1
|
Kim MS, Kim JM, Lee SG, Jung EJ, Lee SH, Huang WY, Han BK, Jung DE, Yang SB, Ji I, Kim YJ, Hong JY. Assessing Health and Economic Benefits of Omega-3 Fatty Acid Supplementation on Cardiovascular Disease in the Republic of Korea. Healthcare (Basel) 2023; 11:2365. [PMID: 37628562 PMCID: PMC10454021 DOI: 10.3390/healthcare11162365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the primary cause of mortality worldwide and imposes a significant social burden on many countries. METHODS This study assessed the health and economic benefits of omega-3 associated with CVD. The meta-analysis estimated the risk ratio (RR) and absolute risk reduction (ARR), and the economic impact was calculated using direct and indirect costs related to CVD treatments in Korean adults. RESULTS A total of 33 studies were included in the meta-analysis on CVD outcomes, with 80,426 participants in the intervention group and 80,251 participants in the control group. The meta-analysis determined a significant reduction in omega-3 in CVD (RR = 0.92, 95% CI: 0.86~0.97) and ARR (1.48%). Additionally, the subgroup analysis indicated that higher doses and the long-term consumption of omega-3 could further enhance these effects. After applying ARR from meta-analysis to the target population of about 1,167,370 in 2021, the Republic of Korea, it was estimated that omega-3 consumption could result in an economic benefit of KRW 300 billion by subtracting the purchase expenses of omega-3 supplements from the total social cost savings. CONCLUSION Omega-3 supplements can help to reduce the risk of CVD and subsequent economic benefits in the Republic of Korea.
Collapse
Affiliation(s)
- Moon Seong Kim
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea; (M.S.K.); (J.M.K.); (S.G.L.); (E.J.J.); (B.K.H.)
| | - Jin Man Kim
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea; (M.S.K.); (J.M.K.); (S.G.L.); (E.J.J.); (B.K.H.)
| | - Sang Gyeong Lee
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea; (M.S.K.); (J.M.K.); (S.G.L.); (E.J.J.); (B.K.H.)
| | - Eun Jin Jung
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea; (M.S.K.); (J.M.K.); (S.G.L.); (E.J.J.); (B.K.H.)
| | - Sang Hoon Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (S.H.L.); (W.Y.H.)
| | - Wen Yan Huang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (S.H.L.); (W.Y.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Republic of Korea
| | - Bok Kyung Han
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea; (M.S.K.); (J.M.K.); (S.G.L.); (E.J.J.); (B.K.H.)
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (S.H.L.); (W.Y.H.)
| | - Da Eun Jung
- Department of Environmental and Resource Economics, Dankook University, Chungnam 16890, Republic of Korea; (D.E.J.); (S.B.Y.)
| | - Sung Bum Yang
- Department of Environmental and Resource Economics, Dankook University, Chungnam 16890, Republic of Korea; (D.E.J.); (S.B.Y.)
| | - Inbae Ji
- Department of Food Industrial Management, Dongguk University, Seoul 04620, Republic of Korea;
| | - Young Jun Kim
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea; (M.S.K.); (J.M.K.); (S.G.L.); (E.J.J.); (B.K.H.)
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (S.H.L.); (W.Y.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Republic of Korea
| | - Ji Youn Hong
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea; (M.S.K.); (J.M.K.); (S.G.L.); (E.J.J.); (B.K.H.)
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (S.H.L.); (W.Y.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
3
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177. [PMID: 32114706 PMCID: PMC7049091 DOI: 10.1002/14651858.cd003177.pub5] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Teesside UniversitySchool of Social Sciences, Humanities and LawMiddlesboroughUKTS1 3BA
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Sciences42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
4
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD003177. [PMID: 30521670 PMCID: PMC6517311 DOI: 10.1002/14651858.cd003177.pub4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
5
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD012345. [PMID: 30484282 PMCID: PMC6517012 DOI: 10.1002/14651858.cd012345.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake probably slightly decreases triglycerides (by 15%, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants), high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably has little or no effect on adiposity (body weight MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via TG reduction.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Nicole Martin
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
6
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD012345. [PMID: 30019767 PMCID: PMC6513571 DOI: 10.1002/14651858.cd012345.pub2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake slightly reduces total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants) and probably slightly decreases triglycerides (MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably causes slight weight gain (MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via lipid reduction, but increasing PUFA probably slightly increases weight.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Nicole Martin
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
7
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD003177. [PMID: 30019766 PMCID: PMC6513557 DOI: 10.1002/14651858.cd003177.pub3] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
8
|
Sadler MJ. A review of economic evaluations for beneficial health outcomes of micronutrient and long-chain omega-3 fatty acid supplementation. Int J Food Sci Nutr 2017; 69:262-282. [DOI: 10.1080/09637486.2017.1365825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Stark KD, Van Elswyk ME, Higgins MR, Weatherford CA, Salem N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog Lipid Res 2016; 63:132-52. [PMID: 27216485 DOI: 10.1016/j.plipres.2016.05.001] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/14/2016] [Accepted: 05/18/2016] [Indexed: 02/05/2023]
Abstract
Studies reporting blood levels of the omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were systematically identified in order to create a global map identifying countries and regions with different blood levels. Included studies were those of healthy adults, published in 1980 or later. A total of 298 studies met all inclusion criteria. Studies reported fatty acids in various blood fractions including plasma total lipids (33%), plasma phospholipid (32%), erythrocytes (32%) and whole blood (3.0%). Fatty acid data from each blood fraction were converted to relative weight percentages (wt.%) and then assigned to one of four discrete ranges (high, moderate, low, very low) corresponding to wt.% EPA+DHA in erythrocyte equivalents. Regions with high EPA+DHA blood levels (>8%) included the Sea of Japan, Scandinavia, and areas with indigenous populations or populations not fully adapted to Westernized food habits. Very low blood levels (≤4%) were observed in North America, Central and South America, Europe, the Middle East, Southeast Asia, and Africa. The present review reveals considerable variability in blood levels of EPA+DHA and the very low to low range of blood EPA+DHA for most of the world may increase global risk for chronic disease.
Collapse
Affiliation(s)
- Ken D Stark
- University of Waterloo, Department of Kinesiology, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada.
| | - Mary E Van Elswyk
- Scientific Affairs, Van Elswyk Consulting, Inc., 10350 Macedonia St., Longmont, CO 80503, USA.
| | - M Roberta Higgins
- MEDetect Clinical Information Associates, Inc., PO Box 152, Skippack, PA 19474, USA.
| | | | - Norman Salem
- DSM Nutritional Products Ltd., 6480 Dobbin Road, Columbia, MD 21045, USA.
| |
Collapse
|
10
|
Ruggeri M, Manca A, Coretti S, Codella P, Iacopino V, Romano F, Mascia D, Orlando V, Cicchetti A. Investigating the Generalizability of Economic Evaluations Conducted in Italy: A Critical Review. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2015; 18:709-720. [PMID: 26297100 DOI: 10.1016/j.jval.2015.03.1795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 02/27/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVES To assess the methodological quality of Italian health economic evaluations and their generalizability or transferability to different settings. METHODS A literature search was performed on the PubMed search engine to identify trial-based, nonexperimental prospective studies or model-based full economic evaluations carried out in Italy from 1995 to 2013. The studies were randomly assigned to four reviewers who applied a detailed checklist to assess the generalizability and quality of reporting. The review process followed a three-step blinded procedure. The reviewers who carried out the data extraction were blind as to the name of the author(s) of each study. Second, after the first review, articles were reassigned through a second blind randomization to a second reviewer. Finally, any disagreement between the first two reviewers was solved by a senior researcher. RESULTS One hundred fifty-one economic evaluations eventually met the inclusion criteria. Over time, we observed an increasing transparency in methods and a greater generalizability of results, along with a wider and more representative sample in trials and a larger adoption of transition-Markov models. However, often context-specific economic evaluations are carried out and not enough effort is made to ensure the transferability of their results to other contexts. In recent studies, cost-effectiveness analyses and the use of incremental cost-effectiveness ratio were preferred. CONCLUSIONS Despite a quite positive temporal trend, generalizability of results still appears as an unsolved question, even if some indication of improvement within Italian studies has been observed.
Collapse
Affiliation(s)
- Matteo Ruggeri
- Director of Post-Graduate School of Health Economics and Management (ALTEMS), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Manca
- Centre for Health Economics, University of York, York, UK
| | - Silvia Coretti
- Director of Post-Graduate School of Health Economics and Management (ALTEMS), Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Paola Codella
- Director of Post-Graduate School of Health Economics and Management (ALTEMS), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Iacopino
- Director of Post-Graduate School of Health Economics and Management (ALTEMS), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Romano
- Director of Post-Graduate School of Health Economics and Management (ALTEMS), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniele Mascia
- Director of Post-Graduate School of Health Economics and Management (ALTEMS), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Orlando
- Inter-departmental Research Centre of PharmacoEconomics and Drug utilization (CIRFF), Center of Pharmacoeconomics, Federico II University of Naples, Naples, Italy
| | - Americo Cicchetti
- Director of Post-Graduate School of Health Economics and Management (ALTEMS), Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
FLACHS P, ROSSMEISL M, KOPECKY J. The Effect of n-3 Fatty Acids on Glucose Homeostasis and Insulin Sensitivity. Physiol Res 2014; 63:S93-118. [DOI: 10.33549/physiolres.932715] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes (T2D) as well as cardiovascular disease (CVD) represent major complications of obesity and associated metabolic disorders (metabolic syndrome). This review focuses on the effects of long-chain n-3 polyunsaturated fatty acids (omega-3) on insulin sensitivity and glucose homeostasis, which are improved by omega-3 in many animal models of metabolic syndrome, but remain frequently unaffected in humans. Here we focus on: (i) mechanistic aspects of omega-3 action, reflecting also our experiments in dietary obese mice; and (ii) recent studies analysing omega-3’s effects in various categories of human subjects. Most animal experiments document beneficial effects of omega-3 on insulin sensitivity and glucose metabolism even under conditions of established obesity and insulin resistance. Besides positive results obtained in both cross-sectional and prospective cohort studies on healthy human populations, also some intervention studies in prediabetic subjects document amelioration of impaired glucose homeostasis by omega-3. However, the use of omega-3 to reduce a risk of new-onset diabetes in prediabetic subjects still remains to be further characterized. The results of a majority of clinical trials performed in T2D patients suggest that omega-3 have none or marginal effects on metabolic control, while effectively reducing hypertriglyceridemia in these patients. Despite most of the recent randomized clinical trials do not support the role of omega-3 in secondary prevention of CVD, this issue remains still controversial. Combined interventions using omega-3 and antidiabetic or hypolipidemic drugs should be further explored and considered for treatment of patients with T2D and other diseases.
Collapse
Affiliation(s)
| | | | - J. KOPECKY
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
12
|
Abstract
The family of polyunsaturated fatty acids (PUFAs), which can be found in most lipid classes, includes n-3 PUFAs essential for mammals and whose deficiency is associated with multiple diseases. Because of their multiple physiological actions, n-3 PUFAs play a crucial role in normal human metabolism as well as maintenance of a healthy status, with clinical effects that are not limited to the cardiovascular system but also include maternal and offspring health, growth and development, immune system disorders, cancer, cognitive function and psychological status. Multiple health organisations and scientific societies recommend increasing food-derived n-3 PUFA intake and also suggest that patients with documented coronary heart disease receive a minimum of 1000 mg/day of eicosapentaenoic acid and docosahexaenoic acid. The preventive and therapeutic effects of n-3 PUFAs appear to be largely dependent on the dosages employed and the characteristics of selected patients. So, in the era of personalised medicine, the time has come to move from generic advice to increase n-3 PUFA intake to a more evidence-based approach characterised by tailored indications to n-3 PUFA dietary or supplement consumption. This approach will require evaluation on a case-to-case basis the potential usefulness of n-3 PUFAs, taking into consideration their 'pleiotropic effects', the optimal dose for any given indication in relation to international guidelines, potential interactions with background therapy, possible side effects, differences in genetics and dietary response to supplementation, and the cost:benefit ratio, which is likely to vary as a function of differences in the range of fish intake in the diet.
Collapse
|
13
|
Garg V, Shen X, Cheng Y, Nawarskas JJ, Raisch DW. Use of number needed to treat in cost-effectiveness analyses. Ann Pharmacother 2013; 47:380-7. [PMID: 23463742 DOI: 10.1345/aph.1r417] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To review the use of number needed to treat (NNT) and/or number needed to harm (NNH) values to determine their relevance in helping clinicians evaluate cost-effectiveness analyses (CEAs). DATA SOURCES PubMed and EconLit were searched from 1966 to September 2012. STUDY SELECTION AND DATA EXTRACTION Reviews, editorials, non-English-language articles, and articles that did not report NNT/NNH or cost-effectiveness ratios were excluded. CEA studies reporting cost per life-year gained, per quality-adjusted life-year (QALY), or other cost per effectiveness measure were included. Full texts of all included articles were reviewed for study information, including type of journal, impact factor of the journal, focus of study, data source, publication year, how NNT/NNH values were reported, and outcome measures. DATA SYNTHESIS A total of 188 studies were initially identified, with 69 meeting our inclusion criteria. Most were published in clinician-practice-focused journals (78.3%) while 5.8% were in policy-focused journals, and 15.9% in health-economics-focused journals. The majority (72.4%) of the articles were published in high-impact journals (impact factor >3.0). Many articles focused on either disease treatment (40.5%) or disease prevention (40.5%). Forty-eight percent reported NNT as a part of the CEA ratio per event. Most (53.6%) articles used data from literature reviews, while 24.6% used data from randomized clinical trials, and 20.3% used data from observational studies. In addition, 10% of the studies implemented modeling to perform CEA. CONCLUSIONS CEA studies sometimes include NNT ratios. Although it has several limitations, clinicians often use NNT for decision-making, so including NNT information alongside CEA findings may help clinicians better understand and apply CEA results. Further research is needed to assess how NNT/NNH might meaningfully be incorporated into CEA publications.
Collapse
Affiliation(s)
- Vishvas Garg
- Pharmacoeconomics, Epidemiology, Pharmaceutical Policy, and Outcomes Research program, Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | | |
Collapse
|
14
|
Džumhur A, Zibar L, Wagner J, Simundić T, Dembić Z, Barbić J. Association studies of gene polymorphisms in toll-like receptors 2 and 4 in Croatian patients with acute myocardial infarction. Scand J Immunol 2012; 75:517-23. [PMID: 22229967 DOI: 10.1111/j.1365-3083.2012.02681.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of the study was to assess the frequency of SNP896A/G in the Toll-like receptor (TLR) 4 gene and SNP1350T/C in the TLR2 gene in patients with acute myocardial infarction (AMI) and to analyse the association of these SNPs with risk factors for atherosclerosis and clinical aspects of AMI in a sample of the Croatian population. We included 240 participants in the study: 120 AMI patients and 120 sex- and age-matched healthy blood donor controls. The SNP1350T/C variant in the TLR2 gene showed a lower frequency in the AMI patient group than in the control group (P = 0.033). The frequency of SNP896A/G variants in the TLR4 gene between the patients and the controls did not differ (P = 0.286). Significantly, fewer people had SNP1350T/C in the TLR2 gene (P = 0.003) among the participants with arterial hypertension than those without it. The frequency of SNP896A/G in TLR4 was the same in hypertensive patients compared with normotensive subjects (P = 0.088). SNP1350T/C in TLR2 was less frequent in the AMI patients and in those with hypertension. Thus, SNP1350T/C in TLR2 might play a protective role against AMI and arterial hypertension. The frequency of SNP896A/G in the TLR4 gene was not associated with AMI and arterial hypertension. Other risk factors for atherosclerosis and clinical aspects of myocardial infarction were not associated with the genotype distribution of the examined genes.
Collapse
Affiliation(s)
- A Džumhur
- Clinical Hospital Center Osijek, University Josip Juraj Strosmayer Osijek, Osijek, Croatia
| | | | | | | | | | | |
Collapse
|
15
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012; 2012:CD007176. [PMID: 22419320 PMCID: PMC8407395 DOI: 10.1002/14651858.cd007176.pub2] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our systematic review has demonstrated that antioxidant supplements may increase mortality. We have now updated this review. OBJECTIVES To assess the beneficial and harmful effects of antioxidant supplements for prevention of mortality in adults. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, LILACS, the Science Citation Index Expanded, and Conference Proceedings Citation Index-Science to February 2011. We scanned bibliographies of relevant publications and asked pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Three authors extracted data. Random-effects and fixed-effect model meta-analyses were conducted. Risk of bias was considered in order to minimise the risk of systematic errors. Trial sequential analyses were conducted to minimise the risk of random errors. Random-effects model meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Seventy-eight randomised trials with 296,707 participants were included. Fifty-six trials including 244,056 participants had low risk of bias. Twenty-six trials included 215,900 healthy participants. Fifty-two trials included 80,807 participants with various diseases in a stable phase. The mean age was 63 years (range 18 to 103 years). The mean proportion of women was 46%. Of the 78 trials, 46 used the parallel-group design, 30 the factorial design, and 2 the cross-over design. All antioxidants were administered orally, either alone or in combination with vitamins, minerals, or other interventions. The duration of supplementation varied from 28 days to 12 years (mean duration 3 years; median duration 2 years). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects model meta-analysis (21,484 dead/183,749 (11.7%) versus 11,479 dead/112,958 (10.2%); 78 trials, relative risk (RR) 1.02, 95% confidence interval (CI) 0.98 to 1.05) but significantly increased mortality in a fixed-effect model (RR 1.03, 95% CI 1.01 to 1.05). Heterogeneity was low with an I(2)- of 12%. In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. Meta-regression analysis did not find a significant difference in the estimated intervention effect in the primary prevention and the secondary prevention trials. In the 56 trials with a low risk of bias, the antioxidant supplements significantly increased mortality (18,833 dead/146,320 (12.9%) versus 10,320 dead/97,736 (10.6%); RR 1.04, 95% CI 1.01 to 1.07). This effect was confirmed by trial sequential analysis. Excluding factorial trials with potential confounding showed that 38 trials with low risk of bias demonstrated a significant increase in mortality (2822 dead/26,903 (10.5%) versus 2473 dead/26,052 (9.5%); RR 1.10, 95% CI 1.05 to 1.15). In trials with low risk of bias, beta-carotene (13,202 dead/96,003 (13.8%) versus 8556 dead/77,003 (11.1%); 26 trials, RR 1.05, 95% CI 1.01 to 1.09) and vitamin E (11,689 dead/97,523 (12.0%) versus 7561 dead/73,721 (10.3%); 46 trials, RR 1.03, 95% CI 1.00 to 1.05) significantly increased mortality, whereas vitamin A (3444 dead/24,596 (14.0%) versus 2249 dead/16,548 (13.6%); 12 trials, RR 1.07, 95% CI 0.97 to 1.18), vitamin C (3637 dead/36,659 (9.9%) versus 2717 dead/29,283 (9.3%); 29 trials, RR 1.02, 95% CI 0.98 to 1.07), and selenium (2670 dead/39,779 (6.7%) versus 1468 dead/22,961 (6.4%); 17 trials, RR 0.97, 95% CI 0.91 to 1.03) did not significantly affect mortality. In univariate meta-regression analysis, the dose of vitamin A was significantly associated with increased mortality (RR 1.0006, 95% CI 1.0002 to 1.001, P = 0.002). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Beta-carotene and vitamin E seem to increase mortality, and so may higher doses of vitamin A. Antioxidant supplements need to be considered as medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- Goran Bjelakovic
- Department of InternalMedicine,Medical Faculty, University ofNis,Nis, Serbia.
| | | | | | | | | |
Collapse
|
16
|
Wong JB, Coates PM, Russell RM, Dwyer JT, Schuttinga JA, Bowman BA, Peterson SA. Economic analysis of nutrition interventions for chronic disease prevention: methods, research, and policy. Nutr Rev 2012; 69:533-49. [PMID: 21884133 DOI: 10.1111/j.1753-4887.2011.00412.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased interest in the potential societal benefit of incorporating health economics as a part of clinical translational science, particularly nutrition interventions, led the Office of Dietary Supplements at the National Institutes of Health to sponsor a conference to address key questions about the economic analysis of nutrition interventions to enhance communication among health economic methodologists, researchers, reimbursement policy makers, and regulators. Issues discussed included the state of the science, such as what health economic methods are currently used to judge the burden of illness, interventions, or healthcare policies, and what new research methodologies are available or needed to address knowledge and methodological gaps or barriers. Research applications included existing evidence-based health economic research activities in nutrition that are ongoing or planned at federal agencies. International and US regulatory, policy, and clinical practice perspectives included a discussion of how research results can help regulators and policy makers within government make nutrition policy decisions, and how economics affects clinical guideline development.
Collapse
Affiliation(s)
- John B Wong
- Division of Clinical Decision Making, Tufts Medical Center, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Herman PM, Poindexter BL, Witt CM, Eisenberg DM. Are complementary therapies and integrative care cost-effective? A systematic review of economic evaluations. BMJ Open 2012; 2:bmjopen-2012-001046. [PMID: 22945962 PMCID: PMC3437424 DOI: 10.1136/bmjopen-2012-001046] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE A comprehensive systematic review of economic evaluations of complementary and integrative medicine (CIM) to establish the value of these therapies to health reform efforts. DATA SOURCES PubMed, CINAHL, AMED, PsychInfo, Web of Science and EMBASE were searched from inception through 2010. In addition, bibliographies of found articles and reviews were searched, and key researchers were contacted. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies of CIM were identified using criteria based on those of the Cochrane complementary and alternative medicine group. All studies of CIM reporting economic outcomes were included. STUDY APPRAISAL METHODS: All recent (and likely most cost-relevant) full economic evaluations published 2001-2010 were subjected to several measures of quality. Detailed results of higher-quality studies are reported. RESULTS A total of 338 economic evaluations of CIM were identified, of which 204, covering a wide variety of CIM for different populations, were published 2001-2010. A total of 114 of these were full economic evaluations. And 90% of these articles covered studies of single CIM therapies and only one compared usual care to usual care plus access to multiple licensed CIM practitioners. Of the recent full evaluations, 31 (27%) met five study-quality criteria, and 22 of these also met the minimum criterion for study transferability ('generalisability'). Of the 56 comparisons made in the higher-quality studies, 16 (29%) show a health improvement with cost savings for the CIM therapy versus usual care. Study quality of the cost-utility analyses (CUAs) of CIM was generally comparable to that seen in CUAs across all medicine according to several measures, and the quality of the cost-saving studies was slightly, but not significantly, lower than those showing cost increases (85% vs 88%, p=0.460). CONCLUSIONS This comprehensive review identified many CIM economic evaluations missed by previous reviews and emerging evidence of cost-effectiveness and possible cost savings in at least a few clinical populations. Recommendations are made for future studies.
Collapse
Affiliation(s)
- Patricia M Herman
- Center for Health Outcomes and PharmacoEconomic Research, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Beth L Poindexter
- Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Claudia M Witt
- Institute for Social Medicine, Epidemiology and Health Economics, Charite’ University Medical Center, Berlin, Germany
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David M Eisenberg
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Harvard School of Public Health, Boston, Massachusetts, USA
- Samueli Institute, Alexandria, Virginia, USA
| |
Collapse
|
18
|
Health economic evaluation in complementary medicine. Complement Ther Med 2011; 19:289-302. [DOI: 10.1016/j.ctim.2011.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 08/12/2011] [Accepted: 09/12/2011] [Indexed: 12/18/2022] Open
|
19
|
Cowie MR, Cure S, Bianic F, McGuire A, Goodall G, Tavazzi L. Cost-effectiveness of highly purified omega-3 polyunsaturated fatty acid ethyl esters in the treatment of chronic heart failure: results of Markov modelling in a UK setting. Eur J Heart Fail 2011; 13:681-9. [PMID: 21474462 DOI: 10.1093/eurjhf/hfr023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS A recent randomized placebo-controlled clinical trial has reported reductions in mortality and hospitalizations in patients with chronic heart failure (CHF) who were prescribed highly purified omega-3 polyunsaturated fatty acid ethyl esters (n-3 PUFA). This study aimed at evaluating the cost and benefits associated with their use in the treatment of CHF in a UK setting. METHODS AND RESULTS Results from a recent clinical trial were used to develop a Markov model to project clinical outcomes while capturing relevant costs and patient quality of life. The model captured outcomes over a lifetime horizon from a UK National Health Service perspective, with direct costs accounted in 2009 GBP (£) and discounted at 3.5% together with clinical benefits. Results are presented in terms of life expectancy, quality-adjusted life expectancy, direct costs, and incremental cost-effectiveness ratios. In addition to standard therapy, n-3 PUFA vs. placebo increased lifetime direct costs by £993 (≈€1150), with additional quality-adjusted life expectancy of 0.079 quality-adjusted life years (QALYs), and mean lifetime costs of £12,636 (≈€14,600) per QALY gained. Probabilistic sensitivity analyses suggested a 60% likelihood of n-3 PUFA being regarded as cost-effective versus placebo at a willingness-to-pay threshold of £30,000 (≈€34,600) per QALY gained. CONCLUSIONS By currently accepted standards of value for money in the UK; the addition of n-3 PUFA to optimal medical therapy for patients with heart failure is likely to be cost-effective.
Collapse
Affiliation(s)
- Martin R Cowie
- National Heart & Lung Institute, Imperial College, Royal Brompton Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, Newby LK, Piña IL, Roger VL, Shaw LJ, Zhao D, Beckie TM, Bushnell C, D'Armiento J, Kris-Etherton PM, Fang J, Ganiats TG, Gomes AS, Gracia CR, Haan CK, Jackson EA, Judelson DR, Kelepouris E, Lavie CJ, Moore A, Nussmeier NA, Ofili E, Oparil S, Ouyang P, Pinn VW, Sherif K, Smith SC, Sopko G, Chandra-Strobos N, Urbina EM, Vaccarino V, Wenger NK. Effectiveness-based guidelines for the prevention of cardiovascular disease in women--2011 update: a guideline from the American Heart Association. J Am Coll Cardiol 2011; 57:1404-23. [PMID: 21388771 PMCID: PMC3124072 DOI: 10.1016/j.jacc.2011.02.005] [Citation(s) in RCA: 588] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, Newby LK, Piña IL, Roger VL, Shaw LJ, Zhao D, Beckie TM, Bushnell C, D'Armiento J, Kris-Etherton PM, Fang J, Ganiats TG, Gomes AS, Gracia CR, Haan CK, Jackson EA, Judelson DR, Kelepouris E, Lavie CJ, Moore A, Nussmeier NA, Ofili E, Oparil S, Ouyang P, Pinn VW, Sherif K, Smith SC, Sopko G, Chandra-Strobos N, Urbina EM, Vaccarino V, Wenger NK. Effectiveness-based guidelines for the prevention of cardiovascular disease in women--2011 update: a guideline from the american heart association. Circulation 2011; 123:1243-62. [PMID: 21325087 PMCID: PMC3182143 DOI: 10.1161/cir.0b013e31820faaf8] [Citation(s) in RCA: 1257] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Doran CM, Chang DHT, Kiat H, Bensoussan A. Review of economic methods used in complementary medicine. J Altern Complement Med 2011; 16:591-5. [PMID: 20804369 DOI: 10.1089/acm.2008.0404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The purpose of this research is to review the economic methods used in complementary medicine (CM). METHOD A comprehensive literature review was undertaken (1995-2007) to identify peer-reviewed articles related to economic methods used in CM. RESULTS The literature found 15 full economic evaluations of CM: 3 in the manipulative and body-based practices, 5 in the whole medical systems, and 7 in the biologically based practices. No evaluations were identified for the areas of mind-body medicine, alternative medical systems, or energy medicine. The review failed to locate any articles that used alternate economic methods such as contingent valuation or discrete choice modelling. The overall consensus from the 15 economic evaluations, despite variations in project design and methodological rigor, was that CM, as evaluated in these studies, was cost-effective compared to usual care. CONCLUSIONS As health care costs continue to rise, decision makers, both consumers and policymakers, must allocate scarce resources toward those treatments that offer the best value for the money. Considerable scope exists to advance the science behind CM through a more systematic integration of economic methods into CM research.
Collapse
Affiliation(s)
- Christopher M Doran
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
23
|
Nash M, Dalal K, Martinez-Barrizonte J, Cardenas D. Suppression of Proatherogenic Inflammatory Cytokines as a Therapeutic Countermeasure to CVD Risks Accompanying SCI. Top Spinal Cord Inj Rehabil 2011. [DOI: 10.1310/sci1603-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Kraft K. Complementary/Alternative Medicine in the context of prevention of disease and maintenance of health. Prev Med 2009; 49:88-92. [PMID: 19465045 DOI: 10.1016/j.ypmed.2009.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/28/2009] [Accepted: 05/16/2009] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Complementary and alternative medicine (CAM) is used increasingly for both treatment of diseases, and illness prevention and maintenance of health. However, studies on the latter two subjects are still rare. METHODS In an unsystematic review publications on CAM in the context of the prevalence of use, possible risks, and cost implications of prevention are analyzed. Also, publications published in MEDLINE until December 2008 on CAM modalities used for the prevention of common diseases such as cardiovascular diseases, cancer or dementia, are reviewed. RESULTS Among the CAM modalities, some dietary supplements show relatively strong positive evidence for being effective in the prevention of some common diseases. CONCLUSION Still a great deal of systematic research effort lies ahead before most of the options discussed would meet mainstream medical standards for introduction into routine prevention regimens, and even more for maintenance of health. Also, many other popular CAM modalities may have potentials in this context, but published data are still not available.
Collapse
Affiliation(s)
- Karin Kraft
- Chair of Complementary Medicine, Department of Internal Medicine of University of Rostock, Ernst-Heydemann-Str. 6, D-18057 Rostock, Germany.
| |
Collapse
|
25
|
Fearon IM, Faux SP. Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 2009; 47:372-81. [PMID: 19481547 DOI: 10.1016/j.yjmcc.2009.05.013] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/12/2009] [Accepted: 05/20/2009] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the most common cause of mortality in the Western world and accounts for up to a third of all deaths worldwide. Cardiovascular disease is multifactorial and involves complex interplay between lifestyle (diet, smoking, exercise, ethanol consumption) and fixed (genotype, age, menopausal status, gender) causative factors. The initiating step in cardiovascular disease is endothelial damage, which exposes these cells and the underlying cell layers to a deleterious inflammatory process which ultimately leads to the formation of atherosclerotic lesions. Intrinsic to lesion formation is cellular oxidative stress, due to the production of damaging free radicals (reactive oxygen and nitrogen species) by many cell types including endothelial cells, vascular smooth muscle cells and monocytes/macrophages. Exogenous factors such as smoking and the existence of other disease states such as diabetes also contribute to oxidative stress and are strong risk factors for cardiovascular disease. In this review we describe this role of free radicals in atherosclerosis and discuss the mechanisms and cellular systems by which these radicals are produced. We also highlight recent technological advances which have added to the vascular biologist's armoury and which promise to provide new insight into the role of reactive oxygen species in cardiovascular disease.
Collapse
Affiliation(s)
- Ian M Fearon
- British American Tobacco, Group R & D, Southampton, SO15 8TL, UK.
| | | |
Collapse
|
26
|
Cohen BE, Garg SK, Ali S, Harris WS, Whooley MA. Red blood cell docosahexaenoic acid and eicosapentaenoic acid concentrations are positively associated with socioeconomic status in patients with established coronary artery disease: data from the Heart and Soul Study. J Nutr 2008; 138:1135-40. [PMID: 18492846 PMCID: PMC2675885 DOI: 10.1093/jn/138.6.1135] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional cardiac risk factors only partially explain the biological mechanisms by which persons of lower socioeconomic status (SES) have higher cardiovascular risk. Dietary factors, resulting in lower circulating levels of (n-3) fatty acids, may also contribute to the increased risk of cardiovascular disease (CVD) in patients with low SES. We tested whether low SES is associated with RBC levels of (n-3) fatty acids in patients with coronary heart disease. We performed a cross-sectional analysis of 987 adults with stable coronary artery disease (CAD) recruited from San Francisco area outpatient clinics. Four SES measures (household income, education, occupation, and housing status) were assessed by self-report. RBC fatty acid levels of 2 (n-3) fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were measured in venous blood samples from fasting subjects. Participants with lower household income, education, occupation, and housing status had lower RBC levels of (n-3) fatty acids (P < 0.001 for all 4 measures). In multivariable models, household income, education, and occupation remained strongly associated with DHA and EPA levels after adjustment for demographic factors, BMI, physical activity, statin use, and kidney function (P < 0.001 for all 3 measures). Housing status was not associated with DHA or EPA after multivariable adjustment. Among patients with CAD, 3 indicators of low SES, household income, education, and occupation, were strongly associated with lower RBC levels of (n-3) fatty acids. Our results raise the possibility that (n-3) fatty acids may be an important mediating factor in the association between low SES and CVD.
Collapse
Affiliation(s)
- Beth E. Cohen
- Department of Veterans Affairs Medical Center, San Francisco, CA 94121;, Division of General Internal Medicine, University of California, San Francisco, CA 94143;,To whom correspondence should be addressed. E-mail:
| | - Sachin K. Garg
- Emory University School of Medicine, Atlanta, GA 30322 and
| | - Sadia Ali
- Department of Veterans Affairs Medical Center, San Francisco, CA 94121
| | - William S. Harris
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 50175
| | - Mary A. Whooley
- Department of Veterans Affairs Medical Center, San Francisco, CA 94121;, Division of General Internal Medicine, University of California, San Francisco, CA 94143
| |
Collapse
|
27
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2008:CD007176. [PMID: 18425980 DOI: 10.1002/14651858.cd007176] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Animal and physiological research as well as observational studies suggest that antioxidant supplements may improve survival. OBJECTIVES To assess the effect of antioxidant supplements on mortality in primary or secondary prevention randomised clinical trials. SEARCH STRATEGY We searched The Cochrane Library (Issue 3, 2005), MEDLINE (1966 to October 2005), EMBASE (1985 to October 2005), and the Science Citation Index Expanded (1945 to October 2005). We scanned bibliographies of relevant publications and wrote to pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. Included participants were either healthy (primary prevention trials) or had any disease (secondary prevention trials). DATA COLLECTION AND ANALYSIS Three authors extracted data. Trials with adequate randomisation, blinding, and follow-up were classified as having a low risk of bias. Random-effects and fixed-effect meta-analyses were performed. Random-effects meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Sixty-seven randomised trials with 232,550 participants were included. Forty-seven trials including 180,938 participants had low risk of bias. Twenty-one trials included 164,439 healthy participants. Forty-six trials included 68111 participants with various diseases (gastrointestinal, cardiovascular, neurological, ocular, dermatological, rheumatoid, renal, endocrinological, or unspecified). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects meta-analysis (relative risk [RR] 1.02, 95% confidence interval [CI] 0.99 to 1.06), but significantly increased mortality in a fixed-effect model (RR 1.04, 95% CI 1.02 to 1.06). In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. In the trials with a low risk of bias, the antioxidant supplements significantly increased mortality (RR 1.05, 95% CI 1.02 to 1.08). When the different antioxidants were assessed separately, analyses including trials with a low risk of bias and excluding selenium trials found significantly increased mortality by vitamin A (RR 1.16, 95% CI 1.10 to 1.24), beta-carotene (RR 1.07, 95% CI 1.02 to 1.11), and vitamin E (RR 1.04, 95% CI 1.01 to 1.07), but no significant detrimental effect of vitamin C (RR 1.06, 95% CI 0.94 to 1.20). Low-bias risk trials on selenium found no significant effect on mortality (RR 0.91, 95% CI 0.76 to 1.09). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Vitamin A, beta-carotene, and vitamin E may increase mortality. Future randomised trials could evaluate the potential effects of vitamin C and selenium for primary and secondary prevention. Such trials should be closely monitored for potential harmful effects. Antioxidant supplements need to be considered medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- G Bjelakovic
- Copenhagen University Hospital, Rigshospitalet, Department 3344,Copenhagen Trial Unit, Centre for Clinical Intervention Research, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | | | | | | | |
Collapse
|
28
|
Health economic evaluation of controlled and maintained physical exercise in the prevention of cardiovascular and other prosperity diseases. ACTA ACUST UNITED AC 2008; 14:815-24. [PMID: 18043305 DOI: 10.1097/hjr.0b013e3282ef514f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Several studies and reports support the health benefits of frequent physical exercise, on the condition that this exercise is controlled and maintained. Given the scarce resources that can be spent on health and health care, the objective of this study was to evaluate the long-term health and economic outcomes of controlled and maintained physical exercise in a fitness setting. METHODS A 25-year Markov model with a 12-month cycle-length and states representing diabetes, coronary heart disease, stroke, colon cancer and breast cancer was developed to predict cumulative costs and QALYs (quality adjusted life years) for three defined population cohorts, of different risk levels. Physical exercise was thereby compared with no intervention. Reduced risks associated with physical exercise, cost of diseases and loss of quality of life in case of disease were obtained from published literature. Costs were taken from a societal perspective; Belgium was selected as the setting. One way and probabilistic sensitivity analyses were carried out. RESULTS For each of the cohorts, physical exercise is predicted to increase the QALYs and to offset a large part of the initial investment. The cost per QALY varies from 2000 to 15,000 Euro per QALY depending on the risk levels, which is better compared with a majority of secondary preventions that are currently publicly financed. CONCLUSION Controlled and maintained physical exercise is projected to be cost-effective, which is likely to be explained by its simultaneous effect on several diseases and the associated weight loss, which affects quality of life positively.
Collapse
|
29
|
Kennedy DA, Hart J, Seely D. Cost effectiveness of natural health products: a systematic review of randomized clinical trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2007; 6:297-304. [PMID: 18955290 PMCID: PMC2722206 DOI: 10.1093/ecam/nem167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Health care spending in North America is consuming an ever-increasing share of Gross Domestic Product (GDP). A large proportion of alternative health care is consumed in the form of natural health products (NHPs). The question of whether or not NHPs may provide a cost-effective choice in the treatment of disease is important for patients, physicians and policy makers. The objective of this study was to conduct a systematic review of the literature in order to find, appraise and summarize high-quality studies that explore the cost effectiveness of NHPs as compared to conventional medicine. The following databases were searched independently in duplicate from inception to January 1, 2006: EMBASE, MEDLINE, CINAHL, BioethicsLine, Wilson General Science abstracts, EconLit, Cochrane Library, ABI/Inform and SciSearch. To be included in the review, trials had to be randomized, assessed for some measure of cost effectiveness and include the use of NHPs as defined by the Natural Health Products Directorate. Studies dealing with diseases due to malnutrition were excluded from appraisal. The pooled searches unveiled nine articles that fit the inclusion/exclusion criteria. The conditions assessed by the studies included three on postoperative complications, two on cardiovascular disease, two on gastrointestinal disorders, one on critically ill patients and one on urinary tract infections. Heterogeneity between the studies was too great to allow for meta-analysis of the results. The use of NHPs shows evidence of cost effectiveness in relation to postoperative surgery but not with respect to the other conditions assessed. In conclusion, NHPs may be of use in preventing complications associated with surgery. The cost effectiveness of some NHPs is encouraging in certain areas but needs confirmation from further research.
Collapse
Affiliation(s)
- Deborah A Kennedy
- ND, Director, Department of Research and Clinical Epidemiology, The Canadian College of Naturopathic Medicine, 1255 Sheppard Ave East, Toronto, ON M2K 1E2,
| | | | | |
Collapse
|
30
|
Quilici S, Martin M, McGuire A, Zoellner Y. A cost-effectiveness analysis of n-3 PUFA (Omacor) treatment in post-MI patients. Int J Clin Pract 2006; 60:922-32. [PMID: 16893435 DOI: 10.1111/j.1742-1241.2006.01009.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study evaluates the cost-effectiveness of Omacor treatment as a standard prevention measure post-MI in the UK. A cost-effectiveness model was developed based on the GISSI-P trial, combining a survival and a Markov model, over a lifetime period. The base case results for Omacor, at 4 years and over a lifetime, respectively, were: cost [corrected] per QALY gained: pound15,189 and 3,723; [corrected] cost per life years gained (LYG): pound12,011 and pound2,812 [corrected] The cost per death avoided at 4 years was pound31,786. Deterministic and probabilistic sensitivity analyses did not change the base case results substantially. The use of Omacor as a standard post-MI prevention treatment seems warranted in the UK, both on the basis of its efficacy, which is in addition to other prophylactic treatments as evidenced by the results of the GISSI-P trial, and on cost-effectiveness grounds - both at 4 years and over a lifetime's time-horizon, using the current cost-effectiveness thresholds.
Collapse
Affiliation(s)
- S Quilici
- i3 Innovus, Uxbridge, Middlesex, UK.
| | | | | | | |
Collapse
|
31
|
Lamotte M, Annemans L, Kawalec P, Zoellner Y. A multi-country health economic evaluation of highly concentrated N-3 polyunsaturated fatty acids in secondary prevention after myocardial infarction. PHARMACOECONOMICS 2006; 24:783-95. [PMID: 16898848 DOI: 10.2165/00019053-200624080-00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Patients who survive an acute myocardial infarction (MI) are at an increased risk of subsequent major cardiovascular events and (often sudden) cardiac death. The use of highly concentrated and purified omega-3 polyunsaturated fatty acids (n-3 PUFAs), in addition to standard secondary prevention after MI, results in a significant reduction in the risk of sudden death versus no n-3 PUFAs. This study assessed the cost effectiveness of adding n-3 PUFAs to the current secondary prevention treatment versus standard prevention alone after acute MI in five countries: Australia, Belgium, Canada, Germany and Poland. METHODS Based on the clinical outcomes of GISSI-P (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico - Prevenzione) [MI, stroke, revascularisation rate and mortality], a decision model was built in DataProtrade mark. The implications of adding n-3 PUFAs to standard treatment in patients aged 59 years with a recent history of MI were analysed from the healthcare payer's perspective. The time horizon was 3.5 years (identical to GISSI-Prevenzione) but the effects on life expectancy through avoidance of cardiac events were calculated lifelong. Event costs were based on literature data. Life expectancy data for survivors of cardiac disease were taken from the Saskatchewan database and then adjusted by country. Results are expressed as extra cost (Euro) per life-year gained (LYG). Annual discounting of 5% was applied to health effects and costs. RESULTS Treatment with highly concentrated n-3 PUFAs yielded between 0.261 (Poland) and 0.284 (Australia) LYG, at an additional cost of 787 Euros(Canada) to 1,439 Euros(Belgium). The ICER varied between 2,788 Euros(Canada) and 5,097 Euros(Belgium) per LYG. Sensitivity analyses on effectiveness, cost of complications and discounting proved the robustness of the results. A second-order Monte Carlo simulation based on the 95% confidence intervals obtained from GISSI-P suggests that highly concentrated n-3 PUFAs are cost effective in 93% of simulations in Poland and in >98% of simulations in the other countries, assuming the country-specific societal willingness-to-pay threshold. Total costs were considerably increased by including healthcare costs incurred during the remaining life-years, but this had no impact on the ICER-based treatment recommendation. CONCLUSIONS Adding highly concentrated n-3 PUFAs to standard treatment in the secondary prevention of MI appears to be cost effective versus standard treatment alone in the five countries studied.
Collapse
Affiliation(s)
- Mark Lamotte
- Health Economics and Outcomes Research, Unit of IMS Health, Brussels, Belgium.
| | | | | | | |
Collapse
|
32
|
Herman PM, Craig BM, Caspi O. Is complementary and alternative medicine (CAM) cost-effective? A systematic review. Altern Ther Health Med 2005; 5:11. [PMID: 15932647 PMCID: PMC1182346 DOI: 10.1186/1472-6882-5-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 06/02/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND Out-of-pocket expenditures of over 34 billion dollars per year in the US are an apparent testament to a widely held belief that complementary and alternative medicine (CAM) therapies have benefits that outweigh their costs. However, regardless of public opinion, there is often little more than anecdotal evidence on the health and economic implications of CAM therapies. The objectives of this study are to present an overview of economic evaluation and to expand upon a previous review to examine the current scope and quality of CAM economic evaluations. METHODS The data sources used were Medline, AMED, Alt-HealthWatch, and the Complementary and Alternative Medicine Citation Index; January 1999 to October 2004. Papers that reported original data on specific CAM therapies from any form of standard economic analysis were included. Full economic evaluations were subjected to two types of quality review. The first was a 35-item checklist for reporting quality, and the second was a set of four criteria for study quality (randomization, prospective collection of economic data, comparison to usual care, and no blinding). RESULTS A total of 56 economic evaluations (39 full evaluations) of CAM were found covering a range of therapies applied to a variety of conditions. The reporting quality of the full evaluations was poor for certain items, but was comparable to the quality found by systematic reviews of economic evaluations in conventional medicine. Regarding study quality, 14 (36%) studies were found to meet all four criteria. These exemplary studies indicate CAM therapies that may be considered cost-effective compared to usual care for various conditions: acupuncture for migraine, manual therapy for neck pain, spa therapy for Parkinson's, self-administered stress management for cancer patients undergoing chemotherapy, pre- and post-operative oral nutritional supplementation for lower gastrointestinal tract surgery, biofeedback for patients with "functional" disorders (eg, irritable bowel syndrome), and guided imagery, relaxation therapy, and potassium-rich diet for cardiac patients. CONCLUSION Whereas the number and quality of economic evaluations of CAM have increased in recent years and more CAM therapies have been shown to be of good value, the majority of CAM therapies still remain to be evaluated.
Collapse
Affiliation(s)
- Patricia M Herman
- Program in Integrative Medicine, University of Arizona, Tucson, Arizona, USA
| | - Benjamin M Craig
- Department of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Opher Caspi
- Recanati Center for Internal Medicine and Research, Rabin Medical Center (Beilinson Campus), Petah Tikva, Israel
| |
Collapse
|
33
|
Hooper L, Thompson RL, Harrison RA, Summerbell CD, Moore H, Worthington HV, Durrington PN, Ness AR, Capps NE, Davey Smith G, Riemersma RA, Ebrahim SBJ. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Syst Rev 2004:CD003177. [PMID: 15495044 PMCID: PMC4170890 DOI: 10.1002/14651858.cd003177.pub2] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND It has been suggested that omega 3 (W3, n-3 or omega-3) fats from oily fish and plants are beneficial to health. OBJECTIVES To assess whether dietary or supplemental omega 3 fatty acids alter total mortality, cardiovascular events or cancers using both RCT and cohort studies. SEARCH STRATEGY Five databases including CENTRAL, MEDLINE and EMBASE were searched to February 2002. No language restrictions were applied. Bibliographies were checked and authors contacted. SELECTION CRITERIA RCTs were included where omega 3 intake or advice was randomly allocated and unconfounded, and study duration was at least six months. Cohorts were included where a cohort was followed up for at least six months and omega 3 intake estimated. DATA COLLECTION AND ANALYSIS Studies were assessed for inclusion, data extracted and quality assessed independently in duplicate. Random effects meta-analysis was performed separately for RCT and cohort data. MAIN RESULTS Forty eight randomised controlled trials (36,913 participants) and 41 cohort analyses were included. Pooled trial results did not show a reduction in the risk of total mortality or combined cardiovascular events in those taking additional omega 3 fats (with significant statistical heterogeneity). Sensitivity analysis, retaining only studies at low risk of bias, reduced heterogeneity and again suggested no significant effect of omega 3 fats. Restricting analysis to trials increasing fish-based omega 3 fats, or those increasing short chain omega 3s, did not suggest significant effects on mortality or cardiovascular events in either group. Subgroup analysis by dietary advice or supplementation, baseline risk of CVD or omega 3 dose suggested no clear effects of these factors on primary outcomes. Neither RCTs nor cohorts suggested increased relative risk of cancers with higher omega 3 intake but estimates were imprecise so a clinically important effect could not be excluded. REVIEWERS' CONCLUSIONS It is not clear that dietary or supplemental omega 3 fats alter total mortality, combined cardiovascular events or cancers in people with, or at high risk of, cardiovascular disease or in the general population. There is no evidence we should advise people to stop taking rich sources of omega 3 fats, but further high quality trials are needed to confirm suggestions of a protective effect of omega 3 fats on cardiovascular health. There is no clear evidence that omega 3 fats differ in effectiveness according to fish or plant sources, dietary or supplemental sources, dose or presence of placebo.
Collapse
Affiliation(s)
- L Hooper
- MANDEC, University Dental Hospital of Manchester, Higher Cambridge Street, Manchester, UK, M15 6FH.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang Y, Crawford MA, Chen J, Li J, Ghebremeskel K, Campbell TC, Fan W, Parker R, Leyton J. Fish consumption, blood docosahexaenoic acid and chronic diseases in Chinese rural populations. Comp Biochem Physiol A Mol Integr Physiol 2004; 136:127-40. [PMID: 14527635 DOI: 10.1016/s1095-6433(03)00016-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Chinese traditional diet is low in fat. However, there is regional variability in the amount, type of fat consumed and the pattern of chronic diseases. An epidemiological survey of 65 rural counties in China (6500 subjects) was conducted in the 1980s. We have re-examined the red blood cell fatty acid and antioxidant composition, with fish consumption. Fish consumption correlated significantly with the levels of docosahexaenoic acid (DHA) in red blood cells (RBC) (r=0.640, P<0.001), selenium (r=0.467, P<0.001) and glutathione peroxidase (r=0.333, P<0.01) in plasma. The proportion of DHA in RBC was inversely associated with total plasma triglyceride concentrations. A strong inverse correlation between DHA in RBC and cardiovascular disease (CVD) was found. The strongest correlation was the combination of DHA and oleic acid. RBC docosahexaenoic acid itself also correlated negatively and significantly with most chronic diseases and appeared to be more protective than either eicosapentaenoic or the omega3 docosapenataenoic acids. These results demonstrate the protective nature of fish consumption and DHA, found in high fat Western diets, operates at a low level of fat. This finding suggests the protective effect of fish consumption as validated by red cell DHA is universal. The protective effect is, therefore, most likely to be due to the fundamental properties of docosahexaenoic acid in cell function.
Collapse
Affiliation(s)
- Yiqun Wang
- Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, North Campus,166-222 Holloway Road, N7 8DB, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
It has long been recognized from epidemiological studies that Greenland Eskimos have substantially reduced rates of acute myocardial infarction (MI) compared with Western controls. From these epidemiological observations, the benefits of fatty fish consumption have been explored in cell culture and animal studies, as well as randomized controlled trials investigating the cardioprotective effects of omega-3 fatty acids. Dietary omega-3 fatty acids seem to stabilize the myocardium electrically, resulting in reduced susceptibility to ventricular arrhythmias, thereby reducing the risk of sudden death. These fatty acids also have potent anti-inflammatory effects, and may also be antithrombotic and anti-atherogenic. Furthermore, the recent GISSI-Prevention study of 11 324 patients showed a marked decrease in risk of sudden cardiac death as well as a reduction in all-cause mortality in the group taking a highly purified form of omega-3 fatty acids, despite the use of other secondary prevention drugs, including beta-blockers and lipid-lowering therapy. The use of omega-3 fatty acids should be considered as part of a comprehensive secondary prevention strategy post-myocardial infarction.
Collapse
Affiliation(s)
- K W Lee
- Haemostasis, Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK
| | | |
Collapse
|