1
|
Ding J, Hostallero DE, El Khili MR, Fonseca GJ, Milette S, Noorah N, Guay-Belzile M, Spicer J, Daneshtalab N, Sirois M, Tremblay K, Emad A, Rousseau S. A network-informed analysis of SARS-CoV-2 and hemophagocytic lymphohistiocytosis genes' interactions points to Neutrophil extracellular traps as mediators of thrombosis in COVID-19. PLoS Comput Biol 2021; 17:e1008810. [PMID: 33684134 PMCID: PMC7971900 DOI: 10.1371/journal.pcbi.1008810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/18/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Abnormal coagulation and an increased risk of thrombosis are features of severe COVID-19, with parallels proposed with hemophagocytic lymphohistiocytosis (HLH), a life-threating condition associated with hyperinflammation. The presence of HLH was described in severely ill patients during the H1N1 influenza epidemic, presenting with pulmonary vascular thrombosis. We tested the hypothesis that genes causing primary HLH regulate pathways linking pulmonary thromboembolism to the presence of SARS-CoV-2 using novel network-informed computational algorithms. This approach led to the identification of Neutrophils Extracellular Traps (NETs) as plausible mediators of vascular thrombosis in severe COVID-19 in children and adults. Taken together, the network-informed analysis led us to propose the following model: the release of NETs in response to inflammatory signals acting in concert with SARS-CoV-2 damage the endothelium and direct platelet-activation promoting abnormal coagulation leading to serious complications of COVID-19. The underlying hypothesis is that genetic and/or environmental conditions that favor the release of NETs may predispose individuals to thrombotic complications of COVID-19 due to an increase risk of abnormal coagulation. This would be a common pathogenic mechanism in conditions including autoimmune/infectious diseases, hematologic and metabolic disorders.
Collapse
Affiliation(s)
- Jun Ding
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath Centre Research Institute, Montréal, Canada
| | - David Earl Hostallero
- Department of Electrical and Computer Engineering, McGill University, Montréal, Canada
| | - Mohamed Reda El Khili
- Department of Electrical and Computer Engineering, McGill University, Montréal, Canada
| | - Gregory Joseph Fonseca
- The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath Centre Research Institute, Montréal, Canada
| | - Simon Milette
- Goodman Cancer Research Centre, McGill University, Montréal, Canada
| | - Nuzha Noorah
- The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath Centre Research Institute, Montréal, Canada
| | - Myriam Guay-Belzile
- The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath Centre Research Institute, Montréal, Canada
| | - Jonathan Spicer
- Division of Thoracic and Upper Gastrointestinal Surgery, McGill University Health Centre Research Institute, Montréal, Canada
| | - Noriko Daneshtalab
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Martin Sirois
- Montreal Heart Institute and Department of pharmacology and physiology, Faculty of medicine, Université de Montréal, Montréal, Canada
| | - Karine Tremblay
- Pharmacology-physiology Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean (Chicoutimi University Hospital) Research Center, Saguenay, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montréal, Canada
| | - Simon Rousseau
- The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath Centre Research Institute, Montréal, Canada
| |
Collapse
|
2
|
Rout A, Tantry US, Novakovic M, Sukhi A, Gurbel PA. Targeted pharmacotherapy for ischemia reperfusion injury in acute myocardial infarction. Expert Opin Pharmacother 2020; 21:1851-1865. [PMID: 32659185 DOI: 10.1080/14656566.2020.1787987] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Achieving reperfusion immediately after acute myocardial infarction improves outcomes; despite this, patients remain at a high risk for mortality and morbidity at least for the first year after the event. Ischemia-reperfusion injury (IRI) has a complex pathophysiology and plays an important role in myocardial tissue injury, repair, and remodeling. AREAS COVERED In this review, the authors discuss the various mechanisms and their pharmacological agents currently available for reducing myocardial ischemia-reperfusion injury (IRI). They review important original investigations and trials in various clinical databases for treatments targeting IRI. EXPERT OPINION Encouraging results observed in many preclinical studies failed to show similar success in attenuating myocardial IRI in large-scale clinical trials. Identification of critical risk factors for IRI and targeting them individually rather than one size fits all approach should be the major focus of future research. Various newer therapies like tocilizumab, anakinra, colchicine, revacept, and therapies targeting the reperfusion injury salvage kinase pathway, survivor activating factor enhancement, mitochondrial pathways, and angiopoietin-like peptide 4 hold promise for the future.
Collapse
Affiliation(s)
- Amit Rout
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Marko Novakovic
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Ajaypaul Sukhi
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| |
Collapse
|
3
|
Microcatheter-Facilitated Primary Angioplasty in ST-Segment Elevation Myocardial Infarction. Can J Cardiol 2018; 34:23-30. [PMID: 29275878 DOI: 10.1016/j.cjca.2017.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/09/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Direct stenting is the best method for achieving reperfusion in primary percutaneous coronary intervention (PPCI). We hypothesized that the use of a microcatheter (MC) during PPCI when Thrombolysis in Myocardial Infarction (TIMI) flow ≤ 1 after wire crossing would allow visualization of the downstream artery with an optimal TIMI 3 flow at the end of the procedure. METHODS In this pilot study, PPCI patients with TIMI flow ≤ 1 after wire crossing formed the MC group (n = 60); the MC was positioned in the distal part of the culprit artery and a small amount of contrast was injected through it to determine stent size and length to treat the culprit lesion. The MC group was compared with previous consecutive patients treated using standard PPCI (n = 94; similar characteristics except for the rate of previous percutaneous coronary intervention). RESULTS In the MC group, downstream arteries were visualized in 98% of cases and direct stenting was achieved in 72% vs 31% (P < 0.0001). Final TIMI 3 flow was similar in both groups (97%). There was less manual thrombectomy (20% vs 63%; P < 0.001) and bailout glycoprotein IIb/IIIa inhibitor use (6.7% vs 29.8%; P < 0.002). The incidence of major adverse events (death, shock, severe arrhythmia) and left ventricular ejection fraction were similar. The peak cardiac enzymes level was significantly lower in the MC group. CONCLUSIONS The MC strategy appears feasible and safe. It could allow exploring new strategies on the basis of more systematic direct stenting and prepared reperfusion by injecting drugs through the MC before reperfusion.
Collapse
|
4
|
Suranyi P, Elgavish GA, Schoepf UJ, Ruzsics B, Kiss P, van Assen M, Jacobs BE, Brott BC, Elgavish A, Varga-Szemes A. Myocardial tissue characterization by combining late gadolinium enhancement imaging and percent edema mapping: a novel T2 map-based MRI method in canine myocardial infarction. Eur Radiol Exp 2018; 2:6. [PMID: 29708212 PMCID: PMC5909369 DOI: 10.1186/s41747-018-0037-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Assessing the extent of ischemic and reperfusion-associated myocardial injuries remains challenging with current magnetic resonance imaging (MRI) techniques. Our aim was to develop a tissue characterization mapping (TCM) technique by combining late gadolinium enhancement (LGE) with our novel percent edema mapping (PEM) approach to enable the classification of tissue represented by MRI voxels as healthy, myocardial edema (ME), necrosis, myocardial hemorrhage (MH), or scar. Methods Six dogs underwent closed-chest myocardial infarct (MI) generation. Serial MRI scans were performed post-MI on days 3, 4, 6, 14, and 56, including T2 mapping and LGE. Dogs were sacrificed on day 4 (n = 4, acute MI) or day 56 (n = 2, chronic MI). TCMs were generated based on a voxel classification algorithm taking into account signal intensity from LGE and T2-based estimation of ME. TCM-based MI and MH were validated with post mortem triphenyl tetrazolium chloride (TTC) staining. Pearson's correlation and Bland-Altman analyses were performed. Results The MI, ME, and MH measured by TCM were 13.4% [25th-75th percentile 1.6-28.8], 28.1% [2.1-37.5] and 4.3% [1.0-11.3], respectively. TCM measured higher MH and MI compared to TTC (p = 0.0033 and p = 0.0007, respectively). MH size was linearly correlated with MI size by both MRI (r = 0.9528, p < 0.0001) and TTC (r = 0.9625, p < 0.0001). MH quantification demonstrated good agreement between TCM and TTC (r = 0.8766, p < 0.0001, 2.4% overestimation by TCM). A similar correlation was observed for MI size (r = 0.9429, p < 0.0001, 6.1% overestimation by TCM). Conclusions Preliminary results suggest that the TCM method is feasible for the in vivo localization and quantification of various MI-related tissue components.
Collapse
Affiliation(s)
- Pal Suranyi
- 1Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425 USA
| | - Gabriel A Elgavish
- 2Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, MCLM 556, Birmingham, AL 35294-0005 USA
| | - U Joseph Schoepf
- 1Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425 USA
| | - Balazs Ruzsics
- 3Department of Cardiology, Royal Liverpool and Broadgreen University Hospital, Thomas Dr, Liverpool, L14 3LB UK
| | - Pal Kiss
- 2Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, MCLM 556, Birmingham, AL 35294-0005 USA
| | - Marly van Assen
- 1Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425 USA.,4University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Hanzeplein 1, Groningen, 9713GZ The Netherlands
| | - Brian E Jacobs
- 1Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425 USA
| | - Brigitta C Brott
- 5Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, FOT 907, Birmingham, AL 35294-3407 USA
| | - Ada Elgavish
- 6Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, MCLM 556, Birmingham, AL 35294-0005 USA
| | - Akos Varga-Szemes
- 1Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425 USA.,2Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, MCLM 556, Birmingham, AL 35294-0005 USA
| |
Collapse
|
5
|
Lee YJ, Lee D, Shin SM, Lee JS, Chun HS, Quan FS, Shin JH, Lee GJ. Potential protective effects of fermented garlic extract on myocardial ischemia-reperfusion injury utilizing in vitro and ex vivo models. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
6
|
Sun N, Wang H, Wang L. Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway. Mol Med Rep 2016; 14:2764-70. [DOI: 10.3892/mmr.2016.5535] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 06/20/2016] [Indexed: 11/06/2022] Open
|
7
|
Yang D, Wang X, Wu Y, Lu B, Yuan A, Leon C, Guo N. Urinary Metabolomic Profiling Reveals the Effect of Shenfu Decoction on Chronic Heart Failure in Rats. Molecules 2015; 20:11915-29. [PMID: 26133758 PMCID: PMC6332052 DOI: 10.3390/molecules200711915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/06/2023] Open
Abstract
Shenfu decoction (SFD) can be used to treat patients with sign of Yangqi decline or Yang exhaustion related to chronic heart failure (CHF). We conducted a gas chromatography with time-of-flight mass spectrometer (GC/TOF-MS)-based metabolomic study to increase the understanding of CHF and assess the efficacies and mechanisms of SFD in treating CHF induced by coronary artery ligation in rats. Based on unsupervised principal component analysis, there was a clear separation between the CHF and sham surgery group, which revealed that CHF disturbed the metabolism of endogenous substances and significantly altered the urine metabolite fingerprints. After SFD treatment, the metabolomics profile found in CHF was significantly reversed, shifting much closer to normal controls and sham surgery group, indicating that SFD has therapeutic effects in CHF, which is in accordance with the hemodynamic assay results. Metabolomic pathway analysis demonstrated that several pathways including fatty acid biosynthesis, fatty acid elongation, steroid biosynthesis, galactose metabolism, and amino acid metabolism were significantly altered in CHF rats. Therefore, we may infer that SFD shows therapeutic efficacy in CHF by restoring these disturbed metabolic pathways, especially those related to energy metabolism. This study offers new methodologies for increasing the understanding of CHF and systematically characterizing the efficacies and mechanisms of SFD in treating CHF.
Collapse
Affiliation(s)
- Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, 67 Dong Chang Xi Lu, Liaocheng 252000, China.
| | - Xiaoxing Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yaping Wu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, 67 Dong Chang Xi Lu, Liaocheng 252000, China.
| | - Bo Lu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Aifeng Yuan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Carlos Leon
- Biomedical Engineering School, Carlos III University, Avda Universidad 30, Leganes, Madrid 28911, Spain.
- Metabolomics, Genome Center, UC Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
8
|
Darahim K, Mahdy MM, Ryan MM, Khashaba AA, Thabet SS, Hassan OM, Abdelhamid MA. Does high-dose intracoronary adenosine improve regional systolic left ventricular function in patients with acute myocardial infarction? Egypt Heart J 2014. [DOI: 10.1016/j.ehj.2013.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Effect of peroxisome proliferator-activated receptor gamma agonist on heart of rabbits with acute myocardial ischemia/reperfusion injury. ASIAN PAC J TROP MED 2014; 7:271-5. [PMID: 24507674 DOI: 10.1016/s1995-7645(14)60036-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore protective effect of rosiglitazone on myocardial ischemia reperfusion injury. METHODS A total of 48 male SD rats were randomly divided into control group (A), I/R group(B), high dose of rosiglitazone (C), low dose of rosiglitazone (D). Plasm concentration of creatine kinase (CK), CK-MB, hsCRP, Superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), nitric oxide (NO) and endothelin (ET) were measured 1 h later after I/R. 24 h after I/R hearts were harvested to observe pathological and ultrastructural changes. Immunohistochemistry and western blotting was used to test CD40 expression in myocardial tissue. Area of myocardial infarction were tested, arrhythmia rate during I/R was recorded. RESULTS Plasm concentration of creatine kinase (CK), CK-MB, hsCRP, NO, MDA and ET were decreased in group C, D compared with group B. Plasm concentration of T-SOD and GSH-Px was increased significantly in group C, D compared with group B. Compared with group B, pathological and ultrastructural changes in group C, D were slightly. Myocardial infarction area and arrhythmia rate were lower in group C, D compare with group B. CONCLUSIONS Rosiglitazone can protect myocardium from I/R injury by enhancing T-SOD and GSH-Px concentration, inhibit inflammatory reaction, improve endothelial function, reduce oxidative stress and calcium overload.
Collapse
|
10
|
Dynamic Change of Hydrogen Sulfide After Traumatic Brain Injury and its Effect in Mice. Neurochem Res 2013; 38:714-25. [DOI: 10.1007/s11064-013-0969-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/14/2012] [Accepted: 01/08/2013] [Indexed: 01/20/2023]
|
11
|
Sharma V, Bell RM, Yellon DM. Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin Pharmacother 2012; 13:1153-75. [PMID: 22594845 DOI: 10.1517/14656566.2012.685163] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) (secondary to lethal ischemia-reperfusion [IR]) contributes to much of the mortality and morbidity from ischemic heart disease. Currently, the treatment for AMI is early reperfusion; however, this itself contributes to the final myocardial infarct size, in the form of what has been termed 'lethal reperfusion injury'. Over the last few decades, the discovery of the phenomena of ischemic preconditioning and postconditioning, as well as remote preconditioning and remote postconditioning, along with significant advances in our understanding of the cardioprotective pathways underlying these phenomena, have provided the possibility of successful mechanical and pharmacological interventions against reperfusion injury. AREAS COVERED This review summarizes the evidence from clinical trials evaluating pharmacological agents as adjuncts to standard reperfusion therapy for ST-elevation AMI. EXPERT OPINION Reperfusion injury pharmacotherapy has moved from bench to bedside, with clinical evaluation and ongoing clinical trials providing us with valuable insights into the shortcomings of current research in establishing successful treatments for reducing reperfusion injury. There is a need to address some key issues that may be leading to lack of translation of cardioprotection seen in basic models to the clinical setting. These issues are discussed in the Expert opinion section.
Collapse
Affiliation(s)
- Vikram Sharma
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, UK
| | | | | |
Collapse
|
12
|
Li TT, Zhang YS, He L, Liu B, Shi RZ, Zhang GG, Peng J. Inhibition of vascular peroxidase alleviates cardiac dysfunction and apoptosis induced by ischemia–reperfusion. Can J Physiol Pharmacol 2012; 90:851-62. [PMID: 22702833 DOI: 10.1139/y2012-066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myeloperoxidase (MPO) is involved in myocardial ischemia–reperfusion (IR) injury and vascular peroxidase (VPO) is a newly identified isoform of MPO. This study was conducted to explore whether VPO is involved in IR-induced cardiac dysfunction and apoptosis. In a rat Langendorff model of myocardial IR, the cardiac function parameters (left ventricular pressure and the maximum derivatives of left ventricular pressure and coronary flow), creatine kinase (CK) activity, apoptosis, VPO1 activity were measured. In a cell (rat-heart-derived H9c2 cells) model of hypoxia–reoxygenation (HR), apoptosis, VPO activity, and VPO1 mRNA expression were examined. In isolated heart, IR caused a marked decrease in cardiac function and a significant increase in apoptosis, CK, and VPO activity. These effects were attenuated by pharmacologic inhibition of VPO. In vitro, pharmacologic inhibition of VPO activity or silencing of VPO1 expression significantly suppressed HR-induced cellular apoptosis. Our results suggest that increased VPO activity contributes to IR-induced cardiac dysfunction and inhibition of VPO activity may have the potential clinical value in protecting the myocardium against IR injury.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, No. 110 Xiang-Ya Road, Changsha 410078, P.R. China
- Department of Pharmacy, Xishuangbanna Dai Autonomous State People’s Hospital, Jinghong 666100, P.R. China
| | - Yi-Shuai Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, No. 110 Xiang-Ya Road, Changsha 410078, P.R. China
| | - Lan He
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, No. 110 Xiang-Ya Road, Changsha 410078, P.R. China
| | - Bin Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, No. 110 Xiang-Ya Road, Changsha 410078, P.R. China
| | - Rui-Zheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Guo-Gang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Jun Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, No. 110 Xiang-Ya Road, Changsha 410078, P.R. China
| |
Collapse
|
13
|
Wang J, Chen YD, Zhi G, Xu Y, Chen L, Liu HB, Zhou X, Tian F. Beneficial effect of adenosine on myocardial perfusion in patients treated with primary percutaneous coronary intervention for acute myocardial infarction. Clin Exp Pharmacol Physiol 2012; 39:247-52. [PMID: 22214231 DOI: 10.1111/j.1440-1681.2012.05668.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Wang
- Department of Cardiology; Beijing Anzhen Hospital; Capital Medical University; Beijing; China
| | - Yun-Dai Chen
- Department of Cardiology; Chinese People's Liberation Army General Hospital; Beijing; China
| | - Guang Zhi
- Department of Cardiology; Chinese People's Liberation Army General Hospital; Beijing; China
| | - Yong Xu
- Department of Cardiology; Chinese People's Liberation Army General Hospital; Beijing; China
| | - Lian Chen
- Department of Cardiology; Chinese People's Liberation Army General Hospital; Beijing; China
| | - Hong-Bin Liu
- Department of Cardiology; Chinese People's Liberation Army General Hospital; Beijing; China
| | - Xiao Zhou
- Department of Cardiology; Chinese People's Liberation Army General Hospital; Beijing; China
| | - Feng Tian
- Department of Cardiology; Chinese People's Liberation Army General Hospital; Beijing; China
| |
Collapse
|
14
|
He L, Liu B, Dai Z, Zhang HF, Zhang YS, Luo XJ, Ma QL, Peng J. Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation. Eur J Pharmacol 2012; 678:32-8. [PMID: 22266491 DOI: 10.1016/j.ejphar.2011.12.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/22/2011] [Accepted: 12/28/2011] [Indexed: 11/25/2022]
Abstract
Recent studies demonstrate that alpha lipoic acid can prevent nitroglycerin tolerance by restoring aldehyde dehydrogenase 2 (ALDH2) activity and ALDH2-mediated detoxification of aldehydes is thought as an endogenous mechanism against ischemia-reperfusion injury. This study was performed to explore whether the cardioprotective effect of alpha lipoic acid was related to activation of ALDH2 and the underlying mechanisms. In a Langendorff model of ischemia-reperfusion in rats, cardiac function, activities of creatine kinase (CK) and ALDH2, contents of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. In a cell model of hypoxia-reoxygenation, the apoptosis, ALDH activity, reactive oxygen species level, 4-HNE and MDA contents were examined. In the isolated hearts, ischemia-reperfusion treatment led to cardiac dysfunction accompanied by an increase in 4-HNE and MDA contents. Pretreatment with lipoic acid significantly up-regulated myocardial ALDH2 activity concomitantly with an improvement of cardiac dysfunction and a decrease in 4-HNE and MDA contents, these effects were blocked by the inhibitor of ALDH2. Similarly, in the cultured cardiomyocytes, hypoxia-reoxygenation treatment induced apoptosis accompanied by an increase in the production of reactive oxygen species, 4-HNE and MDA. Administration of lipoic acid significantly up-regulated cellular ALDH2 activity concomitantly with a reduction in apoptosis, production of reactive oxygen species, 4-HNE and MDA, these effects were reversed in the presence of ALDH2 or PKCε inhibitors. Our results suggest that the cardioprotective effects of lipoic acid on ischemia-reperfusion injury are through a mechanism involving ALDH2 activation. The regulatory effect of lipoic acid on ALDH2 activity is dependent on PKCε signaling pathway.
Collapse
Affiliation(s)
- Lan He
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Is medical management of paediatric heart failure evidence based? COR ET VASA 2011. [DOI: 10.33678/cor.2011.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Li TT, Zhang YS, He L, Li NS, Peng J, Li YJ. Protective effect of phloroglucinol against myocardial ischaemia-reperfusion injury is related to inhibition of myeloperoxidase activity and inflammatory cell infiltration. Clin Exp Pharmacol Physiol 2010; 38:27-33. [DOI: 10.1111/j.1440-1681.2010.05457.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Chu LM, Osipov RM, Robich MP, Feng J, Sheller MR, Sellke FW. Effect of thrombin fragment (TP508) on myocardial ischemia reperfusion injury in a model of type 1 diabetes mellitus. Circulation 2010; 122:S162-9. [PMID: 20837908 DOI: 10.1161/circulationaha.109.928374] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the efficacy of novel thrombin fragment TP508 on ischemia-reperfusion injury using a porcine model of type 1 diabetes mellitus. METHODS AND RESULTS Alloxan-induced diabetic male Yucatan swine underwent 60 minutes of mid-left anterior descending coronary artery occlusion, followed by 120 minutes of reperfusion. Fifty minutes into ischemia, animals received either placebo (DM; n=8) or TP508 as a bolus of 1 mg/kg followed by infusion at 2.5 mg/kg per hour (DMT; n=8). Hemodynamic parameters and myocardial function were monitored. Monastryl blue/triphenyl tetrazolium chloride staining was used to assess sizes of the areas at risk and infarction. Coronary microvascular reactivity was measured and expression of cell survival and proapoptotic proteins quantified. Preoperative serum glucose values were similar between groups (309±57 mg/dL in DM versus 318±67 mg/dL in DMT; P=0.92). Infarct size was smaller in the TP508-treated group (5.3±1.9% in DMT versus 19.4±5.6% in DM; P=0.03). There was no statistically significant difference in global or regional left ventricular function between groups. Endothelium-dependent microvessel relaxation was moderately improved in the DMT group (P=0.09), whereas endothelium-independent relaxation was similar between groups. The expression of cell survival proteins Akt, phospho-p38, and mammalian target of rapamycin was higher in the areas at risk of DMT animals compared with DM animals (P<0.05), and expressions of proapoptotic glycogen synthase kinase 3β and caspase 3 were lower in the DMT group (P<0.05). CONCLUSIONS This study demonstrates that, in type 1 diabetic swine, TP508 reduces infarct size after ischemia-reperfusion. Thus, TP508 may offer a novel approach in cardioprotection from ischemia-reperfusion injury in diabetic patients.
Collapse
Affiliation(s)
- Louis M Chu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Osipov RM, Robich MP, Feng J, Liu Y, Clements RT, Glazer HP, Sodha NR, Szabo C, Bianchi C, Sellke FW. Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 2009; 54:287-97. [PMID: 19620880 DOI: 10.1097/fjc.0b013e3181b2b72b] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We investigate the impact of different regimens of parenteral hydrogen sulfide (H2S) administration on myocardium during ischemia-reperfusion (IR) and the molecular pathways involved in its cytoprotective effects. METHODS Eighteen male Yorkshire pigs underwent 60 minutes of mid-left anterior descending coronary artery occlusion followed by 120 minutes of reperfusion. Pigs received either placebo (control, n = 6) or H2S as a bolus (bolus group, n = 6, 0.2 mg/kg over 10 seconds at the start of reperfusion) or as an infusion (infusion group, n = 6, 2 mg.kg.h initiated at the onset of ischemia and continued into the reperfusion period). Myocardial function was monitored throughout the experiment. The area at risk and myocardial necrosis was determined by Monastral blue/triphenyl tetrazolium chloride staining. Apoptosis and the expression pattern of various intracellular effector pathways were investigated in the ischemic territory. Coronary microvascular reactivity to endothelium-dependent and endothelium-independent factors was measured. RESULTS H2S infusion but not bolus administration markedly reduce myocardial infarct size (P < 0.05) and improve regional left ventricular function, as well as endothelium-dependent and endothelium-independent microvascular reactivity (P < 0.05). The expression of B-cell lymphoma 2 (P = 0.059), heat shock protein 27 and alphaB-crystallin (P < 0.05) were lower in H2S-treated groups. Infusion of H2S caused higher expression of phospho-glycogen synthase kinase-3 beta isoform(P < 0.05) and lower expression of mammalian target of rapamycin and apoptosis-inducing factor (P < 0.05). Bolus of H2S caused higher expression of phospho-p44/42 MAPK extracellular signal-regulated kinase and lower expression of Beclin-1 (P < 0.05). The expression of caspase 3 and cleaved caspase 3 were lower (P < 0.05), whereas the expression of phospho-Bad(Ser136) was higher in the bolus group versus control and infusion groups (P < 0.05). The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cell count was lower in both H2S-treated groups compared with the control (P < 0.05). CONCLUSIONS This study demonstrates that infusion of H2S is superior to a bolus alone in reducing myocardial necrosis after IR injury, even though some markers of apoptosis and autophagy were affected in both H2S-treated groups. Thus, the current results indicate that infusion of H2S throughout IR may offer better myocardial protection from IR injury.
Collapse
Affiliation(s)
- Robert M Osipov
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Triposkiadis F, Parissis JT, Starling RC, Skoularigis J, Louridas G. Current drugs and medical treatment algorithms in the management of acute decompensated heart failure. Expert Opin Investig Drugs 2009; 18:695-707. [DOI: 10.1517/13543780902922660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Osipov RM, Robich MP, Feng J, Clements RT, Liu Y, Glazer HP, Wagstaff J, Bianchi C, Sellke FW. Effect of thrombin fragment (TP508) on myocardial ischemia-reperfusion injury in hypercholesterolemic pigs. J Appl Physiol (1985) 2009; 106:1993-2001. [PMID: 19372304 DOI: 10.1152/japplphysiol.00071.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury occurs frequently in the setting of hypercholesterolemia. We investigated the potential efficacy of a novel thrombin fragment (TP508) on IR injury in a hypercholesterolemic porcine model. Twenty-one hypercholesterolemic male Yucatan pigs underwent 60 min of mid-left anterior descending coronary artery occlusion followed by 120 min of reperfusion. Pigs received either placebo (control, n = 7) or TP508 in two doses (TP508 low dose, n = 7, as bolus of 0.5 mg/kg 50 min into ischemia and an infusion of 1.25 mg.kg(-1).h(-1) during reperfusion period or TP508 high dose, n = 7, a double dose of TP508 low-dose group). Myocardial function was monitored throughout the experiment. The area at risk and myocardial necrosis were determined by Monastryl blue/triphenyl tetrazolium chloride staining. Apoptosis in the ischemic territory was assessed. Coronary microvascular reactivity to endothelium-dependent and -independent factors was measured. Myocardial necrosis was lower in both TP508-treated groups vs. control (P < 0.05). Regional left ventricular function was improved only in the TP508 high-dose group (P < 0.05). Endothelium-dependent coronary microvascular reactivity was greater in both TP508-treated groups (P < 0.05) vs. control. The expression of proteins favoring cell survival, 90-kDa heat shock protein and phospho-Bad (Ser112) was higher in the TP508 high-dose group (P < 0.05). The expression of the cell death signaling proteins, cleaved caspase-3 (P < 0.05), apoptosis-inducing factor (P < 0.05), and poly-ADP ribose polymerase (P = 0.07) was lower in the TP508 low-dose group vs. TP508 high-dose and control. The terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling positive cell count was lower in both TP508 groups compared with the control (P < 0.05). This study demonstrates that, in hypercholesterolemic pigs, TP508 decreases myocardial necrosis and apoptosis after IR. Thus TP508 may offer a novel approach in protecting the myocardium from IR injury.
Collapse
|
21
|
Stone GW. Angioplasty strategies in ST-segment-elevation myocardial infarction: part II: intervention after fibrinolytic therapy, integrated treatment recommendations, and future directions. Circulation 2008; 118:552-66. [PMID: 18663103 DOI: 10.1161/circulationaha.107.739243] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gregg W Stone
- Columbia University Medical Center, 111 E 59th St, 11th Floor, New York, NY 10022, USA.
| |
Collapse
|
22
|
González-Costello J, Iràculis E, Gómez-Hospital JA, Maristany J, Jara F, Espulgas E, Cequier Á. Menor vasoconstricción precoz dependiente del endotelio en la arteria que causa el infarto tras angioplastia primaria en comparación con trombolisis después de un infarto agudo de miocardio. Rev Esp Cardiol 2008. [DOI: 10.1157/13124992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Intracoronary adenosine improves myocardial perfusion in late reperfused myocardial infarction. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200802010-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Vinten-Johansen J, Jiang R, Reeves JG, Mykytenko J, Deneve J, Jobe LJ. Inflammation, proinflammatory mediators and myocardial ischemia-reperfusion Injury. Hematol Oncol Clin North Am 2007; 21:123-45. [PMID: 17258123 DOI: 10.1016/j.hoc.2006.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic myocardium must be reperfused to terminate the ischemic event; otherwise the entire myocardium involved in the area at risk will not survive. However, there is a cost to reperfusion that may offset the intended clinical benefits of minimizing infarct size, postischemic endothelial and microvascular damage, blood flow defects, and contractile dysfunction. There are many contributors to this reperfusion injury. Targeting only one factor in the complex web of reperfusion injury is not effective because the untargeted mechanisms induce injury. An integrated strategy of reducing reperfusion injury in the catheterization laboratory involves controlling both the conditions and the composition of the reperfusate. Mechanical interventions such as gradually restoring blood flow or applying postconditioning may be used independently in or conjunction with various cardioprotective pharmaceuticals in an integrated strategy of reperfusion therapeutics to reduce postischemic injury.
Collapse
Affiliation(s)
- Jakob Vinten-Johansen
- Department of Surgery (Cardiothoracic), Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center of Emory Crawford Long Hospital, Emory University, 550 Peachtree Street NE, Atlanta, GA 30308-2225, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Morrison RR, Teng B, Oldenburg PJ, Katwa LC, Schnermann JB, Mustafa SJ. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes. Am J Physiol Heart Circ Physiol 2006; 291:H1875-82. [PMID: 16679400 DOI: 10.1152/ajpheart.00158.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.
Collapse
MESH Headings
- Animals
- Coronary Vessels/physiology
- Female
- Gene Deletion
- Gene Expression Regulation/physiology
- Lactate Dehydrogenases/metabolism
- Male
- Mice
- Mice, Knockout
- Myocardial Contraction/physiology
- Myocardial Ischemia/genetics
- Myocardial Ischemia/metabolism
- Myocardium/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/metabolism
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/metabolism
- Regional Blood Flow/physiology
- Reperfusion Injury/physiopathology
- Vasodilation/physiology
Collapse
Affiliation(s)
- R Ray Morrison
- Division of Critical Care Medicine, St. Jude Children's Research Hospital, 332 N. Lauderdale St., MS 734, Memphis, TN 38105, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Yellon DM, Hausenloy DJ. Realizing the clinical potential of ischemic preconditioning and postconditioning. ACTA ACUST UNITED AC 2006; 2:568-75. [PMID: 16258568 DOI: 10.1038/ncpcardio0346] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 08/02/2005] [Indexed: 11/08/2022]
Abstract
After an acute myocardial infarction (AMI), early reperfusion by thrombolysis or primary percutaneous coronary intervention remains the most-effective strategy for limiting the size of an evolving infarct. The mortality from AMI, however, remains significant, due partly to the lethal reperfusion injury that occurs on reperfusing the ischemic myocardium. Novel cardioprotective strategies are required to target this form of injury. In ischemic preconditioning transient, nonlethal episodes of myocardial ischemia and reperfusion before the index ischemic episode reduce infarct size. The cardioprotective potential of ischemic preconditioning has not been realized in clinical practice because it necessitates an intervention applied before the onset of AMI, which is difficult to predict. A more-amenable approach to cardioprotection is to intervene at the onset of reperfusion, the timing of which is under the control of the operator. In this regard, ischemic postconditioning, in which transient episodes of myocardial ischemia and reperfusion administered at the onset of reperfusion reduce infarct size, constitutes one such intervention. Interestingly, studies suggest that ischemic preconditioning and postconditioning activate the same signaling pathway at the time of reperfusion, thereby offering a common target for cardioprotection. Therefore, the pharmacologic recruitment of this signaling pathway at the time of myocardial reperfusion might allow one to harness the cardioprotective potential of ischemic preconditioning and postconditioning. In this review, we discuss the potential application of ischemic preconditioning and postconditioning in the clinical arena of myocardial ischemia and reperfusion, and examine the common signaling pathways by which this might be achieved.
Collapse
Affiliation(s)
- Derek M Yellon
- Hatter Institute, Centre for Cardiology, University College London Hospital and Medical School, London, UK.
| | | |
Collapse
|
27
|
Tintinger G, Steel HC, Anderson R. Taming the neutrophil: calcium clearance and influx mechanisms as novel targets for pharmacological control. Clin Exp Immunol 2005; 141:191-200. [PMID: 15996182 PMCID: PMC1809444 DOI: 10.1111/j.1365-2249.2005.02800.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are relatively insensitive to the anti-inflammatory actions of conventional chemotherapeutic agents, including corticosteroids, emphasizing the requirement for novel pharmacological strategies to control the potentially harmful proinflammatory activities of these cells. In the case of commonly-occurring inflammatory diseases of the airways, the neutrophil is the primary mediator of inflammation in conditions such as chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, bronchiectasis and non-eosinophilic bronchial asthma. Recent insights into the mechanisms utilized by neutrophils to restore Ca(2+) homeostasis following activation with Ca(2+)-mobilizing, proinflammatory stimuli have facilitated the identification of novel targets for anti-inflammatory chemotherapy in these cells. The most amenable of these from a chemotherapeutic perspective, is the cyclic AMP-dependent protein kinase-modulated endomembrane Ca(2+)-ATPase which promotes clearance of the cation from the cytosol of activated neutrophils. Second generation type 4 phosphodiesterase inhibitors and adenosine receptor agonists operative at the level of subtype A2A adenosine receptors, which are currently undergoing clinical and preclinical assessment respectively, hold promise as pharmacologic modulators during the restoration of Ca(2+) homeostasis. If this promise is realized, it may result in novel chemotherapeutic strategies for the control of hyperacute and chronic inflammatory conditions in which neutrophils are primary offenders. Alternative, potential future targets include the Na(+), Ca(2+)-exchanger and store-operated Ca(2+) channels, which cooperate in the refilling of intracellular Ca(2+) stores.
Collapse
Affiliation(s)
- G Tintinger
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | | | | |
Collapse
|