1
|
Magadmi R, Alyoubi R, Moshrif T, Bakhshwin D, Suliman BA, Kamel F, Jamal M, Burzangi AS, Basit S. Polymorphisms in the Drug Transporter Gene ABCB1 Are Associated with Drug Response in Saudi Epileptic Pediatric Patients. Biomedicines 2023; 11:2505. [PMID: 37760947 PMCID: PMC10526247 DOI: 10.3390/biomedicines11092505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Epilepsy is one of the most common chronic neurodisorders in the pediatric age group. Despite the availability of over 20 anti-seizure medications (ASMs) on the market, drug-resistant epilepsy still affects one-third of individuals. Consequently, this research aimed to investigate the association between single-nucleotide polymorphisms (SNPs) of the ATP-binding cassette subfamily B member 1 (ABCB1) gene in epileptic pediatric patients and their response to ASMs. This multicentric, cross-sectional study was conducted among Saudi children with epilepsy in Jeddah, Saudi Arabia. The polymorphism variants of ABCB1 rs1128503 at exon 12, rs2032582 at exon 21, and rs1045642 at exon 26 were genotyped using the Sanger sequencing technique. The study included 85 children with epilepsy: 43 patients demonstrated a good response to ASMs, while 42 patients exhibited a poor response. The results revealed that good responders were significantly more likely to have the TT genotypes at rs1045642 and rs2032582 SNPs compared to poor responders. Additionally, haplotype analysis showed that the T-G-C haplotype at rs1128503, rs2032582, and rs1045642 was only present in poor responders. In conclusion, this study represents the first pharmacogenetic investigation of the ABCB1 gene in Saudi epileptic pediatric patients and demonstrates a significant association between rs1045642 and rs2032582 variants and patient responsiveness. Despite the small sample size, the results underscore the importance of personalized treatment for epileptic patients.
Collapse
Affiliation(s)
- Rania Magadmi
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Reem Alyoubi
- Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tahani Moshrif
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
- Clinical Pharmacy Department, King Abdullah Medical Complex, Jeddah 23816 , Saudi Arabia
| | - Duaa Bakhshwin
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Bandar A. Suliman
- College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
| | - Fatemah Kamel
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Maha Jamal
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Abdulhadi S. Burzangi
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Sulman Basit
- Biochemistry and Molecular Medicine Department, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
- Centre for Genetics and Inherited Diseases, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
2
|
Biswas S, Clawson W, Levin M. Learning in Transcriptional Network Models: Computational Discovery of Pathway-Level Memory and Effective Interventions. Int J Mol Sci 2022; 24:285. [PMID: 36613729 PMCID: PMC9820177 DOI: 10.3390/ijms24010285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Trainability, in any substrate, refers to the ability to change future behavior based on past experiences. An understanding of such capacity within biological cells and tissues would enable a particularly powerful set of methods for prediction and control of their behavior through specific patterns of stimuli. This top-down mode of control (as an alternative to bottom-up modification of hardware) has been extensively exploited by computer science and the behavioral sciences; in biology however, it is usually reserved for organism-level behavior in animals with brains, such as training animals towards a desired response. Exciting work in the field of basal cognition has begun to reveal degrees and forms of unconventional memory in non-neural tissues and even in subcellular biochemical dynamics. Here, we characterize biological gene regulatory circuit models and protein pathways and find them capable of several different kinds of memory. We extend prior results on learning in binary transcriptional networks to continuous models and identify specific interventions (regimes of stimulation, as opposed to network rewiring) that abolish undesirable network behavior such as drug pharmacoresistance and drug sensitization. We also explore the stability of created memories by assessing their long-term behavior and find that most memories do not decay over long time periods. Additionally, we find that the memory properties are quite robust to noise; surprisingly, in many cases noise actually increases memory potential. We examine various network properties associated with these behaviors and find that no one network property is indicative of memory. Random networks do not show similar memory behavior as models of biological processes, indicating that generic network dynamics are not solely responsible for trainability. Rational control of dynamic pathway function using stimuli derived from computational models opens the door to empirical studies of proto-cognitive capacities in unconventional embodiments and suggests numerous possible applications in biomedicine, where behavior shaping of pathway responses stand as a potential alternative to gene therapy.
Collapse
Affiliation(s)
- Surama Biswas
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Department of Computer Science & Engineering and Information Technology, Meghnad Saha Institute of Technology, Kolkata 700150, India
| | - Wesley Clawson
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Esposito M, Lagorio I, Peroni D, Bonuccelli A, Orsini A, Striano P. Genomic sequencing in severe epilepsy: a step closer to precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1732203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mariagrazia Esposito
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Ilaria Lagorio
- Department of Neurology, University of Siena, Siena, Italy
| | - Diego Peroni
- Pediatric Department, “A.O.U. Pisana”, University Hospital of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Alessandro Orsini
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS “G. Gaslini” Institute, Genova, Italy
- Department Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, Genova, Italy
| |
Collapse
|
4
|
ABCB1 Polymorphisms and Drug-Resistant Epilepsy in a Tunisian Population. DISEASE MARKERS 2019; 2019:1343650. [PMID: 31871496 PMCID: PMC6913308 DOI: 10.1155/2019/1343650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022]
Abstract
Background Epilepsy is one of the most common neurological disorders with about 30% treatment failure rate. An interindividual variations in efficacy of antiepileptic drugs (AEDs) make the treatment of epilepsy challenging, which can be attributed to genetic factors such as ATP-Binding Cassette sub-family B, member1 (ABCB1) gene polymorphisms. Objective The main objective of the present study is to evaluate the association of ABCB1 C1236T, G2677T, and C3435T polymorphisms with treatment response among Tunisian epileptic patients. Materials and Methods One hundred epileptic patients, originated from north of Tunisia, were recruited and categorized into 50 drug-resistant and 50 drug-responsive patients treated with antiepileptic drugs (AEDs) as per the International League Against Epilepsy. DNA of patients was extracted and ABCB1 gene polymorphisms studied using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results The C1236T, G2677T, and C3435T polymorphisms were involved into AED resistance. Significant genotypic (C1236T TT (p ≤ 0.001); G2677T TT (p = 0.001); C3435T TT (p ≤ 0.001)) and allelic associations (C1236T T (3.650, p ≤ 0.001); G2677TT (1.801, p = 0.044); C3435T T (4.730, p ≤ 0.001)) with drug resistance epilepsy (DRE) were observed. A significant level of linkage disequilibrium (LD) was also noted between ABCB1 polymorphisms. Patients with the haplotypes CT and TT (C1236T-G2677T); GT, TC, and TT (G2677T-C3435T); CT and TT (C1236T-C3435T); CTT, TTC, TGT, and TTT (C1236T-G2677T-C3435T) were also significantly associated to AED resistance. Conclusions The response to antiepileptics seems to be modulated by TT genotypes, T alleles, and the predicted haplotypes for the tested SNPs in our population. Genetic analysis is a valuable tool for predicting treatment response and thus will contribute to personalized medicine for Tunisian epileptic patients.
Collapse
|
5
|
AL-Eitan LN, Al-Dalalah IM, Aljamal HA. Effects of GRM4, SCN2A and SCN3B polymorphisms on antiepileptic drugs responsiveness and epilepsy susceptibility. Saudi Pharm J 2019; 27:731-737. [PMID: 31297029 PMCID: PMC6598501 DOI: 10.1016/j.jsps.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pharmacotherapy of epilepsy including antiepileptic drugs (AEDs) is one of the main treatment approaches. As a biological target, sodium channels (Nav channels) and glutamate receptor genes are playing a major role in the etiology and treatment of epilepsy. OBJECTIVE This study aims to investigate the genetic associations of certain genetic polymorphisms with increased risk of epilepsy susceptibility and variability in response to AEDs treatment in a Jordanian Arab population. METHOD A pharmacogenetics and case-control study on 296 unrelated epileptic Jordanian patients recruited from the pediatric neurology clinic at the Queen Rania Al-Abdullah Hospital (QRAH) in Amman, Jordan and 299 healthy individuals was conducted. Children up to 15 years old which receiving AEDs for at least three months were scanned for genetic association of 7 single nucleotide polymorphisms (SNPs) within three candidate genes (SCN2A, SCN3B and GRM4) with epilepsy susceptibility. RESULTS SCN2A rs2304016 (P = 0.04) and GRM4 rs2499697 (P = 0.031) were statistically significant with generalized epilepsy. Haplotype of CAACG GRM4 was genetically associated with epilepsy and partial epilepsy (P = 0.036; P = 0.024, respectively). This study also found that TGTAA genetic haplotype formed within GRM4 gene was associated with generalized epilepsy susceptibility (P = 0.006). While, no significant linkage of SCN3B rs3851100 to either disease susceptibility or drug responsiveness was found. CONCLUSION This study identified no significant associations of allelic or genotypic SNPs with the susceptibility of epilepsy and medication response with an exception of rs2304016 and rs2499697 SNPs that were associated with the generalized type of epilepsy among Jordanian population. Further studies are required in different populations to confirm our results and identify genetic factors that involved in susceptibility and treatment response.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Islam M. Al-Dalalah
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hanan A. Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
6
|
|
7
|
Ajmi M, Boujaafar S, Zouari N, Amor D, Nasr A, Rejeb NB, Amor SB, Omezzine A, Benammou S, Bouslama A. Association between ABCB1 polymorphisms and response to first-generation antiepileptic drugs in a Tunisian epileptic population. Int J Neurosci 2017; 128:705-714. [DOI: 10.1080/00207454.2017.1412964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marwa Ajmi
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Sana Boujaafar
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Nadia Zouari
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Dorra Amor
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Nasr
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Nabila Ben Rejeb
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sana Ben Amor
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Omezzine
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sofien Benammou
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
8
|
MacKenzie M, Hall R. Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review. Can J Anaesth 2016; 64:45-64. [PMID: 27752976 DOI: 10.1007/s12630-016-0748-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Knowledge of how alterations in pharmacogenomics and pharmacogenetics may affect drug therapy in the intensive care unit (ICU) has received little study. We review the clinically relevant application of pharmacogenetics and pharmacogenomics to drugs and conditions encountered in the ICU. SOURCE We selected relevant literature to illustrate the important concepts contained within. PRINCIPAL FINDINGS Two main approaches have been used to identify genetic abnormalities - the candidate gene approach and the genome-wide approach. Genetic variability in response to drugs may occur as a result of alterations of drug-metabolizing (cytochrome P [CYP]) enzymes, receptors, and transport proteins leading to enhancement or delay in the therapeutic response. Of relevance to the ICU, genetic variation in CYP-450 isoenzymes results in altered effects of midazolam, fentanyl, morphine, codeine, phenytoin, clopidogrel, warfarin, carvedilol, metoprolol, HMG-CoA reductase inhibitors, calcineurin inhibitors, non-steroidal anti-inflammatory agents, proton pump inhibitors, and ondansetron. Changes in cholinesterase enzyme function may affect the disposition of succinylcholine, benzylisoquinoline muscle relaxants, remifentanil, and hydralazine. Genetic variation in transport proteins leads to differences in the response to opioids and clopidogrel. Polymorphisms in drug receptors result in altered effects of β-blockers, catecholamines, antipsychotic agents, and opioids. Genetic variation also contributes to the diversity and incidence of diseases and conditions such as sepsis, malignant hyperthermia, drug-induced hypersensitivity reactions, cardiac channelopathies, thromboembolic disease, and congestive heart failure. CONCLUSION Application of pharmacogenetics and pharmacogenomics has seen improvements in drug therapy. Ongoing study and incorporation of these concepts into clinical decision making in the ICU has the potential to affect patient outcomes.
Collapse
Affiliation(s)
- Meghan MacKenzie
- Pharmacy Department, Nova Scotia Health Authority, Halifax, NS, Canada.,College of Pharmacy, Dalhousie University, Halifax, NS, Canada
| | - Richard Hall
- Departments of Anesthesia, Pain Management and Perioperative Medicine and Critical Care Medicine and Pharmacology, Dalhousie University and the Nova Scotia Health Authority, Halifax, NS, B3H 3A7, Canada.
| |
Collapse
|
9
|
Abstract
Genetic factors contribute to the high interindividual variability in response to antiepileptic drugs. However, most genetic markers identified to date have limited sensitivity and specificity, and the value of genetic testing in guiding antiepileptic drug (AED) therapy is limited. The best defined indication for testing relates to HLA-B*15:02 genotyping to identify those individuals of South Asian ethnicity who are at high risk for developing serious adverse cutaneous reactions to carbamazepine. The indication for HLA-A*31:01 testing to identify individuals at risk for skin reactions from carbamazepine, or for CYP2C9 genotyping to identify individuals at risk for serious skin reactions from phenytoin is less compelling. The use of genetic testing to guide epilepsy treatment is likely to increase in the future, as better understanding of the function of epilepsy genes will permit the application of precision medicine targeting the biological mechanisms responsible for epilepsy in the specific individual.
Collapse
Affiliation(s)
| | - Emilio Perucca
- a 1 C. Mondino National Neurological Institute, Pavia, Italy.,b 2 Department of Internal Medicine and Therapeutics, Division of Clinical and Experimental Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Negoro Y, Higashi T, Matsuoka H, Watanabe K, Igarashi T, Kayano Y, Yano R, Nakamura T, Masada M. Variations in the Blood Phenytoin Levels during Long-Term Combined Treatment with S-1 and Phenytoin. Case Rep Oncol 2014; 7:656-61. [PMID: 25606031 PMCID: PMC4299553 DOI: 10.1159/000368077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Although combination therapy with the oral fluoropyrimidine anticancer drug S-1 and the anticonvulsant phenytoin (PHT) is known to increase blood levels of PHT and the risk of intoxication, reports on long-term monitoring of blood levels of PHT during combined S-1 and PHT treatment and a thorough understanding of their interaction are lacking. This report aims to describe interactive effects of S-1 and PHT through long-term therapeutic drug monitoring of PHT. A 72-year-old male had been prescribed oral PHT (130 mg/day) for over 20 years and started receiving S-1 therapy (80 mg/day for 4 weeks, followed by a 2-week rest) as postoperative adjuvant chemotherapy for gastric cancer. The blood PHT level was continuously monitored. Prior to receiving S-1, the patient's blood PHT concentration was 6.0 μg/ml, but it increased during S-1 therapy, reaching 22.9 μg/ml on day 84 (during a rest period of second cycle S-1 therapy). After reducing his PHT dosage to 100 mg/day, it never reached toxic levels (4.0–10.4 μg/ml). It was difficult to keep blood PHT concentrations constant because of the time lag between the period of combined use of S-1 and PHT and the timing of manifestation and disappearance of the drug interaction. The DIPS probability scale indicated a highly probable interaction between S-1 and PHT. We conclude that, when S-1 and PHT are used concurrently, occurrence and disappearance time of their interaction need to be predicted to maintain an effective and safe PHT concentration.
Collapse
Affiliation(s)
- Yutaka Negoro
- Department of Pharmacy, University of Fukui Hospital, Fukui, Japan
| | - Takashi Higashi
- Department of Pharmacy, University of Fukui Hospital, Fukui, Japan
| | - Hiroaki Matsuoka
- Department of Pharmacy, University of Fukui Hospital, Fukui, Japan
| | - Kyohei Watanabe
- Department of Pharmacy, University of Fukui Hospital, Fukui, Japan
| | | | - Yuichiro Kayano
- Department of Pharmacy, University of Fukui Hospital, Fukui, Japan
| | - Ryoichi Yano
- Department of Pharmacy, University of Fukui Hospital, Fukui, Japan
| | | | - Mikio Masada
- Department of Pharmacy, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
11
|
Piana C, Antunes NDJ, Della Pasqua O. Implications of pharmacogenetics for the therapeutic use of antiepileptic drugs. Expert Opin Drug Metab Toxicol 2014; 10:341-58. [PMID: 24460510 DOI: 10.1517/17425255.2014.872630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Epilepsy is a chronic neurological disease manifesting as recurrent seizures. Despite the availability of numerous antiepileptic drugs (AEDs), one-third of the patients are not responsive to treatment. Such inter-individual variability in the response to AEDs may be partly explained by genetic differences. This review summarizes the pharmacogenetics (PGx) of AEDs. In addition, a model-based approach is presented that enables the integration of PGx data with other relevant sources of variability, such as demographic characteristics and co-medications. AREAS COVERED A comprehensive overview is provided of the data available in the literature on the evidence for correlations between genetic mutations and pharmacokinetic (PK) and/or pharmacodynamics (PD) of AEDs. This information is then used in an integrated manner in the second part, where PGx differences are parameterized as covariates in PK and PKPD models. EXPERT OPINION Polymorphisms are profuse in the PK and PD of AEDs. However, understanding of their clinical implication remains limited due to the lack of methodologies that discriminate the contribution of other sources of variability in CNS exposure to drugs. A model-based approach, in which other intrinsic (e.g., demographic covariates) and extrinsic (e.g., drug-drug interactions) factors are evaluated concurrently is needed to ensure optimization and individualization of treatment in epileptic patients.
Collapse
Affiliation(s)
- Chiara Piana
- Leiden University, LACDR, Division of Pharmacology , Leiden , The Netherlands
| | | | | |
Collapse
|
12
|
Shellhaas RA, Ng CM, Dillon CH, Barks JD, Bhatt-Mehta V. Population pharmacokinetics of phenobarbital in infants with neonatal encephalopathy treated with therapeutic hypothermia. Pediatr Crit Care Med 2013; 14:194-202. [PMID: 23254984 PMCID: PMC3717607 DOI: 10.1097/pcc.0b013e31825bbbc2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Phenobarbital is the first-line treatment for neonatal seizures. Many neonates with hypoxic ischemic encephalopathy are treated with therapeutic hypothermia, and about 40% have clinical seizures. Little is known about the pharmacokinetics of phenobarbital in infants with hypoxic ischemic encephalopathy who undergo therapeutic hypothermia. The objective of this study was to determine the effect of therapeutic hypothermia on phenobarbital pharmacokinetics, taking into account maturational changes. SETTING Level 3 neonatal ICU. PATIENTS Infants with hypoxic ischemic encephalopathy and suspected seizures, all treated with phenobarbital. Some of these infants also received treatment with therapeutic hypothermia. INTERVENTIONS None. DESIGN A retrospective cohort study of 39 infants with hypoxic ischemic encephalopathy treated with phenobarbital (20 were treated with therapeutic hypothermia and 19 were not). MEASUREMENTS AND MAIN RESULTS Data on phenobarbital plasma concentrations were collected in 39 subjects with hypoxic ischemic encephalopathy with or without therapeutic hypothermia. Using nonlinear mixed-effects modeling, population pharmacokinetics of phenobarbital were developed with a total of 164 plasma concentrations. A one-compartment model best described the pharmacokinetics. The clearance of phenobarbital was linearly related to body weight and matured with increasing age with a maturation half-life of 22.1 days. Therapeutic hypothermia did not influence the pharmacokinetic parameters of phenobarbital. CONCLUSIONS Therapeutic hypothermia does not influence the clearance of phenobarbital after accounting for weight and age. Standard phenobarbital dosing is appropriate for the initial treatment of seizures in neonates with hypoxic ischemic encephalopathy treated with therapeutic hypothermia.
Collapse
Affiliation(s)
| | - Chee M Ng
- Department of Pediatrics, School of Medicine, University of Pennsylvania and Department of Clinical Pharmacology and Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Christina H. Dillon
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - John D.E. Barks
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Varsha Bhatt-Mehta
- College of Pharmacy and Department of Pediatrics, School of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
13
|
Rizzoli P, Loder EW. Tolerance to the beneficial effects of prophylactic migraine drugs: a systematic review of causes and mechanisms. Headache 2012; 51:1323-35. [PMID: 21884087 DOI: 10.1111/j.1526-4610.2011.01985.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loss of benefit of a previously effective treatment regimen, also known as tolerance, can be an important barrier to the successful preventive treatment of migraine. We undertook a systematic review of the literature to identify the prevalence and possible mechanisms of drug tolerance in migraine prophylaxis. Results demonstrate that the frequency of tolerance to prophylactic migraine treatment is unknown, but available data support an estimate that it occurs in 1-8% of patients receiving prophylaxis. Four broad types of tolerance were identified that are likely to be relevant to migraine prophylaxis. These are pharmacokinetic, pharmacodynamic, behavioral, and cross tolerance. The mechanisms that underlie these types of tolerance determine whether their effects can be overcome or minimized. For example, certain forms of tolerance may be affected by manipulation of environmental cues associated with drug administration, by the order in which drugs are used, and by the concomitant use of other medications. Many medications used for migraine prophylaxis exert their effects through the endogenous opioid system. The implications of this finding are explored, particularly the parallels between medication overuse headache and tolerance to migraine prophylaxis. Given the many ways in which tolerance to migraine medications may develop, in some ways it is not surprising that migraine-preventive drugs stop working; it is more surprising that in many cases they do not.
Collapse
Affiliation(s)
- Paul Rizzoli
- John R. Graham Headache Center and Division of Headache and Pain, Department of Neurology, Brigham and Women's/Faulkner Hospitals, Boston, MA, USA
| | | |
Collapse
|
14
|
Mikati MA, Nabulsi Khalil M, Steele SU. Principles of drug treatment in children. HANDBOOK OF CLINICAL NEUROLOGY 2012; 108:699-722. [PMID: 22939061 DOI: 10.1016/b978-0-444-52899-5.00023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Mohamad A Mikati
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
15
|
Abstract
Therapeutic Reviews aim to provide essential independent information for health professionals about drugs used in palliative and hospice care. Additional content is available on www.palliativedrugs.com. Country-specific books (Hospice and Palliative Care Formulary USA, and Palliative Care Formulary, British and Canadian editions) are also available and can be ordered from www.palliativedrugs.com. The series editors welcome feedback on the articles (hq@palliativedrugs.com).
Collapse
Affiliation(s)
- Paul Howard
- Duchess of Kent House, Reading, United Kingdom
| | | | | | | | | | | |
Collapse
|
16
|
Yip L, Rufaut N, Sinclair R. Role of genetics and sex steroid hormones in male androgenetic alopecia and female pattern hair loss: an update of what we now know. Australas J Dermatol 2011; 52:81-8. [PMID: 21605090 DOI: 10.1111/j.1440-0960.2011.00745.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of genetic predisposition and the influence of sex steroid hormones are indisputable to the pathogenesis of male androgenetic alopecia (MAGA). The role of sex steroid hormones in female pattern hair loss (FPHL) is less known. A good knowledge of the pathophysiology underlying MAGA and FPHL empowers the clinician to confidently counsel patients and make informed therapeutic decisions. Vigorous research in recent years has provided greater insight into the role of genetics and sex steroids in physiological hair growth and cycling, as well as in hair follicle miniaturization, the histological hallmark of MAGA and FPHL. In the present review article directed towards clinicians, we discuss the current understanding of the role of androgens and oestrogens, as well as genetic associations with MAGA and FPHL. We also briefly discuss the interpretation of direct-to-consumer genetic testing for baldness to help clinicians understand the limitations of such tests.
Collapse
Affiliation(s)
- Leona Yip
- Department of Dermatology, St Vincent's Hospital, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
17
|
Saruwatari J, Ishitsu T, Nakagawa K. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy. Pharmaceuticals (Basel) 2010; 3:2709-2732. [PMID: 27713373 PMCID: PMC4033946 DOI: 10.3390/ph3082709] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/30/2022] Open
Abstract
Genetic polymorphisms in the genes that encode drug-metabolizing enzymes are implicated in the inter-individual variability in the pharmacokinetics and pharmaco-dynamics of antiepileptic drugs (AEDs). However, the clinical impact of these polymorphisms on AED therapy still remains controversial. The defective alleles of cytochrome P450 (CYP) 2C9 and/or CYP2C19 could affect not only the pharmacokinetics, but also the pharmacodynamics of phenytoin therapy. CYP2C19 deficient genotypes were associated with the higher serum concentration of an active metabolite of clobazam, N-desmethylclobazam, and with the higher clinical efficacy of clobazam therapy than the other CYP2C19 genotypes. The defective alleles of CYP2C9 and/or CYP2C19 were also found to have clinically significant effects on the inter-individual variabilities in the population pharmacokinetics of phenobarbital, valproic acid and zonisamide. EPHX1 polymorphisms may be associated with the pharmacokinetics of carbamazepine and the risk of phenytoin-induced congenital malformations. Similarly, the UDP-glucuronosyltransferase 2B7 genotype may affect the pharmacokinetics of lamotrigine. Gluthatione S-transferase null genotypes are implicated in an increased risk of hepatotoxicity caused by carbamazepine and valproic acid. This article summarizes the state of research on the effects of mutations of drug-metabolizing enzymes on the pharmacokinetics and pharmacodynamics of AED therapies. Future directions for the dose-adjustment of AED are discussed.
Collapse
Affiliation(s)
- Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
| | - Takateru Ishitsu
- Kumamoto Saishunso National Hospital, Kumamoto, Suya 2659, Koshi, Japan.
| | - Kazuko Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
| |
Collapse
|
18
|
Rieder MJ. Immune mediation of hypersensitivity adverse drug reactions: implications for therapy. Expert Opin Drug Saf 2010; 8:331-43. [PMID: 19505265 DOI: 10.1517/14740330902933736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adverse drug reactions are among the top causes of death in the developed world, and among the spectrum of adverse drug reactions, drug hypersensitivity is a principal contributor to serious adverse drug events. The pathophysiology of drug hypersensitivity remains incompletely understood, but seems to involve the initial recognition of a drug or metabolite by the immune system followed by an immune response that determines the clinical manifestations. At present, there are two competing theories for how immune recognition occurs: the Hapten Hypothesis in which drug hapten-carrier association is the key driver for immune recognition and the Pharmacological Interference Concept that postulates direct recognition of drugs by low affinity association with the T cell receptor. The Danger Hypothesis provides a potentially important addition to the Hapten Hypothesis. Therapy for drug hypersensitivity has traditionally involved excellent supportive care. Although corticosteroids and intravenous immunoglobulin have both been used as immunomodulatory therapy, there is no robust evidence supporting the efficacy of their therapy for drug hypersensitivity. Recent advances in molecular biology and genomic pharmacology offer previously unappreciated opportunities to clarify the controversies surrounding drug hypersensitivity and to better diagnose, treat and, it is hoped, prevent drug hypersensitivity in the future.
Collapse
Affiliation(s)
- Michael J Rieder
- University of Western Ontario, Children's Health Research Institute, Schulich School of Medicine & Dentistry, Ontario, Canada.
| |
Collapse
|
19
|
Genetic factors associated with drug-resistance of epilepsy: relevance of stratification by patient age and aetiology of epilepsy. Seizure 2010; 19:93-101. [PMID: 20064729 DOI: 10.1016/j.seizure.2009.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/05/2009] [Accepted: 12/18/2009] [Indexed: 01/16/2023] Open
Abstract
Epilepsy drug-resistance may depend on the metabolism of antiepileptic drugs (AEDs), transport to the epileptic focus and/or target sensitivity. Furthermore, drug response depends on multiple characteristics of the patient, the epilepsy, and the antiepileptic drugs used. We have investigated the association between polymorphisms related to antiepileptic drug metabolism (CYP2C9, CYP2C19, and UGT), transport (ABCB1), and targets (SCN1A) both in a crude analysis and after adjusting by clinical factors associated with drug-resistance, and stratifying by patient age or aetiology of epilepsy. Caucasian outpatients (N=289), children (N=80) and adolescent-adults (N=209), with idiopathic (N=69), cryptogenic (N=97) or symptomatic epilepsies (N=123) were selected when they had either drug-resistance (with at least four seizures over the previous year after treatment with more than three appropriate AEDs at appropriate doses) or drug responsiveness (without seizures for at least a year). Samples were genotyped by allelic discrimination using TaqMan probes. No significant association between polymorphisms and drug-resistance was found either in the crude analysis or in the adjusted analysis. However, adults with the ABCB1_3435TT or 2677TT genotypes had a lower risk of drug-resistance than those with the CC or the GG genotypes. Furthermore, patients with symptomatic epilepsies with the ABCB1_3435CT or TT genotypes had a lower risk of drug-resistance than those with the CC genotype. An opposite but insignificant tendency was found in children and in idiopathic epilepsies. Although replication studies will be needed to confirm our results, they suggest that stratification by patient age and by the aetiology of epilepsy could contribute to unmask the association between ABCB1 polymorphisms and drug-resistance of epilepsy.
Collapse
|
20
|
Navarro V, Mazoit JX. [Drugs for status epilepticus treatment]. Rev Neurol (Paris) 2009; 165:355-65. [PMID: 19223054 DOI: 10.1016/j.neurol.2008.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 12/04/2008] [Indexed: 01/16/2023]
Abstract
The pharmacokinetics and pharmacodynamics of major antiepileptic agents are presented. The onset of action and the factors leading to extraction across the blood brain barrier are described as well as the mechanism and extent of metabolism, and the main interactions with other drugs. For each class, the dosing scheme and practical issues related to administration are described, based on evidence when available in the literature.
Collapse
Affiliation(s)
- V Navarro
- Unité d'épilepsie, département de neurophysiologie clinique, hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | | |
Collapse
|
21
|
Jang SY, Kim MK, Lee KR, Park MS, Kim BC, Cho KH, Lee MC, Kim YS. Gene-to-gene interaction between sodium channel-related genes in determining the risk of antiepileptic drug resistance. J Korean Med Sci 2009; 24:62-8. [PMID: 19270815 PMCID: PMC2650995 DOI: 10.3346/jkms.2009.24.1.62] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 04/28/2008] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of antiepileptic drug (AED) resistance is multifactorial. However, most candidate gene association studies typically assess the effects of candidate genes independently of each other, which is partly because of the limitations of the parametric-statistical methods for detecting the gene-to-gene interactions. A total of 200 patients with drug-resistant epilepsy and 200 patients with drug-responsive epilepsy were genotyped for 3 representative the single nucleotide polymorphisms (SNPs) of the voltage-gated sodium channel genes (SCN1A, SCN1B, and SCN2A) by polymerase chain reaction and direct sequencing analysis. Besides the typical parametric statistical method, a new statistical method (multifactor dimensionality reduction [MDR]) was used to determine whether gene-to-gene interactions increase the risk of AED resistance. None of the individual genotypes or alleles tested in the present study showed a significant association with AED resistance, regardless of their theoretical functional value. With the MDR method, of three possible 2-locus genotype combinations, the combination of SCN2A-PM with SCN1B-PM was the best model for predicting susceptibility to AED resistance, with a p value of 0.0547. MDR, as an analysis paradigm for investigating multi-locus effects in complex disorders, may be a useful statistical method for determining the role of gene-to-gene interactions in the pathogenesis of AED resistance.
Collapse
Affiliation(s)
- Sin-Young Jang
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Kee-Ra Lee
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Byeong-Chae Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Ki-Hyun Cho
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Yo-Sik Kim
- Department of Neurology, Wonkwang University School of Medicine, Iksan, Korea
| |
Collapse
|
22
|
Löscher W, Klotz U, Zimprich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009; 50:1-23. [DOI: 10.1111/j.1528-1167.2008.01716.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Bray J, Clarke C, Brennan G, Muncey T. Should we be 'pushing meds'? The implications of pharmacogenomics. J Psychiatr Ment Health Nurs 2008; 15:357-64. [PMID: 18454820 DOI: 10.1111/j.1365-2850.2007.01234.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Medication continues to be the most widely prescribed treatment in the NHS for mental health problems. It has been known for many years that individuals differ in the way they respond to a given pharmaceutical therapy, and one reason for this lies in the genetic variation between individuals. This paper recognizes the impact that pharmacogenomics and pharmacogenetics are having in the field of mental health. Variants in genes that code for the drug metabolizing enzymes in the liver have been found to influence the way in which these enzymes handle psychotropic medication. Individuals can be classified as poor, moderate or extensive metabolizers when standard regimes are used, and this can lead to huge differences in therapeutic effect and toxicity. There are now genotyping tests available which provide information on the individual's ability to metabolize psychotropic medication. One author provides an account of the effects of medication on her son's physical and psychological well-being. Genotyping provided evidence for his poor metabolism of psychotropic medication, and his life is now changing as he is being very gradually weaned off this medication. This emerging field of work has implications for the way in which practitioners consider medication adherence.
Collapse
Affiliation(s)
- J Bray
- Research and Postgraduate Education, Faculty of Health and Social Care, Anglia Ruskin University, Capital Park, Fulbourn, Cambs., UK
| | | | | | | |
Collapse
|
24
|
[Drug resistance in partial epilepsy: epidemiology, mechanisms, pharmacogenetics and therapeutical aspects]. Neurochirurgie 2008; 54:259-64. [PMID: 18417170 DOI: 10.1016/j.neuchi.2008.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 11/22/2022]
Abstract
It has been established that 20-30% of epilepsies are not controlled by antiepileptic drugs. Drug resistance is associated with several major problems, including prognosis, cognitive function, behavior, mortality, cost and quality of life. Apart from classic risk factors for drug resistance, such as neurological, psychiatric, imaging, EEG abnormalities, a high frequency of seizures before medical therapy and complex febrile convulsions, the potential role of multidrug transporters as well as their genetic control and the altered sensitivity of neuronal drug receptors has gained growing attention. In the future, pharmaceutical engineering may bypass these factors. To a certain extent, drug resistance may develop progressively in a neurobiological process and the control of this process could limit its development.
Collapse
|
25
|
Baksh MF, Kelly PJ. Statistical methods for examining genetic influences of resistance to anti-epileptic drugs. Expert Rev Clin Pharmacol 2008; 1:137-44. [DOI: 10.1586/17512433.1.1.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
The first case of phenytoin intoxication associated with the concomitant use of phenytoin and TS-1, a combination preparation of tegafur, gimeracil, and oteracil potassium. Cancer Chemother Pharmacol 2007; 62:427-32. [DOI: 10.1007/s00280-007-0621-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
|
27
|
Guo F, Yu N, Cai JQ, Quinn T, Zong ZH, Zeng YJ, Hao LY. Voltage-gated sodium channel Nav1.1, Nav1.3 and beta1 subunit were up-regulated in the hippocampus of spontaneously epileptic rat. Brain Res Bull 2007; 75:179-87. [PMID: 18158113 DOI: 10.1016/j.brainresbull.2007.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 10/05/2007] [Accepted: 10/06/2007] [Indexed: 01/22/2023]
Abstract
The spontaneously epileptic rat (SER), a double mutant (zi/zi, tm/tm), exhibits both tonic convulsions and absence-like seizures from the age of 8 weeks. Since the first point mutation in the voltage-gated sodium channel (VGSC) beta(1) subunit in human generalized epilepsy with febrile seizures plus (GEFS+) was identified, more and more types of genetic epilepsy have been causally suggested to be related to gene changes in VGSC. However, there are no reports that can elucidate the effects of VGSC in SER. The present study was undertaken to detect sodium channel I alpha-isoform (Na(v)1.1), sodium channel III alpha-isoform (Na(v)1.3) and beta(1) subunit from both the level of mRNA and protein in SERs hippocampus compared with control Wistar rats. In this study, the mRNA expressions of Na(v)1.1, Na(v)1.3 and beta(1) subunit in SERs hippocampus were significantly higher than those in control rats hippocampus by real-time RT-PCR; The protein distributions and expressions of Na(v)1.1, Na(v)1.3 and beta(1) subunit in SERs hippocampus were detected by immunofluorescence, immunohistochemistry and western blot, and the protein expressions of Na(v)1.1, Na(v)1.3 and beta(1) subunit were significantly increased. In conclusion, our study suggested for the first time that sodium channel Na(v)1.1, Na(v)1.3 and beta(1) subunit up-regulation at the mRNA and protein levels of SER hippocampus might contribute to the generation of epileptiform activity and underlie the observed seizure phenotype in SER. The results of this study may be of value in revealing components of the molecular mechanisms of hippocampal excitation that are related to genetic epilepsy.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | |
Collapse
|