1
|
Choi H, Jeong SH, Simó C, Bakenecker A, Liop J, Lee HS, Kim TY, Kwak C, Koh GY, Sánchez S, Hahn SK. Urease-powered nanomotor containing STING agonist for bladder cancer immunotherapy. Nat Commun 2024; 15:9934. [PMID: 39548120 PMCID: PMC11568179 DOI: 10.1038/s41467-024-54293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Most non-muscle invasive bladder cancers have been treated by transurethral resection and following intravesical injection of immunotherapeutic agents. However, the delivery efficiency of therapeutic agents into bladder wall is low due to frequent urination, which leads to the failure of treatment with side effects. Here, we report a urease-powered nanomotor containing the agonist of stimulator of interferon genes (STING) for the efficient activation of immune cells in the bladder wall. After characterization, we perform in vitro motion analysis and assess in vivo swarming behaviors of nanomotors. The intravesical instillation results in the effective penetration and retention of nanomotors in the bladder. In addition, we confirm the anti-tumor effect of nanomotor containing the STING agonist (94.2% of inhibition), with recruitment of CD8+ T cells (11.2-fold compared with PBS) and enhanced anti-tumor immune responses in bladder cancer model in female mice. Furthermore, we demonstrate the better anti-tumor effect of nanomotor containing the STING agonist than those of the gold standard Bacille Calmette-Guerin therapy and the anti-PD-1 inhibitor pembrolizumab in bladder cancer model. Taken together, the urease-powered nanomotor would provide a paradigm as a next-generation platform for bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Hyunsik Choi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- PHI BIOMED Co., Seocho-gu, Seoul, Korea
| | - Seung-Hwan Jeong
- Department of Urology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Cristina Simó
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Guipúzcoa, Spain
| | - Anna Bakenecker
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jordi Liop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Guipúzcoa, Spain
| | - Hye Sun Lee
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea.
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea.
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Korea.
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| | - Sei Kwang Hahn
- PHI BIOMED Co., Seocho-gu, Seoul, Korea.
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea.
| |
Collapse
|
2
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
3
|
Zimmer L. Recent applications of positron emission tomographic (PET) imaging in psychiatric drug discovery. Expert Opin Drug Discov 2024; 19:161-172. [PMID: 37948046 DOI: 10.1080/17460441.2023.2278635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Psychiatry is one of the medical disciplines that suffers most from a lack of innovation in its therapeutic arsenal. Many failures in drug candidate trials can be explained by pharmacological properties that have been poorly assessed upstream, in terms of brain passage, brain target binding and clinical outcomes. Positron emission tomography can provide pharmacokinetic and pharmacodynamic data to help select candidate-molecules for further clinical trials. AREAS COVERED This review aims to explain and discuss the various methods using positron-emitting radiolabeled molecules to trace the cerebral distribution of the drug-candidate or indirectly measure binding to its therapeutic target. More than an exhaustive review of PET studies in psychopharmacology, this article highlights the contributions this technology can make in drug discovery applied to psychiatry. EXPERT OPINION PET neuroimaging is the only technological approach that can, in vivo in humans, measure cerebral delivery of a drug candidate, percentage and duration of target binding, and even the pharmacological effects. PET studies in a small number of subjects in the early stages of the development of a psychotropic drug can therefore provide the pharmacokinetic/pharmacodynamic data required for subsequent clinical evaluation. While PET technology is demanding in terms of radiochemical, radiopharmacological and nuclear medicine expertise, its integration into the development process of new drugs for psychiatry has great added value.
Collapse
Affiliation(s)
- Luc Zimmer
- Lyon Neuroscience Research Center, Université Claude Bernard, Lyon, France
- CERMEP, Hospices Civils de Lyon, Lyon, France
- Institut National des Sciences et Technologies Nucléaire, Saclay, France
| |
Collapse
|
4
|
Burt T, Roffel AF, Langer O, Anderson K, DiMasi J. Strategic, feasibility, economic, and cultural aspects of phase 0 approaches: Is it time to change the drug development process in order to increase productivity? Clin Transl Sci 2022; 15:1355-1379. [PMID: 35278281 PMCID: PMC9199889 DOI: 10.1111/cts.13269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Research conducted over the past 2 decades has enhanced the validity and expanded the applications of microdosing and other phase 0 approaches in drug development. Phase 0 approaches can accelerate drug development timelines and reduce attrition in clinical development by increasing the quality of candidates entering clinical development and by reducing the time to "go-no-go" decisions. This can be done by adding clinical trial data (both healthy volunteers and patients) to preclinical candidate selection, and by applying methodological and operational advantages that phase 0 have over traditional approaches. The main feature of phase 0 approaches is the limited, subtherapeutic exposure to the test article. This means a reduced risk to research volunteers, and reduced regulatory requirements, timelines, and costs of first-in-human (FIH) testing. Whereas many operational aspects of phase 0 approaches are similar to those of other early phase clinical development programs, they have some unique strategic, regulatory, ethical, feasibility, economic, and cultural aspects. Here, we provide a guidance to these operational aspects and include case studies to highlight their potential impact in a range of clinical development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Phase-0/Microdosing Network, New York, New York, USA
- Burt Consultancy, LLC, New York, New York, USA
| | | | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Joseph DiMasi
- Tufts Center for the Study of Drug Development, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Oesterreicher Z, Eberl S, Wulkersdorfer B, Matzneller P, Eder C, van Duijn E, Vaes WHJ, Reiter B, Stimpfl T, Jäger W, Nussbaumer-Proell A, Marhofer D, Marhofer P, Langer O, Zeitlinger M. Microdosing as a Potential Tool to Enhance Clinical Development of Novel Antibiotics: A Tissue and Plasma PK Feasibility Study with Ciprofloxacin. Clin Pharmacokinet 2022; 61:697-707. [PMID: 34997559 PMCID: PMC9095552 DOI: 10.1007/s40262-021-01091-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE In microdose studies, drug pharmacokinetics is measured in humans after administration of subtherapeutic doses. While previous microdose studies focused primarily on plasma pharmacokinetics, we set out to evaluate the feasibility of microdosing for a pharmacokinetic assessment in subcutaneous tissue and epithelial lining fluid. METHODS Healthy subjects received a single intravenous bolus injection of a microdose of [14C]ciprofloxacin (1.1 µg, 7 kBq) with (cohort A, n = 9) or without (cohort B, n = 9) a prior intravenous infusion of a therapeutic dose of unlabeled ciprofloxacin (400 mg). Microdialysis and bronchoalveolar lavage were applied for determination of subcutaneous and intrapulmonary drug concentrations. Microdose [14C]ciprofloxacin was quantified by accelerator mass spectrometry and therapeutic-dose ciprofloxacin by liquid chromatography-tandem mass spectrometry. RESULTS The pharmacokinetics of therapeutic-dose ciprofloxacin (cohort A) in plasma, subcutaneous tissue, and epithelial lining fluid was in accordance with previous data. In plasma and subcutaneous tissue, the dose-adjusted area under the concentration-time curve of microdose ciprofloxacin was similar in cohorts A and B and within an 0.8-fold to 1.1-fold range of the area under the concentration-time curve of therapeutic-dose ciprofloxacin. Penetration of microdose ciprofloxacin into subcutaneous tissue was similar in cohorts A and B and comparable to that of therapeutic-dose ciprofloxacin with subcutaneous tissue-to-plasma area under the concentration-time curve ratios of 0.44, 0.44, and 0.38, respectively. Penetration of microdose ciprofloxacin into epithelial lining fluid was highly variable and failed to predict the epithelial lining fluid penetration of therapeutic-dose ciprofloxacin. CONCLUSIONS Our study confirms the feasibility of microdosing for pharmacokinetic measurements in plasma and subcutaneous tissue. Microdosing combined with microdialysis is a potentially useful tool in clinical antimicrobial drug development, but its applicability for the assessment of pulmonary pharmacokinetics with bronchoalveolar lavage requires further studies. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03177720 (registered 6 June, 2017).
Collapse
Affiliation(s)
- Zoe Oesterreicher
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Internal Medicine 2, Gastroenterology and Hepatology and Rheumatology, University Hospital of St. Pölten, St. Pölten, Austria
| | - Sabine Eberl
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Beatrix Wulkersdorfer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Peter Matzneller
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Claudia Eder
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | - Birgit Reiter
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Alina Nussbaumer-Proell
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Daniela Marhofer
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Marhofer
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University of Vienna, Vienna, Austria
- Orthopaedic Hospital Speising, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Hortelao AC, Simó C, Guix M, Guallar-Garrido S, Julián E, Vilela D, Rejc L, Ramos-Cabrer P, Cossío U, Gómez-Vallejo V, Patiño T, Llop J, Sánchez S. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci Robot 2021; 6:6/52/eabd2823. [PMID: 34043548 DOI: 10.1126/scirobotics.abd2823] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Enzyme-powered nanomotors are an exciting technology for biomedical applications due to their ability to navigate within biological environments using endogenous fuels. However, limited studies into their collective behavior and demonstrations of tracking enzyme nanomotors in vivo have hindered progress toward their clinical translation. Here, we report the swarming behavior of urease-powered nanomotors and its tracking using positron emission tomography (PET), both in vitro and in vivo. For that, mesoporous silica nanoparticles containing urease enzymes and gold nanoparticles were used as nanomotors. To image them, nanomotors were radiolabeled with either 124I on gold nanoparticles or 18F-labeled prosthetic group to urease. In vitro experiments showed enhanced fluid mixing and collective migration of nanomotors, demonstrating higher capability to swim across complex paths inside microfabricated phantoms, compared with inactive nanomotors. In vivo intravenous administration in mice confirmed their biocompatibility at the administered dose and the suitability of PET to quantitatively track nanomotors in vivo. Furthermore, nanomotors were administered directly into the bladder of mice by intravesical injection. When injected with the fuel, urea, a homogeneous distribution was observed even after the entrance of fresh urine. By contrast, control experiments using nonmotile nanomotors (i.e., without fuel or without urease) resulted in sustained phase separation, indicating that the nanomotors' self-propulsion promotes convection and mixing in living reservoirs. Active collective dynamics, together with the medical imaging tracking, constitute a key milestone and a step forward in the field of biomedical nanorobotics, paving the way toward their use in theranostic applications.
Collapse
Affiliation(s)
- Ana C Hortelao
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Cristina Simó
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Diana Vilela
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Luka Rejc
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain. .,Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain.
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain. .,Institució Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Burt T, Young G, Lee W, Kusuhara H, Langer O, Rowland M, Sugiyama Y. Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 2020; 19:801-818. [PMID: 32901140 DOI: 10.1038/s41573-020-0080-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches - which include microdosing - evaluate subtherapeutic exposures of new drugs in first-in-human studies known as exploratory clinical trials. Recent progress extends phase 0 benefits beyond assessment of pharmacokinetics to include understanding of mechanism of action and pharmacodynamics. Phase 0 approaches have the potential to improve preclinical candidate selection and enable safer, cheaper, quicker and more informed developmental decisions. Here, we discuss phase 0 methods and applications, highlight their advantages over traditional strategies and address concerns related to extrapolation and developmental timelines. Although challenges remain, we propose that phase 0 approaches be at least considered for application in most drug development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy LLC. talburtmd.com, New York, NY, USA. .,Phase-0/Microdosing Network. Phase-0Microdosing.org, New York, NY, USA.
| | - Graeme Young
- GlaxoSmithKline Research and Development Ltd, Ware, UK
| | - Wooin Lee
- Seoul National University, Seoul, Republic of Korea
| | | | - Oliver Langer
- Medical University of Vienna, Vienna, Austria.,AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | | |
Collapse
|
8
|
Cooper AB, Aggarwal M, Bartels MJ, Morriss A, Terry C, Lord GA, Gant TW. PBTK model for assessment of operator exposure to haloxyfop using human biomonitoring and toxicokinetic data. Regul Toxicol Pharmacol 2018; 102:1-12. [PMID: 30543831 DOI: 10.1016/j.yrtph.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 11/18/2022]
Abstract
Physiologically-based toxicokinetic (PBTK) models are mathematical representations of chemical absorption, distribution, metabolism and excretion (ADME) in animals. Each parameter in a PBTK model describes a physiological, physicochemical or biochemical process that affects ADME. Distributions can be assigned to the model parameters to describe population variability and uncertainty. In this study to assess potential crop sprayer operator exposure to the herbicide haloxyfop, a permeability-limited PBTK model was constructed with parameter uncertainty and variability, and calibrated using Bayesian analysis via Markov chain Monte Carlo methods. A hierarchical statistical model was developed to reconstruct operator exposure using available measurement data: experimentally determined octanol/water partition coefficient, mouse and human toxicokinetic data as well as human biomonitoring data from seven operators who participated in a field study. A chemical risk assessment was performed by comparing the estimated systemic exposure to the acceptable operator exposure level (AOEL). The analysis suggested that in one of the seven operators, the model estimates systemic exposure to haloxyfop of 49.04 ± 10.19 SD μg/kg bw in relation to an AOEL of 5.0 μg/kg bw/day. This does not represent a safety concern as this predicted exposure is well within the 100-fold uncertainty factor applied to the No Observed Adverse Effect Level (NOAEL) in animals. In addition, given the availability of human toxicokinetic data, the 10x uncertainty factor for interspecies differences in ADME could be reduced (EFSA, 2006). Thus the AOEL could potentially be raised tenfold from 5.0 to 50.0 μg/kg bw/day.
Collapse
Affiliation(s)
- Alexander B Cooper
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK.
| | - Manoj Aggarwal
- Dow AgroSciences, 3B Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, UK
| | - Michael J Bartels
- Dow AgroSciences, 3B Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, UK
| | - Alistair Morriss
- Dow AgroSciences, 3B Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, UK
| | - Claire Terry
- Dow AgroSciences, 3B Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, UK
| | - Gwyn A Lord
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Timothy W Gant
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK; Kings College London, Department of Analytical, Environmental & Forensic Sciences, James Clerk Maxwell Building 57 Waterloo Road, London, SE1 8WA, UK.
| |
Collapse
|
9
|
Burt T, Noveck RJ, MacLeod DB, Layton AT, Rowland M, Lappin G. Intra-Target Microdosing (ITM): A Novel Drug Development Approach Aimed at Enabling Safer and Earlier Translation of Biological Insights Into Human Testing. Clin Transl Sci 2017; 10:337-350. [PMID: 28419765 PMCID: PMC5593170 DOI: 10.1111/cts.12464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- T Burt
- Burt Consultancy, LLC, Durham, North Carolina, USA
| | - R J Noveck
- Medical Director, Duke Clinical Research Unit, Durham, North Carolina, USA
| | - D B MacLeod
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - A T Layton
- Robert R. and Katherine B. Penn Professor of Mathematics Arts and Sciences Council Chair Professor of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - M Rowland
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK
| | - G Lappin
- Reader in Pharmaceutical Science, Lincoln School of Pharmacy, University of Lincoln, Lincoln, Lincolnshire, UK
| |
Collapse
|
10
|
Burt T, John CS, Ruckle JL, Vuong LT. Phase-0/microdosing studies using PET, AMS, and LC-MS/MS: a range of study methodologies and conduct considerations. Accelerating development of novel pharmaceuticals through safe testing in humans – a practical guide. Expert Opin Drug Deliv 2016; 14:657-672. [DOI: 10.1080/17425247.2016.1227786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Papadimitriou L, Smith-Jones PM, Sarwar CM, Marti CN, Yaddanapudi K, Skopicki HA, Gheorghiade M, Parsey R, Butler J. Utility of positron emission tomography for drug development for heart failure. Am Heart J 2016; 175:142-52. [PMID: 27179733 DOI: 10.1016/j.ahj.2016.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Only about 1 in 5,000 investigational agents in a preclinical stage acquires Food and Drug Administration approval. Among many reasons for this includes an inefficient transition from preclinical to clinical phases, which exponentially increase the cost and the delays the process of drug development. Positron emission tomography (PET) is a nuclear imaging technique that has been used for the diagnosis, risk stratification, and guidance of therapy. However, lately with the advance of radiochemistry and of molecular imaging technology, it became evident that PET could help novel drug development process. By using a PET radioligand to report on receptor occupancy during novel agent therapy, it may help assess the effectiveness, efficacy, and safety of such a new medication in an early preclinical stage and help design successful clinical trials even at a later phase. In this article, we explore the potential implications of PET in the development of new heart failure therapies and review PET's application in the respective pathophysiologic pathways such as myocardial perfusion, metabolism, innervation, inflammation, apoptosis, and cardiac remodeling.
Collapse
|
12
|
Burt T, Yoshida K, Lappin G, Vuong L, John C, de Wildt SN, Sugiyama Y, Rowland M. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development. Clin Transl Sci 2016; 9:74-88. [PMID: 26918865 PMCID: PMC5351314 DOI: 10.1111/cts.12390] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- T Burt
- Principal, Burt Consultancy, Durham, NC, 27705, USA
| | - K Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.,Oak Ridge Institution for Science and Education (ORISE) Fellow
| | - G Lappin
- Visiting Professor of Pharmacology School of Pharmacy University of Lincoln, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - L Vuong
- Principal, LTV Consulting, Davis, CA, USA.,Clinical Advisor at BioCore, Seoul, South Korea
| | - C John
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - S N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Y Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - M Rowland
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, M13 9PT, UK.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| |
Collapse
|
13
|
Park HS, Kim E, Moon BS, Lim NH, Lee BC, Kim SE. In Vivo Tissue Pharmacokinetics of Carbon-11-Labeled Clozapine in Healthy Volunteers: A Positron Emission Tomography Study. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015. [PMID: 26225256 PMCID: PMC4452936 DOI: 10.1002/psp4.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated clozapine (CLZ) tissue pharmacokinetics in vivo by using carbon-11-labeled CLZ (11C-CLZ) and positron emission tomography (PET). Eight healthy volunteers underwent 11C-CLZ studies wherein computed tomography image acquisition was followed by PET scans (whole-body, four; brain, four). After bolus intravenous 11C-CLZ injection, PET images were acquired at various timepoints for 2–3 hours. Tissue 11C-CLZ signals were plotted over time, and pharmacokinetic parameters were determined. High 11C-CLZ radioactivity was detected in the liver and brain, implying CLZ hepatic metabolism and efficient blood–brain barrier penetration. The urinary and hepatobiliary tracts were involved in 11C-CLZ excretion. Moderate to high radioactivity was observed in the dopaminergic and serotonergic receptor-rich brain regions, indicating CLZ binding to multiple receptor types. To our knowledge, this is the first study to report the determination of 11C-CLZ tissue pharmacokinetics in humans. PET using radiolabeled drugs can provide valuable information that could complement plasma pharmacokinetic data.
Collapse
Affiliation(s)
- H S Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital Seongnam, South Korea ; Smart Humanity Convergence Center, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University Seoul, South Korea ; Advanced Institutes of Convergence Technology Suwon, South Korea
| | - E Kim
- Department of Neuropsychiatry, Seoul National University College of Medicine, Seoul National University Bundang Hospital Seongnam, South Korea
| | - B S Moon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital Seongnam, South Korea
| | - N H Lim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital Seongnam, South Korea
| | - B C Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital Seongnam, South Korea ; Advanced Institutes of Convergence Technology Suwon, South Korea
| | - S E Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital Seongnam, South Korea ; Smart Humanity Convergence Center, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University Seoul, South Korea ; Advanced Institutes of Convergence Technology Suwon, South Korea
| |
Collapse
|
14
|
Cho DY, Bae SH, Shon JH, Bae SK. High-sensitive LC-MS/MS method for the simultaneous determination of mirodenafil and its major metabolite, SK-3541, in human plasma: Application to microdose clinical trials of mirodenafil. J Sep Sci 2013; 36:840-8. [DOI: 10.1002/jssc.201200919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/01/2012] [Accepted: 11/08/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Doo-Yeoun Cho
- Department of Family Practice & Community Health; Ajou University School of Medicine; Suwon Korea
| | - Soo Hyeon Bae
- College of Pharmacy; The Catholic University of Korea; Bucheon Korea
| | - Ji-Hong Shon
- Department of Clinical Pharmacology and Clinical Trial Center; Inje University Busan Paik Hospital; Busan Korea
| | - Soo Kyung Bae
- College of Pharmacy; The Catholic University of Korea; Bucheon Korea
| |
Collapse
|
15
|
Bae SK, Shon JH. Microdosing studies using accelerated mass spectrometry as exploratory investigational new drug trials. Arch Pharm Res 2011; 34:1789-98. [DOI: 10.1007/s12272-011-1102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/24/2011] [Indexed: 11/24/2022]
|
16
|
Wagner CC, Langer O. Approaches using molecular imaging technology -- use of PET in clinical microdose studies. Adv Drug Deliv Rev 2011; 63:539-46. [PMID: 20887762 DOI: 10.1016/j.addr.2010.09.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) imaging uses minute amounts of radiolabeled drug tracers and thereby meets the criteria for clinical microdose studies. The advantage of PET, when compared to other analytical methods used in microdose studies, is that the pharmacokinetics (PK) of a drug can be determined in the tissue targeted for drug treatment. PET microdosing already offers interesting applications in clinical oncology and in the development of central nervous system pharmaceuticals and is extending its range of application to many other fields of pharmaceutical medicine. Although requirements for preclinical safety testing for microdose studies have been cut down by regulatory authorities, radiopharmaceuticals increasingly need to be produced under good manufacturing practice (GMP) conditions, which increases the costs of PET microdosing studies. Further challenges in PET microdosing include combining PET with other ultrasensitive analytical methods, such as accelerator mass spectrometry (AMS), to gain plasma PK data of drugs, beyond the short PET examination periods. Finally, conducting clinical PET studies with radiolabeled drugs both at micro- and therapeutic doses is encouraged to answer the question of dose linearity in clinical microdosing.
Collapse
Affiliation(s)
- Claudia C Wagner
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger-Gürtel 18-20, A-1090, Vienna, Austria
| | | |
Collapse
|
17
|
Abstract
Microdosing provides a tool to enhance drug development by initiating human studies prior to Phase I studies. The purpose is to assist in the go versus no-go decision-making process and to eliminate early ineffective compounds from the drug pipeline. Selection of multiple potential leads can be performed at the clinical stage instead of in preclinical studies. The microdosing approach can be easily used for a molecularly targeted potential drug compound with a known mechanism of action. It provides useful data regarding accessibility and biodistribution that can be used in many estimations benefiting the development of the molecule. In addition, steady state and genetic investigations are becoming possible. Microdosing has a sparing effect on timelines and costs, however, the real importance is not yet known because, although it is known to be widely performed, only a few original reports have been published.
Collapse
|
18
|
Accelerator mass spectrometry-enabled studies: current status and future prospects. Bioanalysis 2011; 2:519-41. [PMID: 20440378 DOI: 10.4155/bio.09.188] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Accelerator mass spectrometry is a detection platform with exceptional sensitivity compared with other bioanalytical platforms. Accelerator mass spectrometry (AMS) is widely used in archeology for radiocarbon dating applications. Early exploration of the biological and pharmaceutical applications of AMS began in the early 1990s. AMS has since demonstrated unique problem-solving ability in nutrition science, toxicology and pharmacology. AMS has also enabled the development of new applications, such as Phase 0 microdosing. Recent development of AMS-enabled applications has transformed this novelty research instrument to a valuable tool within the pharmaceutical industry. Although there is now greater awareness of AMS technology, recognition and appreciation of the range of AMS-enabled applications is still lacking, including study-design strategies. This review aims to provide further insight into the wide range of AMS-enabled applications. Examples of studies conducted over the past two decades will be presented, as well as prospects for the future of AMS.
Collapse
|
19
|
Hatanaka K, Asai T, Koide H, Kenjo E, Tsuzuku T, Harada N, Tsukada H, Oku N. Development of double-stranded siRNA labeling method using positron emitter and its in vivo trafficking analyzed by positron emission tomography. Bioconjug Chem 2010; 21:756-63. [PMID: 20210335 DOI: 10.1021/bc9005267] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pharmacokinetic study of small interfering RNA (siRNA) is an important issue for the development of siRNAs for use as a medicine. For this purpose, a novel and favorable positron emitter-labeled siRNA was prepared by amino group-modification using N-succinimidyl 4-[fluorine-18] fluorobenzoate ([(18)F]SFB), and real-time analysis of siRNA trafficking was performed by using positron emission tomography (PET). Naked [(18)F]-labeled siRNA or cationic liposome/[(18)F]-labeled siRNA complexes were administered to mice, and differential biodistribution of the label was imaged by PET. The former was cleared quite rapidly from the bloodstream and excreted from the kidneys; but in contrast, the latter tended to accumulate in the lungs. We also confirmed the biodistribution of fluorescence-labeled naked siRNA and cationic liposome/siRNA complexes by use of a near-infrared fluorescence imaging system. As a result, a similar biodistribution was observed, although quantitative data were obtained only by planar positron imaging system (PPIS) analysis but not by fluorescence in vivo imaging. Our results indicate that PET imaging of siRNA provides important information for the development of siRNA medicines.
Collapse
Affiliation(s)
- Kentaro Hatanaka
- Department of Medical Biochemistry and Global COE Program, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-city, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Karara AH, Edeki T, McLeod J, Tonelli AP, Wagner JA. PhRMA survey on the conduct of first-in-human clinical trials under exploratory investigational new drug applications. J Clin Pharmacol 2010; 50:380-91. [PMID: 20097935 DOI: 10.1177/0091270009344987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The FDA guidance on exploratory IND studies is intended to enable sponsors to move ahead more efficiently with the development of promising candidates. A survey of PhRMA member companies was conducted in 2007 to obtain a cross-sectional industry perspective on the current and future utility of exploratory IND studies. About 56% of survey responders (9 companies of 16 survey responders) conducted or were planning to conduct clinical studies under exploratory INDs. The majority of microdosing studies are performed to characterize human pharmacokinetics or to examine target organ pharmacokinetics using PET imaging techniques. On the other hand, the majority of pharmacological end point studies conducted under exploratory IND are performed to determine whether the compound modulated its pharmacological target or to evaluate the degree of saturation of a target receptor. The present survey suggests that although the merits of exploratory INDs are still being debated, the diversity in the applications cited, the potential for early clinical guidance in decision making and the increasing pressure on containing drug development costs, suggest that the exploratory IND/CTA will be a valuable option with evolving and possibly more specific applications for the future.
Collapse
Affiliation(s)
- Adel H Karara
- Hoffmann-La Roche, Clinical Research and Exploratory Development, Clinical Pharmacology, 340 Kingsland Street, Nutley NJ 07110-1199, USA
| | | | | | | | | |
Collapse
|
21
|
Creton S, Billington R, Davies W, Dent MP, Hawksworth GM, Parry S, Travis KZ. Application of toxicokinetics to improve chemical risk assessment: implications for the use of animals. Regul Toxicol Pharmacol 2009; 55:291-9. [PMID: 19665509 DOI: 10.1016/j.yrtph.2009.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 11/30/2022]
Abstract
While toxicokinetics has become an integral part of pharmaceutical safety assessment over the last two decades, its use in the chemical industry is relatively new. However, it is recognised as a potentially important tool in human health risk assessment and recent initiatives have advocated greater application of toxicokinetics as part of an improved assessment strategy for crop protection chemicals that could offer greater efficiency, use fewer animals and provide better data for risk assessment purposes. To explore the potential scientific and animal welfare benefits of increased use of toxicokinetic data across the chemical industry, an international workshop was held in 2008. Experts from a wide range of chemical industry sectors, including industrial chemicals, agrochemicals and consumer products, participated in the meeting as well as representatives from relevant regulatory authorities. Pharmaceutical industry experts were also invited, in order to share experiences from the extensive use of toxicokinetics in drug development. Given that increased generation of toxicokinetic data could potentially result in an increased number of animals undergoing testing, technologies and strategies to reduce and refine animal use for this purpose were also considered. This paper outlines and expands upon the key themes that emerged from the workshop.
Collapse
Affiliation(s)
- Stuart Creton
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, London W1B 1AL, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Lappin G, Stevens L. Biomedical accelerator mass spectrometry: recent applications in metabolism and pharmacokinetics. Expert Opin Drug Metab Toxicol 2008; 4:1021-33. [DOI: 10.1517/17425255.4.8.1021] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Abstract
Multiple biomedical imaging techniques are used in all phases of cancer management. Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, structural, metabolic and functional information. Integration with other diagnostic tools such as in vitro tissue and fluids analysis assists in clinical decision-making. Hybrid imaging techniques are able to supply complementary information for improved staging and therapy planning. Image guided and targeted minimally invasive therapy has the promise to improve outcome and reduce collateral effects. Early detection of cancer through screening based on imaging is probably the major contributor to a reduction in mortality for certain cancers. Targeted imaging of receptors, gene therapy expression and cancer stem cells are research activities that will translate into clinical use in the next decade. Technological developments will increase imaging speed to match that of physiological processes. Targeted imaging and therapeutic agents will be developed in tandem through close collaboration between academia and biotechnology, information technology and pharmaceutical industries.
Collapse
Affiliation(s)
- Leonard Fass
- GE Healthcare, 352 Buckingham Avenue, Slough, SL1 4ER, UK.
| |
Collapse
|
24
|
Journal Watch. Pharmaceut Med 2008. [DOI: 10.1007/bf03256693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|