1
|
Sitthinamsuwan B, Ounahachok T, Pumseenil S, Nunta-Aree S. Comparative outcomes of microsurgical dorsal root entry zone lesioning (DREZotomy) for intractable neuropathic pain in spinal cord and cauda equina injuries. Neurosurg Rev 2025; 48:17. [PMID: 39747752 PMCID: PMC11695575 DOI: 10.1007/s10143-024-03136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 01/04/2025]
Abstract
Treatment of neuropathic pain in patients with spinal cord injury (SCI) and cauda equina injury (CEI) remains challenging. Dorsal root entry zone lesioning (DREZL) or DREZotomy is a viable surgical option for refractory cases. This study aimed to compare DREZL surgical outcomes between patients with SCI and those with CEI and to identify predictors of postoperative pain relief. We retrospectively analyzed 12 patients (6 with SCI and 6 with CEI) with intractable neuropathic pain who underwent DREZL. The data collected were demographic characteristics, pain distribution, and outcomes assessed by numeric pain rating scores. Variables and percentages of pain improvement at 1 year and long-term were statistically compared between the SCI and CEI groups. The demographic characteristics and percentage of patients who experienced pain improvement at 1 year postoperatively did not differ between the groups. Compared with the SCI group, the CEI group presented significantly better long-term pain reduction (p = 0.020) and favorable operative outcomes (p = 0.015). Patients with border zone pain had significantly better long-term pain relief and outcomes than did those with diffuse pain (p = 0.008 and p = 0.010, respectively). Recurrent pain after DREZL occurred in the SCI group but not in the CEI group. DREZL provided superior pain relief in patients with CEI. The presence of border zone pain predicted favorable outcomes. CEI patients or SCI patients with border zone pain are good surgical candidates for DREZL, whereas SCI patients with below-injury diffuse pain are poor candidates.
Collapse
Affiliation(s)
- Bunpot Sitthinamsuwan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, 10700, Bangkok, Thailand
| | - Tanawat Ounahachok
- Department of Surgery, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sawanee Pumseenil
- Neurosurgical Unit, Division of Perioperative Nursing, Department of Nursing, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sarun Nunta-Aree
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, 10700, Bangkok, Thailand.
| |
Collapse
|
2
|
Tabacof L, Salazar SI, Breyman E, Nasr L, Dewill S, Aitken A, Canori A, Kypros M, Cortes M, Fry A, Wood J, Putrino D. Immersive virtual reality for chronic neuropathic pain after spinal cord injury: a pilot, randomized, controlled trial. Pain Rep 2024; 9:e1173. [PMID: 39391768 PMCID: PMC11463206 DOI: 10.1097/pr9.0000000000001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Neuropathic pain (NP) poses significant challenges for individuals with spinal cord injury (SCI), often inadequately managed by current interventions. Immersive virtual reality (IVR) has emerged as a promising approach for pain modulation, yet robust evidence is lacking. Objectives This pilot study investigated the analgesic effects of different IVR environments (scenic, somatic) compared with a control environment, and explored psychomotor properties influencing pain attenuation. Methods Twenty-two participants with NP caused by SCI were randomized into 3 IVR environments: somatic (n = 8), scenic (n = 7), and control (n = 8), undergoing 3 weekly sessions over 4 weeks with baseline, postintervention, and one-month follow-ups. Results There was a significant interaction effect between VR environment and time point on Neuropathic Pain Symptom Inventory scores (F(4,37.0) = 2.80, P = 0.04). Scenic VR participants exhibited reduced scores postintervention and at follow-up, with no significant changes in somatic VR or control environments. Similar trends were observed in secondary measures, such as Neuropathic Pain Scale and pain numeric rating scale. Enjoyment and presence were associated with decreased pain-change scores (F(1, 252) = 4.68, P = 0.03 for enjoyment; F(1, 223.342) = 7.92, P = 0.005 for presence), although not significantly influenced by VR environment or time point. Conclusion Both environments showed reduced pain outcomes, underscoring the need for personalized IVR pain therapies and informing further technology development for NP management.
Collapse
Affiliation(s)
- Laura Tabacof
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia I. Salazar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Breyman
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leila Nasr
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophie Dewill
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annie Aitken
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Canori
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Kypros
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mar Cortes
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Fry
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamie Wood
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Ye Y, Su X, Tang J, Zhu C. Neuropathic Pain Induced by Spinal Cord Injury from the Glia Perspective and Its Treatment. Cell Mol Neurobiol 2024; 44:81. [PMID: 39607514 PMCID: PMC11604677 DOI: 10.1007/s10571-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Regional neuropathic pain syndromes above, at, or below the site of spinal damage arise after spinal cord injury (SCI) and are believed to entail distinct pathways; nevertheless, they may share shared defective glial systems. Neuropathic pain after SCI is caused by glial cells, ectopic firing of neurons endings and their intra- and extracellular signaling mechanisms. One such mechanism occurs when stimuli that were previously non-noxious become so after the injury. This will exhibit a symptom of allodynia. Another mechanism is the release of substances by glia, which keeps the sensitivity of dorsal horn neurons even in regions distant from the site of injury. Here, we review, the models and identifications of SCI-induced neuropathic pain (SCI-NP), the mechanisms of SCI-NP related to glia, and the treatments of SCI-NP.
Collapse
Affiliation(s)
- Ying Ye
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinjin Su
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Tang
- Department of Anesthesiology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Casaril AM, Gaffney CM, Shepherd AJ. Animal models of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:339-401. [PMID: 39580217 DOI: 10.1016/bs.irn.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Animal models continue to be crucial to developing our understanding of the molecular, cellular, and neurophysiological mechanisms that lead to neuropathic pain. The overwhelming majority of animal studies use rodent models, ranging from surgical and trauma-induced models to those induced by metabolic diseases, genetic mutations, viruses, neurotoxic drugs, and cancer. We discuss the clinical relevance of the available models and the pain behavior tests commonly used as outcome measures. Finally, we summarize the refinements that have been proposed to improve the ability of animal model studies to predict clinical efficacy.
Collapse
Affiliation(s)
- Angela M Casaril
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
5
|
Gera A, Walia S, Khanna S, Wadhwa G. Effect of aerobic exercise program on neuropathic pain and quality of life in person with paraplegia: study protocol for a randomized controlled trial. Trials 2024; 25:580. [PMID: 39223575 PMCID: PMC11370080 DOI: 10.1186/s13063-024-08430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Individuals with spinal cord injury (SCI) often suffer from neuropathic pain which is often disabling and negatively affects function, participation, and quality of life (QoL). Pharmacological treatments lack efficacy in neuropathic pain reduction hence studying alternatives to drug treatment is necessary. Preclinical evidence of various aerobic exercises has shown positive effects on neuropathic pain but scientific studies investigating its effect in the SCI human population are limited. METHODOLOGY This study is a double-blind, parallel, two-group, randomized controlled trial with an interventional study design that aims to evaluate the effectiveness of aerobic exercise program on neuropathic pain and quality of life (QoL) in individuals with chronic paraplegia. Thirty individuals with chronic paraplegia with the neurological level of injury from T2 to L2 will be recruited from the rehabilitation department at a super specialty hospital based on the inclusion criteria. Using a 1:1 allocation ratio, the participants will be randomly assigned to one of the two groups. The intervention group will perform high-intensity interval training (HIIT) aerobic exercise using an arm ergometer based on their peak heart rate, and the control group will perform free-hand arm aerobic exercise. In both groups, the intervention will be delivered as 30-min sessions, four times a week for 6 weeks. OUTCOME MEASURES International Spinal Cord Injury Pain Basic Data Set Version 3.0 will be used for diagnosing and assessing neuropathic pain and its interference with day-to-day activities, mood, and sleep. The International Spinal Cord Society (ISCoS) QoL basic data set will be used to assess QoL, and 6-min push test distance will be used to assess peak heart rate and aerobic capacity. DISCUSSION The effectiveness of the aerobic exercise program will be assessed based on the changes in neuropathic pain score and its interference with day-to-day activities, mood, sleep, QoL, and aerobic capacity after 3 weeks mid-intervention and after 6 weeks post-intervention. The trial will provide new knowledge about the effectiveness of the aerobic exercise program in improving neuropathic pain and QoL in individuals with chronic paraplegia. TRIAL REGISTRATION Clinical Trials Registry-India CTRI/2023/08/056257. Registered on 8 August 2023.
Collapse
Affiliation(s)
- Ankush Gera
- Indian Spinal Injuries Centre, Institute of Rehabilitation Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shefali Walia
- Indian Spinal Injuries Centre, Institute of Rehabilitation Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.
- Department of Physiotherapy, Gurugram University, GURGAON, India.
| | - Stuti Khanna
- Indian Spinal Injuries Centre, Institute of Rehabilitation Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Garima Wadhwa
- Indian Spinal Injuries Centre, Institute of Rehabilitation Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
6
|
Yuan BT, Li MN, Zhu LP, Xu ML, Gu J, Gao YJ, Ma LJ. TFAP2A is involved in neuropathic pain by regulating Grin1 expression in glial cells of the dorsal root ganglion. Biochem Pharmacol 2024; 227:116427. [PMID: 39009095 DOI: 10.1016/j.bcp.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Neuropathic pain is a highly prevalent and refractory condition, yet its mechanism remains poorly understood. While NR1, the essential subunit of NMDA receptors, has long been recognized for its pivotal role in nociceptive transmission, its involvement in presynaptic stimulation is incompletely elucidated. Transcription factors can regulate the expression of both pro-nociceptive and analgesic factors. Our study shows that transcription factor TFAP2A was up-regulated in the dorsal root ganglion (DRG) neurons, satellite glial cells (SGCs), and Schwann cells following spinal nerve ligation (SNL). Intrathecal injection of siRNA targeting Tfap2a immediately or 7 days after SNL effectively alleviated SNL-induced pain hypersensitivity and reduced Tfap2a expression levels. Bioinformatics analysis revealed that TFAP2A may regulate the expression of the Grin1 gene, which encodes NR1. Dual-luciferase reporter assays confirmed TFAP2A's positive regulation of Grin1 expression. Notably, both Tfap2a and Grin1 were expressed in the primary SGCs and upregulated by lipopolysaccharides. The expression of Grin1 was also down-regulated in the DRG following Tfap2a knockdown. Furthermore, intrathecal injection of siRNA targeting Grin1 immediately or 7 days post-SNL effectively alleviated SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, intrathecal Tfap2a siRNA alleviated SNL-induced neuronal hypersensitivity, and incubation of primary SGCs with Tfap2a siRNA decreased NMDA-induced upregulation of proinflammatory cytokines. Collectively, our study reveals the role of TFAP2A-Grin1 in regulating neuropathic pain in peripheral glia, offering a new strategy for the development of novel analgesics.
Collapse
Affiliation(s)
- Bao-Tong Yuan
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Meng-Na Li
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Lin-Peng Zhu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
7
|
Pan YZ, Talifu Z, Wang XX, Ke H, Zhang CJ, Xu X, Yang DG, Yu Y, Du LJ, Gao F, Li JJ. Combined use of CLP290 and bumetanide alleviates neuropathic pain and its mechanism after spinal cord injury in rats. CNS Neurosci Ther 2024; 30:e70045. [PMID: 39267289 PMCID: PMC11393004 DOI: 10.1111/cns.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
AIM We aimed to explore whether the combination of CLP290 and bumetanide maximally improves neuropathic pain following spinal cord injury (SCI) and its possible molecular mechanism. METHODS Rats were randomly divided into five groups: Sham, SCI + vehicle, SCI + CLP290, SCI + bumetanide, and SCI + combination (CLP290 + bumetanide). Drug administration commenced on the 7th day post-injury (7 dpi) and continued for 14 days. All rats underwent behavioral assessments for 56 days to comprehensively evaluate the effects of interventions on mechanical pain, thermal pain, cold pain, motor function, and other relevant parameters. Electrophysiological assessments, immunoblotting, and immunofluorescence detection were performed at different timepoints post-injury, with a specific focus on the expression and changes of KCC2 and NKCC1 proteins in the lumbar enlargement of the spinal cord. RESULTS CLP290 and bumetanide alleviated SCI-associated hypersensitivity and locomotor function, with the combination providing enhanced recovery. The combined treatment group exhibited the most significant improvement in restoring Rate-Dependent Depression (RDD) levels. In the combined treatment group and the two individual drug administration groups, the upregulation of potassium chloride cotransporter 2 (K+-Cl-cotransporter 2, KCC2) expression and downregulation of sodium potassium chloride cotransporter 1 (Na+-K+-Cl-cotransporter 1, NKCC1) expression in the lumbar enlargement area resulted in a significant increase in the KCC2/NKCC1 ratio compared to the SCI + vehicle group, with the most pronounced improvement seen in the combined treatment group. Compared to the SCI + vehicle group, the SCI + bumetanide group showed no significant paw withdrawal thermal latency (PWTL) improvement at 21 and 35 dpi, but a notable enhancement at 56 dpi. In contrast, the SCI + CLP290 group significantly improved PWTL at 21 days, with non-significant changes at 35 and 56 days. At 21 dpi, KCC2 expression was marginally higher in monotherapy groups versus SCI + vehicle, but not significantly. At 56 dpi, only the SCI + bumetanide group showed a significant difference in KCC2 expression compared to the control group. CONCLUSION Combined application of CLP290 and bumetanide effectively increases the ratio of KCC2/NKCC1, restores RDD levels, enhances GABAA receptor-mediated inhibitory function in the spinal cord, and relieves neuropathic pain in SCI; Bumetanide significantly improves neuropathic pain in the long term, whereas CLP290 demonstrates a notable short-term effect.
Collapse
Affiliation(s)
- Yun-Zhu Pan
- Rehabilitation Medicine Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zuliyaer Talifu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Chinese Institute of Rehabilitation Science, Beijing, China
| | - Xiao-Xin Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
| | - Han Ke
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
| | - Chun-Jia Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
| | - Xin Xu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
8
|
Ohashi N, Uta D, Ohashi M, Hoshino R, Baba H. Omega-conotoxin MVIIA reduces neuropathic pain after spinal cord injury by inhibiting N-type voltage-dependent calcium channels on spinal dorsal horn. Front Neurosci 2024; 18:1366829. [PMID: 38469570 PMCID: PMC10925679 DOI: 10.3389/fnins.2024.1366829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to the development of neuropathic pain. Although a multitude of pathological processes contribute to SCI-induced pain, excessive intracellular calcium accumulation and voltage-gated calcium-channel upregulation play critical roles in SCI-induced pain. However, the role of calcium-channel blockers in SCI-induced pain is unknown. Omega-conotoxin MVIIA (MVIIA) is a calcium-channel blocker that selectively inhibits N-type voltage-dependent calcium channels and demonstrates neuroprotective effects. Therefore, we investigated spinal analgesic actions and cellular mechanisms underlying the analgesic effects of MVIIA in SCI. We used SCI-induced pain model rats and conducted behavioral tests, immunohistochemical analyses, and electrophysiological experiments (in vitro whole-cell patch-clamp recording and in vivo extracellular recording). A behavior study suggested intrathecal MVIIA administration in the acute phase after SCI induced analgesia for mechanical allodynia. Immunohistochemical experiments and in vivo extracellular recordings suggested that MVIIA induces analgesia in SCI-induced pain by directly inhibiting neuronal activity in the superficial spinal dorsal horn. In vitro whole-cell patch-clamp recording showed that MVIIA inhibits presynaptic N-type voltage-dependent calcium channels expressed on primary afferent Aδ-and C-fiber terminals and suppresses the presynaptic glutamate release from substantia gelatinosa in the spinal dorsal horn. In conclusion, MVIIA administration in the acute phase after SCI may induce analgesia in SCI-induced pain by inhibiting N-type voltage-dependent calcium channels on Aδ-and C-fiber terminals in the spinal dorsal horn, resulting in decreased neuronal excitability enhanced by SCI-induced pain.
Collapse
Affiliation(s)
- Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masayuki Ohashi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rintaro Hoshino
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
9
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
10
|
Kinnunen K, Robayo LE, Cherup NP, Frank SI, Widerström-Noga E. A preliminary study evaluating self-reported effects of cannabis and cannabinoids on neuropathic pain and pain medication use in people with spinal cord injury. FRONTIERS IN PAIN RESEARCH 2023; 4:1297223. [PMID: 38188193 PMCID: PMC10767995 DOI: 10.3389/fpain.2023.1297223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Approximately 60% of individuals with a spinal cord injury (SCI) experience neuropathic pain, which often persists despite the use of various pharmacological treatments. Increasingly, the potential analgesic effects of cannabis and cannabinoid products have been studied; however, little research has been conducted among those with SCI-related neuropathic pain. Therefore, the primary objective of the study was to investigate the perceived effects of cannabis and cannabinoid use on neuropathic pain among those who were currently or had previously used these approaches. Additionally, the study aimed to determine if common pain medications are being substituted by cannabis and cannabinoids. Participants (N = 342) were recruited from existing opt-in listserv sources within the United States. Of those, 227 met the inclusion criteria and were enrolled in the study. The participants took part in an anonymous online survey regarding past and current use of cannabis and their perceived effects on neuropathic pain, including the use of pain medication. Those in the sample reported average neuropathic pain intensity scores over the past week of 6.8 ± 2.1 (0 to 10 scale), reflecting a high moderate to severe level of pain. Additionally, 87.9% noted that cannabis reduced their neuropathic pain intensity by more than 30%, and 92.3% reported that cannabis helped them to better deal with their neuropathic pain symptoms. Most participants (83.3%) also reported substituting their pain medications with cannabis, with the most substituted medication categories being opioids (47.0%), gabapentinoids (42.8%) and over-the-counter pain medications (42.2%). These preliminary results suggest that cannabis and cannabinoids may be effective in reducing neuropathic pain among those with SCI and may help to limit the need for certain pain medications.
Collapse
Affiliation(s)
- Kristiina Kinnunen
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Linda E. Robayo
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Nicholas P. Cherup
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Scott I. Frank
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
- Neuroscience Graduate Program, University of Miami, Miami, FL, United States
| | - Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
- Neuroscience Graduate Program, University of Miami, Miami, FL, United States
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
| |
Collapse
|
11
|
Gustin SM, Bolding M, Willoughby W, Anam M, Shum C, Rumble D, Mark VW, Mitchell L, Cowan RE, Richardson E, Richards S, Trost Z. Cortical Mechanisms Underlying Immersive Interactive Virtual Walking Treatment for Amelioration of Neuropathic Pain after Spinal Cord Injury: Findings from a Preliminary Investigation of Thalamic Inhibitory Function. J Clin Med 2023; 12:5743. [PMID: 37685810 PMCID: PMC10488675 DOI: 10.3390/jcm12175743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neuropathic pain following spinal cord injury (SCI) affects approximately 60% of individuals with SCI. Effective pharmacological and non-pharmacological treatments remain elusive. We recently demonstrated that our immersive virtual reality walking intervention (VRWalk) may be effective for SCI NP. Additionally, we found that SCI NP may result from a decrease in thalamic γ-aminobutyric-acid (GABA), which disturbs central sensorimotor processing. OBJECTIVE While we identified GABAergic changes associated with SCI NP, a critical outstanding question is whether a decrease in SCI NP generated by our VRWalk intervention causes GABA content to rise. METHOD A subset of participants (n = 7) of our VRWalk trial underwent magnetic resonance spectroscopy pre- and post-VRWalk intervention to determine if the decrease in SCI NP is associated with an increase in thalamic GABA. RESULTS The findings revealed a significant increase in thalamic GABA content from pre- to post-VRWalk treatment. CONCLUSION While the current findings are preliminary and should be interpreted with caution, pre- to post-VRWalk reductions in SCI NP may be mediated by pre- to post-treatment increases in thalamic GABA by targeting and normalizing maladaptive sensorimotor cortex reorganization. Understanding the underlying mechanisms of pain recovery can serve to validate the efficacy of home-based VR walking treatment as a means of managing pain following SCI. Neuromodulatory interventions aimed at increasing thalamic inhibitory function may provide more effective pain relief than currently available treatments.
Collapse
Affiliation(s)
- Sylvia M. Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney 2052, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney 2031, Australia
| | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - William Willoughby
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Monima Anam
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA (L.M.)
| | - Corey Shum
- Immersive Experience Laboratories LLC, Birmingham, AL 35203, USA
| | - Deanna Rumble
- Department of Psychology and Counseling, University of Central Arkansas, Conway, AR 72035, USA
| | - Victor W. Mark
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lucie Mitchell
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA (L.M.)
| | - Rachel E. Cowan
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth Richardson
- Department of Behavioral & Social Sciences, University of Montevallo, Montevallo, AL 35115, USA
| | - Scott Richards
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zina Trost
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Liu H, Lauzadis J, Gunaratna K, Sipple E, Kaczocha M, Puopolo M. Inhibition of T-Type Calcium Channels With TTA-P2 Reduces Chronic Neuropathic Pain Following Spinal Cord Injury in Rats. THE JOURNAL OF PAIN 2023; 24:1681-1695. [PMID: 37169156 DOI: 10.1016/j.jpain.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Spinal cord injury (SCI)-induced neuropathic pain (SCI-NP) develops in up to 60 to 70% of people affected by traumatic SCI, leading to a major decline in quality of life and increased risk for depression, anxiety, and addiction. Gabapentin and pregabalin, together with antidepressant drugs, are commonly prescribed to treat SCI-NP, but their efficacy is unsatisfactory. The limited efficacy of current pharmacological treatments for SCI-NP likely reflects our limited knowledge of the underlying mechanism(s) responsible for driving the maintenance of SCI-NP. The leading hypothesis in the field supports a major role for spontaneously active injured nociceptors in driving the maintenance of SCI-NP. Recent data from our laboratory provided additional support for this hypothesis and identified the T-type calcium channels as key players in driving the spontaneous activity of SCI-nociceptors, thus providing a rational pharmacological target to treat SCI-NP. To test whether T-type calcium channels contribute to the maintenance of SCI-NP, male and female SCI and sham rats were treated with TTA-P2 (a blocker of T-type calcium channels) to determine its effects on mechanical hypersensitivity (as measured with the von Frey filaments) and spontaneous ongoing pain (as measured with the conditioned place preference paradigm), and compared them to the effects of gabapentin, a blocker of high voltage-activated calcium channels. We found that both TTA-P2 and gabapentin reduced mechanical hypersensitivity in male and females SCI rats, but surprisingly only TTA-P2 reduced spontaneous ongoing pain in male SCI rats. PERSPECTIVES: SCI-induced neuropathic pain, and in particular the spontaneous ongoing pain component, is notoriously very difficult to treat. Our data provide evidence that inhibition of T-type calcium channels reduces spontaneous ongoing pain in SCI rats, supporting a clinically relevant role for T-type channels in the maintenance of SCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Huilin Liu
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Kavindu Gunaratna
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Erin Sipple
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York.
| |
Collapse
|
13
|
Quan X, Yu C, Fan Z, Wu T, Qi C, Zhang H, Wu S, Wang X. Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury. Exp Neurol 2023; 363:114367. [PMID: 36858281 DOI: 10.1016/j.expneurol.2023.114367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Spinal cord injury (SCI) results in severe motor and sensory dysfunction with no effective therapy. Spinal cord debris (sp) from injured spinal cord evokes secondary SCI continuously. We and other researchers have previously clarified that it is mainly bone marrow derived macrophages (BMDMs) infiltrating in the lesion epicenter to clear sp, rather than local microglia. Unfortunately, the pro-inflammatory phenotype of these infiltrating BMDMs is predominant which impairs wound healing. Hydralazine, as a potent vasodilator and scavenger of acrolein, has protective effects in many diseases. Hydralazine is also confirmed to promote motor function and hypersensitivity in SCI rats through scavenging acrolein. However, few studies have explored the effects of hydralazine on immunomodulation, as well as spontaneous pain and emotional response, the important syndromes in clinical patients. It remains unclear whether hydralazine affects infiltrating BMDMs after SCI. In this study, we targeted BMDMs to explore the influence of hydralazine on immune cells in a mouse model of SCI, and also investigated the contribution of polarized BMDMs to hydralazine-induced neurological function recovery after SCI in male mice. The adult male mice underwent T10 spinal cord compression. The results showed that in addition to improving motor function and hypersensitivity, hydralazine relieved SCI-induced spontaneous pain and emotional response, which is a newly discovered function of hydralazine. Hydralazine inhibited the recruitments of pro-inflammatory BMDMs and educated infiltrated BMDMs to a more reparative phenotype involving in multiple biological processes associated with SCI pathology, including immune/inflammation response, neurogenesis, lipid metabolism, oxidative stress, fibrosis formation, and angiogenesis, etc. As an overall effect, hydralazine-treated BMDMs loaden with sp partially rescued neurological function after SCI. It is concluded that hydralazine plays an immunomodulation role of educating pro-inflammatory BMDMs to a more reparative phenotype; and hydralazine-educated BMDMs contribute to hydralazine-induced improvement of neurological function in SCI mice, which provides support for drug and cell treatment options for SCI therapy.
Collapse
Affiliation(s)
- Xin Quan
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Caiyong Yu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tong Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chuchu Qi
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haoying Zhang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Shengxi Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Xi Wang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
14
|
Olusanya A, Yearsley A, Brown N, Braun S, Hayes C, Rose E, Connolly B, Dicks M, Beal C, Helmonds B, Peace W, Kirkman B, Nguyen C, Erickson J, Nguyen G, Lukose E, Koek W, Nagpal AS, Trbovich M. Capsaicin 8% Patch for Spinal Cord Injury Focal Neuropathic Pain, a Randomized Controlled Trial. PAIN MEDICINE 2023; 24:71-78. [PMID: 35799365 DOI: 10.1093/pm/pnac104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuropathic pain (NP) after spinal cord injury (SCI) exacerbates disability, decreases quality of life (QOL), and is often refractory to available therapies. Patients report willingness to trade potential recovery of strength, bowel, bladder, or sexual function for pain relief. One proposed mechanism causing NP is up-regulation of transient receptor potential vanilloid 1 (TRPV 1) proteins in uninjured C fibers and dorsal root ganglia causing neuronal excitability. Recent studies have found up-regulation of TRPV 1 proteins after SCI. OBJECTIVE We hypothesize the application of capsaicin 8% patch (C8P), FDA approved for NP in diabetic peripheral neuropathy and post-herpetic neuralgia, will improve pain, function and QOL in persons with SCI. METHODS Randomized single-blind crossover design in which 11 persons with SCI and NP refractory to two oral pain medications received C8P or a control low dose Capsaicin 0.025% patch (CON) over two 12-week periods. Pain (VAS, MPI-SCI), quality of life (WHO-QOL), and functional status (SCIM) were measured at 2-4-week intervals. RESULTS There was a main treatment effect of C8P over CON on VAS and MPI-SCI outcomes with pain reduction of 35% and 29% at weeks 2 and 4, respectively. C8P also demonstrated a main treatment effect over CON on the SCIM mobility subscale. WHO-QOL scores did not improve with C8P. CONCLUSIONS C8P improves pain and mobility for patients with SCI and refractory NP. Larger studies should be performed to evaluate impact of repeat applications and QOL outcomes.
Collapse
Affiliation(s)
- Adedeji Olusanya
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Aaron Yearsley
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nicholas Brown
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Samantha Braun
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Corey Hayes
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Evon Rose
- University of the Incarnate World Osteopathic Medical School, San Antonio, Texas, USA
| | - Brian Connolly
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Madeline Dicks
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Colby Beal
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Brett Helmonds
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Wesley Peace
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bryce Kirkman
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Christina Nguyen
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jacob Erickson
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gabby Nguyen
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Esha Lukose
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Wouter Koek
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ameet S Nagpal
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michelle Trbovich
- Physical Medicine and Rehabilitation, UTHSC at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
15
|
Combined non-psychoactive Cannabis components cannabidiol and β-caryophyllene reduce chronic pain via CB1 interaction in a rat spinal cord injury model. PLoS One 2023; 18:e0282920. [PMID: 36913400 PMCID: PMC10010563 DOI: 10.1371/journal.pone.0282920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
The most frequently reported use of medical marijuana is for pain relief. However, its psychoactive component Δ9-tetrahydrocannabinol (THC) causes significant side effects. Cannabidiol (CBD) and β-caryophyllene (BCP), two other cannabis constituents, possess more benign side effect profiles and are also reported to reduce neuropathic and inflammatory pain. We evaluated the analgesic potential of CBD and BCP individually and in combination in a rat spinal cord injury (SCI) clip compression chronic pain model. Individually, both phytocannabinoids produced dose-dependent reduction in tactile and cold hypersensitivity in male and female rats with SCI. When co-administered at fixed ratios based on individual A50s, CBD and BCP produced enhanced dose-dependent reduction in allodynic responses with synergistic effects observed for cold hypersensitivity in both sexes and additive effects for tactile hypersensitivity in males. Antinociceptive effects of both individual and combined treatment were generally less robust in females than males. CBD:BCP co-administration also partially reduced morphine-seeking behavior in a conditioned place preference (CPP) test. Minimal cannabinoidergic side effects were observed with high doses of the combination. The antinociceptive effects of the CBD:BCP co-administration were not altered by either CB2 or μ-opioid receptor antagonist pretreatment but, were nearly completely blocked by CB1 antagonist AM251. Since neither CBD or BCP are thought to mediate antinociception via CB1 activity, these findings suggest a novel CB1 interactive mechanism between these two phytocannabinoids in the SCI pain state. Together, these findings suggest that CBD:BCP co-administration may provide a safe and effective treatment option for the management of chronic SCI pain.
Collapse
|
16
|
Noble DJ, Dongmo R, Parvin S, Martin KK, Garraway SM. C-low threshold mechanoreceptor activation becomes sufficient to trigger affective pain in spinal cord-injured mice in association with increased respiratory rates. Front Integr Neurosci 2022; 16:1081172. [PMID: 36619238 PMCID: PMC9811591 DOI: 10.3389/fnint.2022.1081172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
The mechanisms of neuropathic pain after spinal cord injury (SCI) are not fully understood. In addition to the plasticity that occurs within the injured spinal cord, peripheral processes, such as hyperactivity of primary nociceptors, are critical to the expression of pain after SCI. In adult rats, truncal stimulation within the tuning range of C-low threshold mechanoreceptors (C-LTMRs) contributes to pain hypersensitivity and elevates respiratory rates (RRs) after SCI. This suggests that C-LTMRs, which normally encode pleasant, affiliative touch, undergo plasticity to transmit pain sensation following injury. Because tyrosine hydroxylase (TH) expression is a specific marker of C-LTMRs, in the periphery, here we used TH-Cre adult mice to investigate more specifically the involvement of C-LTMRs in at-level pain after thoracic contusion SCI. Using a modified light-dark chamber conditioned place aversion (CPA) paradigm, we assessed chamber preferences and transitions between chambers at baseline, and in response to mechanical and optogenetic stimulation of C-LTMRs. In parallel, at baseline and select post-surgical timepoints, mice underwent non-contact RR recordings and von Frey assessment of mechanical hypersensitivity. The results showed that SCI mice avoided the chamber associated with C-LTMR stimulation, an effect that was more pronounced with optical stimulation. They also displayed elevated RRs at rest and during CPA training sessions. Importantly, these changes were restricted to chronic post-surgery timepoints, when hindpaw mechanical hypersensitivity was also evident. Together, these results suggest that C-LTMR afferent plasticity, coexisting with potentially facilitatory changes in breathing, drives at-level affective pain following SCI in adult mice.
Collapse
|
17
|
Williams TL, Joseph C, Nilsson-Wikmar L, Phillips J. Exploration of the Experiences of Persons in the Traumatic Spinal Cord Injury Population in Relation to Chronic Pain Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:77. [PMID: 36612393 PMCID: PMC9819756 DOI: 10.3390/ijerph20010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Chronic pain amongst individuals with traumatic and nontraumatic spinal cord injury (SCI) has high prevalence rates, with severe impact on the activities of daily living, mood, sleep and quality of life. This study aimed to explore the experiences and challenges of chronic pain management amongst the traumatic spinal cord injury (TSCI) population in the Western Cape region of South Africa. A qualitative descriptive approach was chosen for the study, in which 13 individuals living with TSCI were purposively recruited and interviewed telephonically. An inductive thematic analytic approach was used. The results indicate ineffectiveness of standard pain management, with a lack of education regarding pain physiology and pain management strategies as well as unbalanced decision-making between clinician and patient. Thus, patients develop coping strategies to survive with pain. Current pain regimes are suboptimal at best, underpinned by the lack of clarity or a mutually agreed plan to mitigate and eradicate pain. There is a need for chronic pain management beyond pharmacological prescription. Future practices should focus on adopting a holistic, biopsychosocial approach, which includes alternative pain therapy management. In addition, advances in pain management cannot be achieved without adopting a therapeutic alliance between the clinician and patient.
Collapse
Affiliation(s)
- Tammy-Lee Williams
- Department of Physiotherapy, University of the Western Cape, Cape Town 7535, South Africa
| | - Conran Joseph
- Division of Physiotherapy, Stellenbosch University, Stellenbosch 7602, South Africa
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lena Nilsson-Wikmar
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Joliana Phillips
- Department of Physiotherapy, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
18
|
Thomas G, Alakbarzade V, Sammaraiee Y, Cociasu I, Dalton C, Pereira AC. Spontaneous spinal cord infarction: a practical approach. Pract Neurol 2022; 22:497-502. [PMID: 35835550 DOI: 10.1136/pn-2022-003441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/04/2022]
Abstract
Spontaneous spinal cord infarction is significantly less common than cerebrovascular disease. Because of the tight anatomical distribution of pathways in the cord, small spinal cord infarcts usually give more obvious symptoms and signs than similar lesions in the brain. Large epidemiological stroke studies have generally not included spinal cord stroke and so the incidence of vascular syndromes in the spinal cord is unknown. Management and prevention strategies for spontaneous spinal cord infarcts stem from small case series and case reports. Patient outcomes from spinal cord infarction are better with prompt recognition, timely management and prevention of associated medical complications arising from paraplegia, tetraplegia, neurogenic bladder and bowel dysfunction. The process of rehabilitation following spinal cord infarction is an evolving area.
Collapse
Affiliation(s)
- George Thomas
- Department of Older Persons' Medicine, James Cook University Hospital, Middlesbrough, UK
| | - Vafa Alakbarzade
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Yezen Sammaraiee
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Ioana Cociasu
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Catherine Dalton
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Anthony C Pereira
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Modulation of Solid-State Chemical Stability of Gabapentin by Pyridinecarboxylic Acid. Pharm Res 2022; 39:2305-2314. [PMID: 35794398 DOI: 10.1007/s11095-022-03326-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Gabapentin (GBP) is an anticonvulsant drug with poor chemical stability that is particularly sensitive to heat and mechanical stress, which can lead to intramolecular lactamization. The purpose of this study was to enhance the chemical stability of GBP by cocrystallization with organic acids. METHOD Two novel multicomponent crystals, GBP-2,6-pyridinedicarboxylic acid salt (GBP-2,6PDA salt) and GBP-2,5-pyridinedicarboxylic acid cocrystal (GBP-2,5PDA cocrystal) were synthesized and characterized by various solid-state analytical techniques. The degradation behavior of GBP, GBP-2,6PDA salt and GBP-2,5PDA cocrystals were evaluated under thermal and mechanical stresses. RESULT Under thermal and mechanical stresses, GBP-2,5PDA cocrystals were found to undergo severer degradation than GBP-2,6PDA salt and neat GBP. GBP-2,6PDA salt exhibited superior chemical stability compared to the others. Furthermore, the crystal structure revealed that the order of atomic distance between the carboxyl group (C7) and amino group (N12) of GBP is as follows: GBP-2,5PDA cocrystal < GBP < GBP-2,6PDA salt, which is consistent with the chemical stability of GBP in different solid forms. Therefore, we believe that the distance between C7 and N12, the reaction active sites leading to dehydrative condensation of GBP, is a key factor determining the chemical stability of GBP in the solid state. CONCLUSIONS These results provide a potential method to improve the chemical stability of GBP during the manufacturing process and storage.
Collapse
|
20
|
Future Treatment of Neuropathic Pain in Spinal Cord Injury: The Challenges of Nanomedicine, Supplements or Opportunities? Biomedicines 2022; 10:biomedicines10061373. [PMID: 35740395 PMCID: PMC9219608 DOI: 10.3390/biomedicines10061373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain (NP) is a common chronic condition that severely affects patients with spinal cord injuries (SCI). It impairs the overall quality of life and is considered difficult to treat. Currently, clinical management of NP is often limited to drug therapy, primarily with opioid analgesics that have limited therapeutic efficacy. The persistence and intractability of NP following SCI and the potential health risks associated with opioids necessitate improved treatment approaches. Nanomedicine has gained increasing attention in recent years for its potential to improve therapeutic efficacy while minimizing toxicity by providing sensitive and targeted treatments that overcome the limitations of conventional pain medications. The current perspective begins with a brief discussion of the pathophysiological mechanisms underlying NP and the current pain treatment for SCI. We discuss the most frequently used nanomaterials in pain diagnosis and treatment as well as recent and ongoing efforts to effectively treat pain by proactively mediating pain signals following SCI. Although nanomedicine is a rapidly growing field, its application to NP in SCI is still limited. Therefore, additional work is required to improve the current treatment of NP following SCI.
Collapse
|
21
|
Dietz V, Knox K, Moore S, Roberts N, Corona KK, Dulin JN. Dorsal horn neuronal sparing predicts the development of at-level mechanical allodynia following cervical spinal cord injury in mice. Exp Neurol 2022; 352:114048. [PMID: 35304102 DOI: 10.1016/j.expneurol.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
Spinal cord injury (SCI) frequently results in immediate and sustained neurological dysfunction, including intractable neuropathic pain in approximately 60-80% of individuals. SCI induces immediate mechanical damage to spinal cord tissue followed by a period of secondary injury in which tissue damage is further propagated, contributing to the development of anatomically unique lesions. Variability in lesion size and location influences the degree of motor and sensory dysfunction incurred by an individual. We predicted that variability in lesion parameters may also explain why some, but not all, experimental animals develop mechanical sensitivity after SCI. To characterize the relationship of lesion anatomy to mechanical allodynia, we utilized a mouse cervical hemicontusion model of SCI that has been shown to lead to the development and persistence of mechanical allodynia in the ipsilateral forelimb after injury. At four weeks post-SCI, the numbers and locations of surviving neurons were quantified along with total lesion volume and nociceptive fiber sprouting. We found that the subset of animals exhibiting mechanical allodynia had significantly increased neuronal sparing in the ipsilateral dorsal horn around the lesion epicenter compared to animals that did not exhibit mechanical allodynia. Additionally, we failed to observe significant differences between groups in nociceptive fiber density in the dorsal horn around the lesion epicenter. Notably, we found that impactor probe displacement upon administration of the SCI surgery was significantly lower in sensitive animals compared with not-sensitive animals. Together, our data indicate that lesion severity negatively correlates with the manifestation of at-level mechanical hypersensitivity and suggests that sparing of dorsal horn neurons may be required for the development of neuropathic pain.
Collapse
Affiliation(s)
- Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Katelyn Knox
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Sherilynne Moore
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Nolan Roberts
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
22
|
Trost Z, Anam M, Seward J, Shum C, Rumble D, Sturgeon J, Mark V, Chen Y, Mitchell L, Cowan R, Perera R, Richardson E, Richards S, Gustin S. Immersive interactive virtual walking reduces neuropathic pain in spinal cord injury: findings from a preliminary investigation of feasibility and clinical efficacy. Pain 2022; 163:350-361. [PMID: 34407034 DOI: 10.1097/j.pain.0000000000002348] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/15/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic neuropathic pain (NP) is a common and often debilitating secondary condition for persons with spinal cord injury (SCI) and is minimally responsive to existing pharmacological and nonpharmacological treatments. The current preliminary investigation describes the feasibility and initial comparative efficacy of an interactive virtual reality walking intervention, which is a novel extension of visual feedback/illusory walking therapies shown to reduce SCI NP. Virtual reality walking intervention builds on previous research by, for the first time, allowing individuals with SCI NP to volitionally control virtual gait to interact with a fully immersive virtual environment. The current pilot study compared this interactive, virtual walking intervention to a passive, noninteractive virtual walking condition (analogous to previous illusory walking interventions) in 27 individuals with complete paraplegia (interactive condition, n = 17; passive condition, n = 10; nonrandomized design). The intervention was delivered over 2 weeks in individuals' homes. Participants in the interactive condition endorsed significantly greater reductions in NP intensity and NP-related activity interference preintervention to postintervention. Notable improvements in mood and affect were also observed both within individual sessions and in response to the full intervention. These results, although preliminary, highlight the potentially potent effects of an interactive virtual walking intervention for SCI NP. The current study results require replication in a larger, randomized clinical trial and may form a valuable basis for future inquiry regarding the mechanisms and clinical applications of virtual walking therapies.
Collapse
Affiliation(s)
- Zina Trost
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Monima Anam
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua Seward
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Corey Shum
- Immersive Experience Labs, Birmingham, AL, United States
| | - Deanna Rumble
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Sturgeon
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Victor Mark
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuying Chen
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lucie Mitchell
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachel Cowan
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert Perera
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Scott Richards
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sylvia Gustin
- School of Psychology, University of New South Wales, Sydney, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
23
|
Vastano R, Costantini M, Widerstrom-Noga E. Maladaptive reorganization following SCI: The role of body representation and multisensory integration. Prog Neurobiol 2021; 208:102179. [PMID: 34600947 DOI: 10.1016/j.pneurobio.2021.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
In this review we focus on maladaptive brain reorganization after spinal cord injury (SCI), including the development of neuropathic pain, and its relationship with impairments in body representation and multisensory integration. We will discuss the implications of altered sensorimotor interactions after SCI with and without neuropathic pain and possible deficits in multisensory integration and body representation. Within this framework we will examine published research findings focused on the use of bodily illusions to manipulate multisensory body representation to induce analgesic effects in heterogeneous chronic pain populations and in SCI-related neuropathic pain. We propose that the development and intensification of neuropathic pain after SCI is partly dependent on brain reorganization associated with dysfunctional multisensory integration processes and distorted body representation. We conclude this review by suggesting future research avenues that may lead to a better understanding of the complex mechanisms underlying the sense of the body after SCI, with a focus on cortical changes.
Collapse
Affiliation(s)
- Roberta Vastano
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Eva Widerstrom-Noga
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| |
Collapse
|
24
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Morrison D, Arcese AA, Parrish J, Gibbs K, Beaufort A, Herman P, Stein AB, Bloom O. Systemic gene expression profiles according to pain types in individuals with chronic spinal cord injury. Mol Pain 2021; 17:17448069211007289. [PMID: 33853401 PMCID: PMC8053765 DOI: 10.1177/17448069211007289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pain affects most individuals with traumatic spinal cord injury (SCI). Major pain types after SCI are neuropathic or nociceptive, often experienced concurrently. Pain after SCI may be refractory to treatments and negatively affects quality of life. Previously, we analyzed whole blood gene expression in individuals with chronic SCI compared to able-bodied (AB) individuals. Most participants with SCI reported pain (N = 19/28). Here, we examined gene expression of participants with SCI by pain status. Compared to AB, participants with SCI with pain had 468 differentially expressed (DE) genes; participants without pain had 564 DE genes (FDR < 0.05). Among DE genes distinct to participants with SCI with pain, Gene Ontology Biological Process (GOBP) analysis showed upregulated genes were enriched in categories related to T cell activation or inflammation; downregulated genes were enriched in categories related to protein proteolysis and catabolism. Although most participants with pain reported multiple pain types concurrently, we performed a preliminary comparison of gene expression by worst pain problem type. Compared to AB, participants with SCI who ranked neuropathic (N = 9) as worst had one distinct DE gene (TMEM156); participants who ranked nociceptive (N = 10) as worst had 61 distinct DE genes (FDR < 0.05). In the nociceptive group, the GOBP category with the lowest P-value identified among upregulated genes was “positive regulation of T cell activation”; among downregulated genes it was “receptor tyrosine kinase binding”. An exploratory comparison of pain groups by principal components analysis also showed that the nociceptive group was enriched in T-cell related genes. A correlation analysis identified genes significantly correlated with pain intensity in the neuropathic or nociceptive groups (N = 145, 65, respectively, Pearson’s correlation r > 0.8). While this pilot study highlights challenges of identifying gene expression profiles that correlate with specific types of pain in individuals with SCI, it suggests that T-cell signaling should be further investigated in this context.
Collapse
Affiliation(s)
- Debra Morrison
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anthony A Arcese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Janay Parrish
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Katie Gibbs
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Andrew Beaufort
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Paige Herman
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Adam B Stein
- Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Ona Bloom
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| |
Collapse
|
26
|
Canavan C, Inoue T, McMahon S, Doody C, Blake C, Fullen BM. The Efficacy, Adverse Events & Withdrawal Rates of the Pharmacological Management of Chronic Spinal Cord Injury Pain: A Systematic Review & Meta-Analysis. PAIN MEDICINE 2021; 23:375-395. [PMID: 33844010 DOI: 10.1093/pm/pnab140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To establish the efficacy of medications, incidence of adverse events (AE) and withdrawal rates (WR) of the pharmacological management of chronic spinal cord injury (SCI) pain. METHODOLOGY PubMed, MEDLINE, Embase, CINAHL, Web of Science, CENTRAL and PsycINFO were searched (November 2017) and updated (January 2020). Two independent review authors screened and identified papers for inclusion. RESULTS Twenty-one studies met inclusion for efficacy analysis and 17 for AEs and WR analysis; no additional paper were included from the up dated 2020 search. Treatments were divided into 6 categories: anticonvulsants (n = 6), antidepressants (n = 3), analgesics (n = 8), anti-spasticity (n = 2), cannabinoids (n = 1) and other (n = 2). Trials of anticonvulsants, antidepressants, and cannabinoids included long-term follow-up trials (2 weeks- 4 months), and analgesics, anti-spasticity, among others were short term trials (0-2 days). Effectiveness for NP was found for Pregabalin (3/3 studies) and Lidocaine (2/3 studies). Studies using Ketamine also reported effectiveness (2/2) but the quality of these papers was rated as poor. Most frequently reported AEs included dizziness, dry mouth, nausea and constipation. Pregabalin had a higher risk of somnolence (RR 3.15, 95% CI 2.00-4.98) and dizziness (RR 2.9, 95% CI 1.58-5.30). Ketamine had a higher risk of reduced vision (RR 9.00, 95% CI 0.05-146.11), dizziness (RR 8.33, 95% CI 1.73-40.10) and somnolence (RR 7.00, 95% CI 1.73-40.1). WRs ranged from: 18.4% (antidepressants), 0-30% (anticonvulsants), 0-10% (anti-spasticity), 0-48% (analgesics), 28.6% (cannabinoids) and 0-22.2% (other). CONCLUSION Pregabalin was found to be effective for NP versus placebo. Cannabinoids was ineffective for NP. AEs are a common cause for withdrawal. The nature of AEs was poorly reported and should be improved in future RCT's.
Collapse
Affiliation(s)
- Clare Canavan
- UCD Centre for Translational Pain Research, University College Dublin, Belfield Campus, Dublin, Ireland.,School of Public Health, Physiotherapy and Sports Science
| | - Takayoshi Inoue
- UCD Centre for Translational Pain Research, University College Dublin, Belfield Campus, Dublin, Ireland
| | - Sinead McMahon
- School of Public Health, Physiotherapy and Sports Science
| | - Catherine Doody
- UCD Centre for Translational Pain Research, University College Dublin, Belfield Campus, Dublin, Ireland.,School of Public Health, Physiotherapy and Sports Science
| | - Catherine Blake
- UCD Centre for Translational Pain Research, University College Dublin, Belfield Campus, Dublin, Ireland.,School of Public Health, Physiotherapy and Sports Science
| | - Brona M Fullen
- UCD Centre for Translational Pain Research, University College Dublin, Belfield Campus, Dublin, Ireland.,School of Public Health, Physiotherapy and Sports Science
| |
Collapse
|
27
|
Bahbah EI, Ghozy S, Attia MS, Negida A, Emran TB, Mitra S, Albadrani GM, Abdel-Daim MM, Uddin MS, Simal-Gandara J. Molecular Mechanisms of Astaxanthin as a Potential Neurotherapeutic Agent. Mar Drugs 2021; 19:201. [PMID: 33916730 PMCID: PMC8065559 DOI: 10.3390/md19040201] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurological disorders are diseases of the central and peripheral nervous system that affect millions of people, and the numbers are rising gradually. In the pathogenesis of neurodegenerative diseases, the roles of many signaling pathways were elucidated; however, the exact pathophysiology of neurological disorders and possible effective therapeutics have not yet been precisely identified. This necessitates developing multi-target treatments, which would simultaneously modulate neuroinflammation, apoptosis, and oxidative stress. The present review aims to explore the potential therapeutic use of astaxanthin (ASX) in neurological and neuroinflammatory diseases. ASX, a member of the xanthophyll group, was found to be a promising therapeutic anti-inflammatory agent for many neurological disorders, including cerebral ischemia, Parkinson's disease, Alzheimer's disease, autism, and neuropathic pain. An effective drug delivery system of ASX should be developed and further tested by appropriate clinical trials.
Collapse
Affiliation(s)
- Eshak I. Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta 34511, Egypt;
| | - Sherief Ghozy
- Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Ahmed Negida
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
28
|
Cheng X, Xiao F, Xie R, Hu H, Wan Y. Alternate thermal stimulation ameliorates thermal sensitivity and modulates calbindin-D 28K expression in lamina I and II and dorsal root ganglia in a mouse spinal cord contusion injury model. FASEB J 2020; 35:e21173. [PMID: 33225523 DOI: 10.1096/fj.202001775r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Neuropathic pain (NP) is a common complication that negatively affects the lives of patients with spinal cord injury (SCI). The disruption in the balance of excitatory and inhibitory neurons in the spinal cord dorsal horn contributes to the development of SCI and induces NP. The calcium-binding protein (CaBP) calbindin-D 28K (CaBP-28K) is highly expressed in excitatory interneurons, and the CaBP parvalbumin (PV) is present in inhibitory neurons in the dorsal horn. To better define the changes in the CaBPs contributing to the development of SCI-induced NP, we examined the changes in CaBP-28K and PV staining density in the lumbar (L4-6) lamina I and II, and their relationship with NP after mild spinal cord contusion injury in mice. We additionally examined the effects of alternate thermal stimulation (ATS). Compared with sham mice, injured animals developed mechanical allodynia in response to light mechanical stimuli and exhibited mechanical hyporesponsiveness to noxious mechanical stimuli. The decreased response latency to heat stimuli and increased response latency to cold stimuli at 7 days post injury suggested that the injured mice developed heat hyperalgesia and cold hypoalgesia, respectively. Temperature preference tests showed significant warm allodynia after injury. Animals that underwent ATS (15-18 and 35-40°C; +5 minutes/stimulation/day; 5 days/week) displayed significant amelioration of heat hyperalgesia, cold hypoalgesia, and warm allodynia after 2 weeks of ATS. In contrast, mechanical sensitivity was not influenced by ATS. Analysis of the CaBP-28K positive signal in L4-6 lamina I and II indicated an increase in staining density after SCI, which was associated with an increase in the number of CaBP-28K-stained L4-6 dorsal root ganglion (DRG) neurons. ATS decreased the CaBP-28K staining density in L4-6 spinal cord and DRG in injured animals, and was significantly and strongly correlated with ATS alleviation of pain behavior. The expression of PV showed no changes in lamina I and II after ATS in SCI animals. Thus, ATS partially decreases the pain behavior after SCI by modulating the changes in CaBP-associated excitatory-inhibitory neurons.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Spinal Cord Injury Center, Heidelberg University, Heidelberg, Germany
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Rong Xie
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Dermorphin [D-Arg2, Lys4] (1-4) amide inhibits below-level heat hypersensitivity in mice after contusive thoracic spinal cord injury. Pain 2020; 160:2710-2723. [PMID: 31365470 DOI: 10.1097/j.pain.0000000000001671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Opioid use for chronic pain is limited by severe central adverse effects. We examined whether activating mu-opioid receptors (MORs) in the peripheral nervous system attenuates spinal cord injury (SCI) pain-like behavior in mice. We produced a contusive SCI at the T10 vertebral level and examined motor and sensory dysfunction for 6 weeks. At 6 weeks, we tested the effect of subcutaneous (s.c.) injection of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a peripherally acting MOR-preferring agonist, on mechanical and heat hypersensitivity. Basso mouse scale score was significantly decreased after SCI, and mice showed hypersensitivity to mechanical and heat stimulation at the hind paw beginning at 2 weeks, as indicated by increased paw withdrawal frequency to mechanical stimulation and decreased paw withdrawal latency to heat stimulation. In wild-type SCI mice, DALDA (1 mg/kg, s.c.) attenuated heat but not mechanical hypersensitivity. The effect was blocked by pretreatment with an intraperitoneal injection of methylnaltrexone (5 mg/kg), a peripherally restricted opioid receptor antagonist, and was also diminished in Pirt-MOR conditional knockout mice. DALDA did not adversely affect exploratory activity or induced preference to drug treatment in SCI mice. In vivo calcium imaging showed that DALDA (1, 10 mg/kg, s.c.) inhibited responses of small dorsal root ganglion neurons to noxious heat stimulation in Pirt-GCaMP6s mice after SCI. Western blot analysis showed upregulation of MOR in the lumbar spinal cord and sciatic nerves at 6 weeks after SCI. Our findings suggest that peripherally acting MOR agonist may inhibit heat hypersensitivity below the injury level with minimal adverse effects.
Collapse
|
30
|
Vo AK, Geisler F, Grassner L, Schwab J, Whiteneck G, Jutzeler C, Kramer JLK. Serum albumin as a predictor of neurological recovery after spinal cord injury: a replication study. Spinal Cord 2020; 59:282-290. [PMID: 32839519 DOI: 10.1038/s41393-020-00536-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN This was a secondary analysis on an observational cohort study. OBJECTIVE To determine if serum albumin significantly associates with long-term neurological outcome (i.e., 1-year post-injury) in a contemporary cohort of individuals with spinal cord injury. SETTING Six rehabilitation centers across the United States. METHODS A secondary analysis of neurological outcomes and serum albumin concentrations was performed on data from the Spinal Cord Injury Rehabilitation study. Data was accessed from the Archive of Data on Disability to Enable Policy and research (ADDEP). The primary analysis applied unbiased recursive partitioning to examine the relationship between serum albumin, injury severity, and long-term outcomes. The analysis is accessible via https://rpubs.com/AnhKhoaVo/586028 . RESULTS Serum albumin concentration was significantly associated with lower extremity motor scores (LEMS) and American Spinal Injury Association Impairment Scale (AIS) grade at admission to rehabilitation. Serum albumin concentrations alone were also significantly associated with change of LEMS and marked recovery (improvement of at least 2 AIS grades and/or recovery to walking) at 1-year post injury. However, after adjusting for admission to rehabilitation LEMS and AIS grade, serum albumin was not significant. CONCLUSION The current study partially confirms our previous observations that serum albumin concentrations are associated with neurological outcome after spinal cord injury. As a crude prognostic biomarker, serum albumin concentration could be useful in cases where injury severity cannot be accurately assessed.
Collapse
Affiliation(s)
- Anh K Vo
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Fred Geisler
- University of Saskatchewan, Saskatoon, SK, Canada
| | - Lukas Grassner
- Center for Spinal Cord Injuries, BG Trauma Center Murnau, Murnau, Germany.,Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria.,Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Jan Schwab
- Belford Center for Spinal Cord Injury and Department of Neurology (Paraplegiology), Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | - Catherine Jutzeler
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. .,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Inhibition of Fast Nerve Conduction Produced by Analgesics and Analgesic Adjuvants-Possible Involvement in Pain Alleviation. Pharmaceuticals (Basel) 2020; 13:ph13040062. [PMID: 32260535 PMCID: PMC7243109 DOI: 10.3390/ph13040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nociceptive information is transmitted from the periphery to the cerebral cortex mainly by action potential (AP) conduction in nerve fibers and chemical transmission at synapses. Although this nociceptive transmission is largely inhibited at synapses by analgesics and their adjuvants, it is possible that the antinociceptive drugs inhibit nerve AP conduction, contributing to their antinociceptive effects. Many of the drugs are reported to inhibit the nerve conduction of AP and voltage-gated Na+ and K+ channels involved in its production. Compound action potential (CAP) is a useful measure to know whether drugs act on nerve AP conduction. Clinically-used analgesics and analgesic adjuvants (opioids, non-steroidal anti-inflammatory drugs, 2-adrenoceptor agonists, antiepileptics, antidepressants and local anesthetics) were found to inhibit fast-conducting CAPs recorded from the frog sciatic nerve by using the air-gap method. Similar actions were produced by antinociceptive plant-derived chemicals. Their inhibitory actions depended on the concentrations and chemical structures of the drugs. This review article will mention the inhibitory actions of the antinociceptive compounds on CAPs in frog and mammalian peripheral (particularly, sciatic) nerves and on voltage-gated Na+ and K+ channels involved in AP production. Nerve AP conduction inhibition produced by analgesics and analgesic adjuvants is suggested to contribute to at least a part of their antinociceptive effects.
Collapse
|
32
|
Duan W, Huang Q, Chen Z, Raja SN, Yang F, Guan Y. Comparisons of motor and sensory abnormalities after lumbar and thoracic contusion spinal cord injury in male rats. Neurosci Lett 2019; 708:134358. [PMID: 31269465 DOI: 10.1016/j.neulet.2019.134358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Rodent models of contusion spinal cord injury (SCI) are widely studied for the mechanisms underlying functional deficits after SCI. Yet, how does lesion level affect SCI-induced motor and sensory dysfunctions remains unclear. Using a computer-controlled impactor (Impact One™, Leica) and the same parameters (diameter, 2.0 mm; Speed: 4.0 m/s; Depth: 1.5 mm; Dwell time: 0.1 s), we produced contusions at mid-thoracic (T10) and rostral-lumbar (L2) spinal cord in male rats, and compared locomotor and sensory dysfunctions within the same experimental setting. The time courses of locomotor deficit were comparable between thoracic (n = 8) and lumbar (n = 7) SCI rats, but the severity was greater after thoracic SCI especially during the first week post-injury, as indicated by the lower Basso, Beattle and Bresnahan open-field locomotion scores. Both groups showed similar heightened avoiding response (hyper-reactivity) to mechanical stimulation applied at the hindpaws from day 21-56 post-injury, as indicated by decreased paw withdrawal thresholds. Compared to lumbar SCI, thoracic SCI induced a greater decrease of paw withdrawal latency in hot-plate test from day 28-56 post-injury. In contrast, lumbar SCI rats showed a greater reduction of avoidance threshold to mechanical stimulation at the girdle region, and larger overgroomed area than thoracic SCI rats at day 14 post-injury. Thus, thoracic SCI may induce greater motor deficits and hindpaw heat hyper-reactivity than did lumbar SCI. In contrast, lumbar SCI may elicit greater at-level mechanical hyper-reactivity and overgrooming behavior than thoracic SCI. Future study needs to examine the specific pathological changes underlying different dysfunctions in two SCI models.
Collapse
Affiliation(s)
- Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA; Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA; Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
33
|
Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F. Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem Cell Res Ther 2019; 10:183. [PMID: 31234929 PMCID: PMC6591829 DOI: 10.1186/s13287-019-1269-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Evidence has suggested that human adipose-derived stem cells (hADSCs) and low-level laser has neuroprotective effects on spinal cord injury (SCI). Therefore, the combined effect of the hADSCs and laser on neuregeneration and neuropathic pain after SCI was investigated. METHODS Forty-eight adult male Wistar rats with 200-250 g weight were used. Thirty minutes after compression, injury with laser was irritated, and 1 week following SCI, about 1 × 106 cells were transplanted into the spinal cord. Motor function and neuropathic pain were assessed weekly. Molecular and histological studies were done at the end of the fourth week. RESULTS The combined application of hADSCs and laser has significantly improved motor function recovery (p = 0.0001), hyperalgesia (p < 0.05), and allodynia (p < 0.05). GDNF mRNA expression was significantly increased in hADSCs and laser+hADSC-treated animals (p < 0.001). Finally, co-administration of hADSCs and laser has enhanced the number of axons around cavity more than other treatments (p < 0.001). CONCLUSIONS The results showed that the combination of laser and ADSCs could significantly improve the motor function and alleviate SCI-induced allodynia and hyperalgesia. Therefore, using a combination of laser and hADSCs in future experimental and translational clinical studies is suggested.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Dameni
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| |
Collapse
|
34
|
Noble DJ, Martin KK, Parvin S, Garraway SM. Spontaneous and Stimulus-Evoked Respiratory Rate Elevation Corresponds to Development of Allodynia in Spinal Cord-Injured Rats. J Neurotrauma 2019; 36:1909-1922. [PMID: 30489202 DOI: 10.1089/neu.2018.5936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory complications frequently accompany spinal cord injury (SCI) and slowed breathing has been shown to mitigate pain sensitivity. It is possible that elevated respiratory rates (RRs) signal the emergence of chronic pain after SCI. We previously validated the use of remote electric field sensors to noninvasively track breathing in freely behaving rodents. Here, we examined spontaneous (resting) and stimulus-evoked RRs as potential indices of mechanical hypersensitivity following SCI. Adult male Long-Evans rats received a lower thoracic hemisection or contusion SCI, or sham surgery, and underwent weekly assessments of mechanical and thermal sensitivity using the von Frey and Hargreaves tests, respectively. Resting RRs were recorded with remote sensors prior to nociception assays as well as 1 day post-surgery. Evoked RRs were quantified weekly in response to at-level mechanical stimulation provided by a small brush at various stimulation speeds, including those corresponding to the distinct tuning properties of a sub-population of cutaneous afferents known as C-low threshold mechanoreceptors. SCI rats developed mechanical hypersensitivity, which peaked 2-3 weeks after SCI. Compared with at baseline, hemisection SCI rats showed significantly heightened resting RRs at 1 day and 7 days post-injury, and the latter predicted development of pain hypersensitivity. In contusion SCI rats, resting RR increases were less substantial but occurred at all weekly time-points. Increases in brush-evoked RR coincided with full expression of hypersensitivity at 14 (hemisection) or 21 (contusion) days after SCI, and these effects were restricted to the lowest brush speeds. Our results support the possibility that early changes in RR may convey pain information in rats.
Collapse
Affiliation(s)
- Donald J Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Karmarcha K Martin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
Batista CM, Mariano ED, Onuchic F, Dale CS, dos Santos GB, Cristante AF, Otoch JP, Teixeira MJ, Morgalla M, Lepski G. Characterization of traumatic spinal cord injury model in relation to neuropathic pain in the rat. Somatosens Mot Res 2019; 36:14-23. [DOI: 10.1080/08990220.2018.1563537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chary Marquez Batista
- Department of Neurology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Eric Domingos Mariano
- Department of Neurology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Onuchic
- Department of Neurology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gustavo Bispo dos Santos
- Department of Orthopedic and Traumatology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Fogaça Cristante
- Department of Orthopedic and Traumatology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Pinhata Otoch
- Department of Surgery, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Matthias Morgalla
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
- Department of Psychiatry, School of Medicine, University de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Burke D, Fullen BM, Lennon O. Pain profiles in a community dwelling population following spinal cord injury: a national survey. J Spinal Cord Med 2019; 42:201-211. [PMID: 28738744 PMCID: PMC6419620 DOI: 10.1080/10790268.2017.1351051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
CONTEXT While as many as 60% of patients with spinal cord injury (SCI) develop chronic pain, limited data currently exists on the prevalence and profile of pain post-SCI in community dwelling populations. STUDY DESIGN A cross-sectional population survey. SETTING Primary care. PARTICIPANTS Community dwelling adults with SCI. METHODS Following ethical approval members registered to a national SCI database (n=1,574) were surveyed. The survey included demographic and SCI characteristics items, the International Spinal Cord Injury Pain Basic Data Set (version 1) the Douleur Neuropathique 4 questionnaire (interview) and questions relating to health care utilisation. Data were entered into the Statistical Package for the Social Sciences (version 20) Significance was set P < 0.05 for between group comparisons. RESULTS In total 643 (41%) surveys were returned with 458 (71%) respondents experiencing pain in the previous week. Neuropathic pain (NP) was indicated in 236 (37%) of responses and nociceptive pain in 206 (32%) Common treatments for pain included medications n=347 (76%) massage n=133 (29%) and heat n=115 (25%). Respondents with NP reported higher pain intensities and increased healthcare service utilisation (P= < 0.001) when compared to those with nociceptive pain presentations. A higher proportion of females than males reported pain (P = 0.003) and NP (P = 0.001) and those unemployed presented with greater NP profiles compared with those in education or employment (P = 0.006). CONCLUSION Pain, in particular NP post SCI interferes with daily life, increases health service utilisation and remains refractory to current management strategies. Increased availability of multi-disciplinary pain management and further research into management strategies is warranted.
Collapse
Affiliation(s)
- Dearbhla Burke
- UCD School of Public Health, Physiotherapy and Sports Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland,Correspondence to: Ms. Dearbhla Burke, A101 Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brona M. Fullen
- UCD School of Public Health, Physiotherapy and Sports Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland,UCD Centre for Translational Pain Research, University College Dublin, Belfield, Dublin 4. Ireland
| | - Olive Lennon
- UCD School of Public Health, Physiotherapy and Sports Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
37
|
Choi YA, Kim Y, Shin HI. Pilot study of feasibility and effect of anodal transcutaneous spinal direct current stimulation on chronic neuropathic pain after spinal cord injury. Spinal Cord 2019; 57:461-470. [PMID: 30700853 DOI: 10.1038/s41393-019-0244-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A single-blind crossover study. OBJECTIVES This study aimed to evaluate neuropathic pain in persons with spinal cord injury (SCI) after the application of transcutaneous spinal direct current stimulation (tsDCS). SETTING Outpatient Clinic of the Rehabilitation Department, Seoul National University Hospital. METHODS The effect of single sessions of both anodal and sham tsDCS (2 mA, 20 min) on chronic neuropathic pain in ten volunteers with complete motor cervical SCI was assessed. The active electrode was placed over the spinal process of the tenth thoracic vertebra and the reference electrode, at the top of the head. Pre- to post-tsDCS intervention changes in pain intensity (numeric rating scale, NRS), patient global assessment, and present pain intensity (PPI) were assessed before and after the tsDCS session (immediately post stimulation, and at 1 and 2 h post stimulation). RESULTS All participants underwent the stimulation procedure without dropout. Our results showed no significant pre- to post-treatment difference in pain intensity between the active and sham tsDCS groups. Only in the sham tsDCS stimulation, NRS and PPI scores were reduced after the stimulation session. Furthermore, in the mixed effect model analysis, the response in the second period appeared to be more favorable. CONCLUSION The results suggest that a single session of anodal tsDCS with the montage used in this study is feasible but does not have a significant analgesic effect in individuals with chronic cervical SCI. SPONSORSHIP The study was funded by Seoul National University Hospital (No. 0420160470) and Korea Workers' Compensation & Welfare Service.
Collapse
Affiliation(s)
- Young-Ah Choi
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yale Kim
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Ik Shin
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Batista CM, Mariano ED, Dale CS, Cristante AF, Britto LR, Otoch JP, Teixeira MJ, Morgalla M, Lepski G. Pain inhibition through transplantation of fetal neuronal progenitors into the injured spinal cord in rats. Neural Regen Res 2019; 14:2011-2019. [PMID: 31290460 PMCID: PMC6676883 DOI: 10.4103/1673-5374.259624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain after spinal cord injury (SCI) is a complex condition that responds poorly to usual treatments. Cell transplantation represents a promising therapy; nevertheless, the ideal cell type in terms of neurogenic potential and effectiveness against pain remains largely controversial. Here, we evaluated the ability of fetal neural stem cells (fNSC) to relieve chronic pain and, secondarily, their effects on motor recovery. Adult Wistar rats with traumatic SCI were treated, 10 days after injury, with intra-spinal injections of culture medium (sham) or fNSCs extracted from telencephalic vesicles (TV group) or the ventral medulla (VM group) of E/14 embryos. Sensory (von Frey filaments and hot plate) and motor (the Basso, Beattie, Bresnahan locomotor rating scale and inclined plane test) assessments were performed during 8 weeks. Thereafter, spinal cords were processed for immunofluorescence and transplanted cells were quantified by stereology. The results showed improvement of thermal hyperalgesia in the TV and VM groups at 4 and 5 weeks after transplantation, respectively. Moreover, mechanical allodynia improved in both the TV and VM groups at 8 weeks. No significant motor recovery was observed in the TV or VM groups compared with sham. Stereological analyses showed that ~70% of TV and VM cells differentiated into NeuN+ neurons, with a high proportion of enkephalinergic and GABAergic cells in the TV group and enkephalinergic and serotoninergic cells in the VM group. Our study suggests that neuronal precursors from TV and VM, once implanted into the injured spinal cord, maturate into different neuronal subtypes, mainly GABAergic, serotoninergic, and enkephalinergic, and all subtypes alleviate pain, despite no significant motor recovery. The study was approved by the Animal Ethics Committee of the Medical School of the University of São Paulo (protocol number 033/14) on March 4, 2016.
Collapse
Affiliation(s)
- Chary M Batista
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Eric D Mariano
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camila S Dale
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alexandre F Cristante
- Department of Orthopedic and Traumatology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luiz R Britto
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jose P Otoch
- Department of Surgery, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Manoel J Teixeira
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matthias Morgalla
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany; Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury. Neurosci Bull 2018; 35:527-539. [PMID: 30560438 DOI: 10.1007/s12264-018-0320-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/30/2022] Open
Abstract
In addition to restoration of bladder, bowel, and motor functions, alleviating the accompanying debilitating pain is equally important for improving the quality of life of patients with spinal cord injury (SCI). Currently, however, the treatment of chronic pain after SCI remains a largely unmet need. Electrical spinal cord stimulation (SCS) has been used to manage a variety of chronic pain conditions that are refractory to pharmacotherapy. Yet, its efficacy, benefit profiles, and mechanisms of action in SCI pain remain elusive, due to limited research, methodological weaknesses in previous clinical studies, and a lack of mechanistic exploration of SCS for SCI pain control. We aim to review recent studies and outline the therapeutic potential of different SCS paradigms for traumatic SCI pain. We begin with an overview of its manifestations, classification, potential underlying etiology, and current challenges for its treatment. The clinical evidence for using SCS in SCI pain is then reviewed. Finally, future perspectives of pre-clinical research and clinical study of SCS for SCI pain treatment are discussed.
Collapse
|
40
|
Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M. Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signalling pathway. Eur J Pain 2018; 23:750-764. [PMID: 30427581 DOI: 10.1002/ejp.1342] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/04/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) causes continuous neurological deficits and major sensory-motor impairments. There is no effective treatment to enhance sensory-motor function following SCI. Thus, it is crucial to develop novel therapeutics for this particular patient population. Astaxanthin (AST) is a strong antioxidant, anti-inflammatory and anti-apoptotic agent. In the present study, it was tested in a severe compression SCI model with emphasis on sensory-motor outcomes, signalling pathway, along with other complications. METHODS A severe SCI was induced by compression of the rat thoracic spinal cord with an aneurysm clip and treatment with AST or the vehicle was carried out, 30 min after injury. Behavioural tests including open field, von Frey, hot plate and BBB were performed weekly to 28 days post-injury. Rats were assigned to measure blood glucose, weight and auricle temperature. Western blot and histological analysis also were performed at the same time points. RESULTS AST decreased mechanical and thermal pain and also improved motor function performance, reduced blood glucose and auricle temperature increases and attenuated weight loss in SCI rats. Western blot analysis showed decreased activation of ERK1/2 and increased activation of AKT following AST treatment. The histology results revealed that AST considerably preserved myelinated white matter and the number of motor neurons following SCI. CONCLUSION Taken together, the beneficial effects of AST to improve sensory-motor outcomes, attenuate pathological tissue damage and modulate ERK and AKT signalling pathways following SCI, suggest it as a strong therapeutic agent towards clinical applications. SIGNIFICANCE Spinal cord injury (SCI) impairs sensory-motor function and causes complications, which astaxanthin (AST) has the potential to be used as a treatment for. The present study investigates the effects of AST in a compression model of SCI with emphasis on sensory-motor outcomes alongside other complications, histopathological damage and also related signalling pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res 2018; 136:1-20. [PMID: 30121358 DOI: 10.1016/j.phrs.2018.08.012] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
|
42
|
Sánchez-Brualla I, Boulenguez P, Brocard C, Liabeuf S, Viallat-Lieutaud A, Navarro X, Udina E, Brocard F. Activation of 5-HT 2A Receptors Restores KCC2 Function and Reduces Neuropathic Pain after Spinal Cord Injury. Neuroscience 2018; 387:48-57. [PMID: 28844001 DOI: 10.1016/j.neuroscience.2017.08.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022]
Abstract
Downregulation of the potassium chloride cotransporter type 2 (KCC2) after a spinal cord injury (SCI) disinhibits motoneurons and dorsal horn interneurons causing spasticity and neuropathic pain, respectively. We showed recently (Bos et al., 2013) that specific activation of 5-HT2A receptors by TCB-2 [(4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide] upregulates KCC2 function, restores motoneuronal inhibition and reduces SCI-induced spasticity. Here, we tested the potential analgesic effect of TCB-2 on central (thoracic hemisection) and peripheral [spared nerve injury (SNI)] neuropathic pain. We found mechanical and thermal hyperalgesia reduced by an acute administration of TCB-2 in rats with SCI. This analgesic effect was associated with an increase in dorsal horn membrane KCC2 expression and was prevented by pharmacological blockade of KCC2 with an intrathecal injection of DIOA [(dihydroindenyl)oxy]alkanoic acid]. In contrast, the SNI-induced neuropathic pain was not attenuated by TCB-2 although there was a slight increase of membrane KCC2 expression in the dorsal horn ipsilateral to the lesion. Up-regulation of KCC2 function by targeting 5-HT2A receptors, therefore, has therapeutic potential in the treatment of neuropathic pain induced by SCI but not by SNI.
Collapse
Affiliation(s)
- Irene Sánchez-Brualla
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France; Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pascale Boulenguez
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Cécile Brocard
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Sylvie Liabeuf
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Annelise Viallat-Lieutaud
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esther Udina
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Frédéric Brocard
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France.
| |
Collapse
|
43
|
Abstract
OBJECTIVE To review the literature related to different treatment strategies for the general population of individuals with amputation, spinal cord injury, and cerebral palsy, as well as how this may impact pain management in a correlated athlete population. DATA SOURCES A comprehensive literature search was performed linking pain with terms related to different impairment types. MAIN RESULTS There is a paucity in the literature relating to treatment of pain in athletes with impairment; however, it is possible that the treatment strategies used in the general population of individuals with impairment may be translated to the athlete population. There are a wide variety of treatment options including both pharmacological and nonpharmacological treatments which may be applicable in the athlete. CONCLUSIONS It is the role of the physician to determine which strategy of the possible treatment options will best facilitate the management of pain in the individual athlete in a sport-specific setting.
Collapse
|
44
|
Sliwinski C, Nees TA, Puttagunta R, Weidner N, Blesch A. Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. J Neurotrauma 2018; 35:2222-2238. [PMID: 29706124 DOI: 10.1089/neu.2017.5431] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large proportion of patients suffering from spinal cord injury (SCI) develop chronic central neuropathic pain. Previously, we and others have shown that sensorimotor training early after SCI can prevent the development of mechanical allodynia. To determine whether training initiated in the subchronic/chronic phase remains effective, correlates of below-level neuropathic pain were analyzed in the hindpaws 5-10 weeks after a moderate T11 contusion SCI (50 kDyn) in adult female C57BL/6 mice. In a comparison of SCI and sham mice 5 weeks post-injury, about 80% of injured animals developed mechanical hypersensitivity to light mechanical stimuli, whereas testing of noxious stimuli revealed hypo-responsiveness. Thermal sensitivity testing showed a decreased response latency after injury. Without intervention, mechanical and thermal hyper-responsiveness were evident until the end of the experiment (10 weeks). In contrast, treadmill training (2 × 15 min/day; 5 × /week) initiated 6 weeks post-injury resulted in partial amelioration of pain behavior and this effect remained stable. Analysis of calcitonin gene-related peptide (CGRP)-labeled fibers in lamina III-IV of the lumbar dorsal horn revealed an increase in labeling density after SCI. This was not due to changes in the number or size distribution of CGRP-labeled lumbar dorsal root ganglion neurons. Treadmill training reduced the CGRP-labeling density in the spinal cord of injured mice, whereas the density of non-peptidergic isolectin-B4 (IB4)+ fibers showed no changes in lamina IIi and a slight reduction of sparse IB4 labeling in laminae III-IV. Thus, sensorimotor activity initiated in the subchronic/chronic phase of SCI remains effective in ameliorating pain behavior and influencing structural changes of the nociceptive system.
Collapse
Affiliation(s)
| | - Timo A Nees
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,2 Center for Orthopedic and Trauma Surgery, Heidelberg University Hospital , Heidelberg, Germany
| | - Radhika Puttagunta
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Norbert Weidner
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Armin Blesch
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,3 Department of Neurological Surgery and Goodman Campbell Brain and Spine, Stark Neurosciences Research Institute, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
45
|
Nagakura Y. Giving priority to preclinical pain measures resistant to existing drugs for developing innovative analgesics. Drug Dev Res 2018; 79:147-156. [PMID: 29732584 DOI: 10.1002/ddr.21429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Preclinical Research & Development Chronic pain is a major health and socioeconomic burden because of its high prevalence, negative influence on patients' physical and/or emotional conditions, and huge costs to society. The responses of chronic pain patients to analgesic therapies vary substantially from individual to individual, and no more than a minority of chronic pain patients with various etiologies such as neuropathy and inflammation are, in fact, successfully relieved by existing drugs including opioid analgesics, nonopioid analgesics, antiepileptics, and antidepressants. The large primary unmet medical need would therefore be the patient domain that does not respond well to existing drugs. Accordingly, the expected profile for innovative analgesics would not be efficacy in the responder patient domain, but significant efficacy in patients with existing drug-resistant chronic pain. Meanwhile, the current gold standard in preclinical pain measures for the screening of analgesic candidates is existing drug-sensitive pain measures in animal models of chronic pain. Analgesic candidates screened using such preclinical pain measures during the last decades have been far from fulfilling the expected profile for innovative analgesics. Given that it is unlikely that such existing drug-sensitive pain measures are the best approach to developing innovative analgesics, one of the other approaches would be giving priority to existing drug-resistant pain measures in preclinical research. This review introduces potentially applicable existing drug-resistant pain measures published so far and suggests that the use of them would lead to the development of innovative analgesics.
Collapse
Affiliation(s)
- Yukinori Nagakura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori-shi, Aomori, 030-0943, Japan.,Center for Brain and Health Sciences, Aomori University, 109-1 Takama, Ishie, Aomori-shi, Aomori, 038-0003, Japan
| |
Collapse
|
46
|
Park A, Uddin O, Li Y, Masri R, Keller A. Pain After Spinal Cord Injury Is Associated With Abnormal Presynaptic Inhibition in the Posterior Nucleus of the Thalamus. THE JOURNAL OF PAIN 2018; 19:727.e1-727.e15. [PMID: 29481977 DOI: 10.1016/j.jpain.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 01/21/2023]
Abstract
Pain after spinal cord injury (SCI-Pain) is one of the most debilitating sequelae of spinal cord injury, characterized as relentless, excruciating pain that is largely refractory to treatments. Although it is generally agreed that SCI-Pain results from maladaptive plasticity in the pain processing pathway that includes the spinothalamic tract and somatosensory thalamus, the specific mechanisms underlying the development and maintenance of such pain are yet unclear. However, accumulating evidence suggests that SCI-Pain may be causally related to abnormal thalamic disinhibition, leading to hyperactivity in the posterior thalamic nucleus (PO), a higher-order nucleus involved in somatosensory and pain processing. We previously described several presynaptic mechanisms by which activity in PO is regulated, including the regulation of GABAergic as well as glutamatergic release by presynaptic metabotropic gamma-aminobutyric acid (GABAB) receptors. Using acute slices from a mouse model of SCI-Pain, we tested whether such mechanisms are affected by SCI-Pain. We reveal 2 abnormal changes in presynaptic signaling in the SCI-Pain condition. The substantial tonic activation of presynaptic GABAB receptors on GABAergic projections to PO-characteristic of normal animals-was absent in mice with SCI-Pain. Also absent in mice with SCI-Pain was the normal presynaptic regulation of glutamatergic projections to the PO by GABAB receptors. The loss of these regulatory presynaptic mechanisms in SCI-Pain may be an element of maladaptive plasticity leading to PO hyperexcitability and behavioral pain, and may suggest targets for development of novel treatments. PERSPECTIVE This report presents synaptic mechanisms that may underlie the development and maintenance of SCI-Pain. Because of the difficulty in treating SCI-Pain, a better understanding of the underlying neurobiological mechanisms is critical, and may allow development of better treatment modalities.
Collapse
Affiliation(s)
- Anthony Park
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Olivia Uddin
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ying Li
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Radi Masri
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Baltimore, School of Dentistry, Baltimore, Maryland
| | - Asaf Keller
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
47
|
Hirao R, Fujita T, Sakai A, Kumamoto E. Compound action potential inhibition produced by various antidepressants in the frog sciatic nerve. Eur J Pharmacol 2018; 819:122-128. [DOI: 10.1016/j.ejphar.2017.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
|
48
|
Abstract
Spinal cord injury (SCI) is a common medical condition with a poor prognosis for recovery and catastrophic effects on a patient's quality of life. Available treatments for SCI are limited, and the evidence suggesting their harmful side effects is more consistent than any suggestion of clinical benefit. Developing novel safe and effective therapeutic options for SCI is crucial. Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine with known multifaceted effects on the central nervous system. Herein, we review the accumulating preclinical evidence for the beneficial effects of G-CSF on functional and structural outcomes after SCI. Meanwhile we present and discuss multiple mechanisms for G-CSF's neuroprotective and neuroregenerative actions through the results of these studies. In addition, we present the available clinical evidence indicating the efficacy and safety of G-CSF administration for the treatment of acute and chronic traumatic SCI, compression myelopathy, and SCI-associated neuropathic pain. Our review indicates that although the quality of clinical evidence regarding the use of G-CSF in SCI is inadequate, the encouraging available preclinical and clinical data warrant its further clinical development, and bring new hope to the longstanding challenge that is treatment of SCI.
Collapse
|
49
|
Gambeta E, Kopruszinski CM, dos Reis RC, Zanoveli JM, Chichorro JG. Facial pain and anxiety-like behavior are reduced by pregabalin in a model of facial carcinoma in rats. Neuropharmacology 2017; 125:263-271. [DOI: 10.1016/j.neuropharm.2017.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|
50
|
Shin JC, Kim NY, Chang SH, Lee JJ, Park HK. Effect of Patient Education on Reducing Medication in Spinal Cord Injury Patients With Neuropathic Pain. Ann Rehabil Med 2017; 41:621-630. [PMID: 28971047 PMCID: PMC5608670 DOI: 10.5535/arm.2017.41.4.621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023] Open
Abstract
Objective To determine whether providing education about the disease pathophysiology and drug mechanisms and side effects, would be effective for reducing the use of pain medication while appropriately managing neurogenic pain in spinal cord injury (SCI) patients. Methods In this prospective study, 109 patients with an SCI and neuropathic pain, participated in an educational pain management program. This comprehensive program was specifically created, for patients with an SCI and neuropathic pain. It consisted of 6 sessions, including educational training, over a 6-week period. Results Of 109 patients, 79 (72.5%) initially took more than two types of pain medication, and this decreased to 36 (33.0%) after the educational pain management program was completed. The mean pain scale score and the number of pain medications decreased, compared to the baseline values. Compared to the non-response group, the response group had a shorter duration of pain onset (p=0.004), and a higher initial number of different medications (p<0.001) and certain types of medications. Conclusion This study results imply that an educational pain management program, can be a valuable complement to the treatment of spinal cord injured patients with neuropathic pain. Early intervention is important, to prevent patients from developing chronic SCI-related pain.
Collapse
Affiliation(s)
- Ji Cheol Shin
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Na Young Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Shin Hye Chang
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Joong Lee
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Han Kyul Park
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|