefits after overcoming the first acute RT responses. Hence RT could be an effective way to prevent, and delay low grade systemic inflammatory related diseases.
Collapse
Affiliation(s)
- Mariana C Calle
- Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Ext, Storrs, CT 06269, USA
| | | |
Collapse
|
31
|
Pinheiro CHJ, Vitzel KF, Curi R. Effect of N-acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity. Scand J Med Sci Sports 2010; 22:24-33. [PMID: 20673252 DOI: 10.1111/j.1600-0838.2010.01143.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of N-Acetylcysteine (NAC), an unspecific antioxidant, on fatiguing contractile activity-induced injury were investigated. Twenty-four male Wistar rats were randomly assigned to two groups. The placebo group (N=12) received one injection of phosphate buffer (PBS) 1 h prior to contractile activity induced by electrical stimulation. The NAC group (NAC; N=12) received electrical stimulation for the same time period and NAC (500 mg/kg, i.p.) dissolved in PBS 1 h prior to electrical stimulation. The contralateral hindlimb was used as a control, except in the analysis of plasma enzyme activities, when a control group (rats placebo group not electrically stimulated and not treated) was included. The following parameters were measured: tetanic force, muscle fatigue, plasma activities of creatine kinase (CK) and lactate dehydrogenase (LDH), changes in muscle vascular permeability using Evans blue dye (EBD), muscle content of reactive oxygen species (ROS) and thiobarbituric acid-reactive substances (TBARS) and myeloperoxidase (MPO) activity. Muscle fatigue was delayed and tetanic force was preserved in NAC-treated rats. NAC treatment decreased plasma CK and LDH activities. The content of muscle-derived ROS, TBARS, EBD and MPO activity in both gastrocnemius and soleus muscles were also decreased by NAC pre-treatment. Thus, NAC has a protective effect against injury induced by fatiguing contractile activity in skeletal muscle.
Collapse
Affiliation(s)
- C H J Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
32
|
Nunan D, Howatson G, van Someren KA. Exercise-induced muscle damage is not attenuated by beta-hydroxy-beta-methylbutyrate and alpha-ketoisocaproic acid supplementation. J Strength Cond Res 2010; 24:531-7. [PMID: 20072045 DOI: 10.1519/jsc.0b013e3181c4d370] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to examine the effects of combined oral beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on indices of exercise-induced muscle damage (EIMD) after an acute bout of eccentric-biased exercise. Fourteen male subjects were allocated to 2 groups: a placebo group (3 g.d corn flour, N = 7) or an HMB + KIC group (3 g.d HMB and 0.3 g.d KIC, N = 7). Supplementation commenced 11 days before a 40-minute bout of downhill running and continued for 3 days post-exercise. Delayed-onset muscle soreness, mid-thigh girth, knee extensor range of motion, serum creatine kinase (CK) activity, and isometric and concentric torque were assessed pre-exercise and at 24, 48, and 72 hours post-exercise. Delayed-onset muscle soreness, CK activity, and isometric and concentric torque all changed over the 72-hour period (p < 0.05); however, HMB + KIC had no significant effect on any of the indices of muscle damage. Although 14 days HMB and KIC supplementation did not attenuate indices of EIMD after an acute bout of unaccustomed eccentric-biased exercise, there was a trend for a more rapid rate of recovery in isometric and isokinetic muscle function. beta-hydroxy-beta-methylbutyrate and KIC may therefore provide limited benefit in the recovery of muscle function after EIMD in untrained subjects or after unaccustomed exercise.
Collapse
Affiliation(s)
- David Nunan
- School of Life Sciences, Kingston University, Kingston-upon-Thames, United Kingdom
| | | | | |
Collapse
|
33
|
Deminice R, Degiovanni GC, Garlipp-Picchi MR, Nóbrega MT, Teixeira M, Jordão AA. Evolução de biomarcadores de estresse oxidativo e relação com a performance competitiva em dois momentos da temporada de treinamento de natação. REV BRAS MED ESPORTE 2009. [DOI: 10.1590/s1517-86922009000500009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estudos têm demonstrado aumento na formação de espécies reativas de oxigênio após o esforço físico intenso. Esses eventos podem aumentar a suscetibilidade das células musculares a danos oxidativos como a peroxidação lipídica. Assim, variações na intensidade e no volume de treinamento durante a temporada podem modular o metabolismo oxidativo e influenciar a performance dos atletas. OBJETIVO: Estudar a evolução de biomarcadores de peroxidação lipídica em dois momentos de um ciclo periodizado de treinamento e relacionar com a performance competitiva de natação. MÉTODOS: Participaram do presente estudo 16 nadadores (nove do gênero masculino e sete do feminino). Amostras de sangue foram coletadas em dois períodos do ciclo de treinamento: período preparatório específico e período de polimento. Espécies reativas ao ácido tiobarbitúrico (TBARS) e peróxidos totais foram determinados como biomarcadores de peroxidação lípidica. Creatina quinase foi determinada como parâmetro de dano celular muscular. O índice técnico alcançado no estilo de especialidade de cada atleta foi utilizado como parâmetro de performance competitiva. O índice técnico foi determinado na competição preparatória Troféu Electro Bonini realizada no período preparatório específico, e no Campeonato Paulista realizado no final do período de polimento. RESULTADOS: Foi encontrado aumento significativo (p < 0,05) no índice técnico no Campeonato Paulista (769,6 ± 51,1 pontos) em relação ao Troféu Electro Bonini (751,1 ± 55,7 pontos). Significativas reduções na concentração de TBARS (5,7 ± 2,9 vs 3,3 ± 2,2µmol/L) e peróxidos totais (45,1 ± 20,6 vs 29,6 ± 13,0, µmol H2O2/L) foram encontrados no período de polimento com relação ao período preparatório específico. O mesmo não foi encontrado para creatina quinase (123,6 ± 60,1 vs 137,4 ± 74,9U/L). CONCLUSÃO: A significativa diminuição nos biomarcadores de peroxidação lipídica decorrente do decréscimo no volume e intensidade do treinamento após o período de polimento demonstra a influência das variações do treinamento sobre o estresse oxidativo e sua possível relação com a performance.
Collapse
|
34
|
Jacobs PL, Goldstein ER, Blackburn W, Orem I, Hughes JJ. Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males. J Int Soc Sports Nutr 2009; 6:9. [PMID: 19341458 PMCID: PMC2674410 DOI: 10.1186/1550-2783-6-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/02/2009] [Indexed: 01/04/2023] Open
Abstract
Background Recent research has indicated that short term administration of glycine propionyl-L-carnitine (GPLC) significantly elevates levels of nitric oxide metabolites at rest and in response to reactive hyperaemia. However, no scientific evidence exists that suggests such supplementation enhances exercise performance in healthy, trained individuals. The purpose of this study was to examine the effects of GPLC on the performance of repeated high intensity stationary cycle sprints with limited recovery periods in resistance trained male subjects. Methods In a double-blind, placebo-controlled, cross-over design, twenty-four male resistance trained subjects (25.2 ± 3.6 years) participated in two test sessions separated by one week. Testing was performed 90 minutes following oral ingestion of either 4.5 grams GPLC or 4.5 grams cellulose (PL), in randomized order. The exercise testing protocol consisted of five 10-second Wingate cycle sprints separated by 1-minute active recovery periods. Peak (PP) and mean values (MP) of sprint power output and percent decrement of power (DEC) were determined per bout and standardized relative to body masss. Heart rate (HR) and blood lactate (LAC) were measured prior to, during and following the five sprint bouts. Results Significant main effects (p < 0.001) were observed for sprint bout order in values of PP, MP, DEC, and HR. There were significant main effects detected for condition in PP and MP (p < 0.05), with values across the five sprint bouts 2.6 – 15% greater with GPLC. Significant statistical interactions were detected between bout order and condition for both PP and MP (p < 0.05). There was a significant main effect of condition for LAC, LAC values 15.7% lower 4 min post-exercise with GPLC (p = 0.09) and with GPLC resulting in 16.2% less LAC at 14 min post-exercise (p < 0.05). Conclusion These findings indicate that short-term oral supplementation of GPLC can enhance peak power production in resistance trained males with significantly less LAC accumulation.
Collapse
Affiliation(s)
- Patrick L Jacobs
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Davie, FL 33314, USA.
| | | | | | | | | |
Collapse
|
35
|
Ostojic SM, Stojanovic MD, Djordjevic B, Jourkesh M, Vasiljevic N. The effects of a 4-week coffeeberry supplementation on antioxidant status, endurance, and anaerobic performance in college athletes. Res Sports Med 2009; 16:281-94. [PMID: 19089749 DOI: 10.1080/15438620802523345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The main aim of this investigation was to evaluate the changes in total antioxidant capacity (TAC) and aerobic and anaerobic performance induced by supplementation of coffeeberry (CB) formulation for 4 weeks in college athletes. Twenty college athletes (14 males and 6 females) were allocated to two randomly assigned trials. Subjects in the CB group orally ingested capsules that contained CB formulation at a dose of 800 mg per day in two equal doses for 28 days, while subjects in the placebo (P) group ingested an equal number of identical-looking caps that contained cellulose. There were no changes in glucose, cholesterol, and lipoproteins within or between trials (p > 0.05). Total antioxidant capacity (TAC) was significantly higher in the CB versus P trial at the post- supplementation trial (1.66 +/- 0.16 vs. 1.51 +/- 0.05 mmol/L; p < 0.05). There were no statistically significant changes in average anaerobic power, index of anaerobic fatigue, maximal heart rate, blood lactate, and maximal oxygen uptake within or between trials (p > 0.05). Heart rate recovery (HRR) index increased significantly in CB group as compared with baseline level (38 +/- 4 vs. 32 +/- 5 beats/min; p < 0.05). Blood lactate after 10 min of recovery (Lact(rec)) significantly decreased in the CB group after supplementation protocol as compared with initial results (7.6 +/- 4.2 vs. 5.5 +/- 2.6 mmol/L; p < 0.05). No subject reported any side effects from CB or P. The results of the present study indicate that supplementation with a CB formulation slightly increased antioxidant capacity, but there were minimal effects on recovery parameters after exercise in college athletes.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Faculty of Sport and Tourism, PA University of Novi Sad, Serbia Sports Academy, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
36
|
The influence of cold water immersions on adaptation following a single bout of damaging exercise. Eur J Appl Physiol 2008; 105:615-21. [PMID: 19034491 DOI: 10.1007/s00421-008-0941-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
The aim of this investigation was to elucidate the effects of cold water immersions (CWIs) following damaging exercise on the repeated bout effect (RBE). Sixteen males performed two bouts of drop jump exercise separated by 14-21 days. Participants were equally, but randomly assigned to either a CWI (12-min CWI at 15 degrees C) or control group (12-min seated rest). Treatments were given immediately after the first exercise bout, 24, 48 and 72 h post-exercise. No interventions were given following the second bout. Maximum voluntary contraction (MIVC), soreness (DOMS), creatine kinase (CK), thigh girth and range of motion (ROM) were recorded before and for 96 h following the initial and repeated bouts of damaging exercise. All variables, except ROM, showed a significant time effect (P < 0.01) indicating the presence of muscle damage following the initial bout; there were no differences between the CWI and control groups after the initial bout. Following the repeated bout of exercise there was a significant attenuation in the reduction of MIVC (P = 0.002) and a reduction in DOMS (P < 0.001), which is indicative of the RBE. There were no significant differences between groups following the repeated bout of damaging exercise. These data show that CWI had no effect following damaging exercise and did not inhibit the RBE. Despite CWI being used routinely, its efficacy remains unclear and there is a need to elucidate the benefits of this intervention on recovery and adaptation to provide practitioners with evidence based practice.
Collapse
|
37
|
Abstract
Acute bouts of aerobic and anaerobic exercise can induce a state of oxidative stress, as indicated by an increase in oxidized molecules in a variety of tissues and body fluids. The extent of oxidation is dependent on the exercise mode, intensity, and duration, and is specifically related to the degree of oxidant production. Findings of increased oxidative stress have been reported for both healthy and diseased subjects following single bouts of exercise. While acute exercise has the ability to induce an oxidative stress, this same exercise stimulus appears necessary to allow for an upregulation in endogenous antioxidant defenses. This chapter presents a summary of exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Richard J Bloomer
- Department of Health and Sport Sciences, The University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
38
|
|
39
|
Common legal supplements: an update. CURRENT ORTHOPAEDIC PRACTICE 2008. [DOI: 10.1097/bco.0b013e3282f57a27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Shima Y, Kitaoka K, Yoshiki Y, Maruhashi Y, Tsuyama T, Tomita K. Effect of Heat Shock Preconditioning on ROS Scavenging Activity in Rat Skeletal Muscle after Downhill Running. J Physiol Sci 2008; 58:341-8. [DOI: 10.2170/physiolsci.rp004808] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 08/20/2008] [Indexed: 11/05/2022]
|